Mizar

Piotr Rudnicki

Department of Computing Science University of Alberta

piotr@cs.ualberta.ca

▲□▶ ▲御▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで ----

Mizar

1

The name

MIZAR, ζ Ursae Majoris, distance 78.2 \pm 1.1 light years, the first binary star imaged telescopically, Riccioli (1650). Mizar A – the first star discovered to be spectroscopically binary, Pickering (1889). MIZAR B is at least binary.

The MIZAR project

Goal: A data base of computer verified mathematics
 Language: Close to mathematical vernacular yet allowing mechanical checking of correctness
 Leader: Andrzej Trybulec, University of Białystok, Poland.
 Authors: Software: Currently 8 developers MIZAR texts: 200+
 Since: 1973

Stable: since 1989 a data base has been maintained

Motto: Proving is a pleasure Thus: No stress on automated theorem proving (ATP)

Why? - Pure mathematics

Gaussian integers: $a + bi : a, b \in \mathbf{Z}$

Generalized:
$$a + b\sqrt{-d}$$
 where $d \in \mathbf{Z}^+$
 $a, b \in \frac{1}{2}\mathbf{Z}$ when $d \mod 4 = 3$
 $a, b \in \mathbf{Z}$ otherwise.

For which *d* do we have unique factorization? Not for 5:

$$6 = 2 \times 3$$
 but also $6 = (1 + \sqrt{-5}) \times (1 - \sqrt{-5})$

1855: At Gauss's death: d = 1, 2, 3, 7, 11, 19, 43, 67, 163

1934: Heilbronn and Linfoot: there could be at most one more.

- 1952: Heegner: no more. Nobody believed him—he was not a mathematician.
- 1967: Stark and Baker: no tenth *d*. Then they confirmed that Heegner was correct.

Why? - Specification and verification

Ricky W. Butler (NASA) Tutorial on Formal Methods, PVS (1992–1996) Airplane Seat Reservation System

```
seat_assignment: TYPE [# seat : [row, position], pass : passenger #]
flight_assignments: TYPE = set[seat_assignment]
flt_db: TYPE = [flight -> flight_assignments]
Next_seat: [flt_db, flight, preference -> [row, position]]
```

AXIOM (FORALL a: a in db(flt) -> seat(a) /= Next_seat(db, flt, pref)

Next_seat(db, flt, pref) returns a seat even when a flight is full. Which seat? Contradiction.

I now avoid axioms like the plague. It is surprisingly easy to get them wrong! – RWB

In MIZAR, one must construct things, no additional axioms. The technology of mathematics is robust. Let us follow it.

Why? - Proof correctness

Leslie Lamport, How to write a proof, *Global Analysis in Modern Mathematics*, PUBLISH OR PERISH, INC., 1993.

Theorem There does not exist *r* in **Q** such that $r^2 = 2$. ASSUME: 1. $r \in \mathbf{Q}$ 2. $r^2 = 2 \cdots$ $\langle 1 \rangle 1$. Choose *m*, *n* in **Z** such that \cdots $\langle 2 \rangle 4$. gcd(*m*, *n*) = 1 PROOF: By the definition of gcd, it suffices to: ASSUME: 1. *s* divides *m* 2. *s* divides *n* PROVE: *s* = 1 \cdots

LL manages to prove it without even saying where s is from!

Anecdotal evidence suggests that as many as a third of all papers published in mathematical journals contain mistakes—not just minor errors, but incorrect theorems and proofs. ibidem, p. 311.

Some relatives

- **HOL** interactive theorem proving in a higher-order logic, widely used for hardware verification
- **Coq** calculus of constructions, enables extraction of programs from proofs
- **PVS** support for formal specification and verification based on higher order logic, applications in industry
- **Isabelle** generic theorem proving environment, attempts at applications in protocol design and cryptography
 - ACL2 logic is a subset of applicative Common Lisp, tailored for modeling computing machines
 - 100s more

The above offer more automation than MIZAR, are geared toward some specific applications, do not build a comprehensive data base of mathematics and use a language far removed from mathematical practice.

MIZAR: points of interest

- The MIZAR language
- MML MIZAR Mathematical Library
 - axioms of the Tarski-Grothendieck set theory
 - library articles: user interface and internals
- MIZAR article and its processing
- MIZAR processor
- MIZAR on the web
- How to become a MIZAR author?

(Mathematical Knowledge) Management

emerging field dealing with math presence on the web.

Not: Mathematical (Knowledge Management)

Theorem: an example

Prove that for all natural *n*, $\sum_{i=0}^{i=n} i = \frac{n(n+1)}{2}$

MIZAR: for n being Nat holds Sum idseq n = n*(n+1)/2

Local environment: imports from MML 4.181.1147

environ

```
vocabularies RLVECT_1, FINSEQ_2, FINSEQ_1, ARYTM_3,
     RELAT_1, RVSUM_1, XBOOLE_0, SQUARE_1, NAT_1, CARD_1,
     NUMBERS, CARD 3, ORDINAL4, NEWTON, VALUED 0;
 notations NUMBERS, XBOOLE 0, REAL 1, NAT 1, FINSEO 1,
     FINSEQ_2, SQUARE_1, ORDINAL1, RVSUM_1;
constructors REAL_1, RVSUM_1, SQUARE_1, BINOP_2;
 registrations NUMBERS, RELSET_1, VALUED_0, MEMBERED,
     FINSEO 2, NEWTON, RVSUM 1;
 requirements NUMERALS, BOOLE, SUBSET, ARITHM;
 definitions FINSEQ_1;
 theorems FINSEO 2, RVSUM 1, RELAT 1, TOPREAL7, SOUARE 1,
     VALUED 1:
schemes NAT 1;
begin
```

and now we can continue our proof

Theorem: an example, cntd

```
defpred P[Nat] means Sum idseq 1 = 1*(1+1)/2;
Basis: P[0] by RVSUM_1:72;
IndStep:
for n being Nat st P[n] holds P[n+1]
proof let n be Nat such that
   IndHyp: Sum idseq n = n * (n+1)/2;
     thus Sum idseq(n+1)
        = Sum((idseq n)^{<+n+1+>}) by FINSEO 2:51
       .= Sum(idseq n) + (n+1) by RVSUM_1:74
       = (n+1) * (n+1+1) / 2 by IndHyp;
end;
for n being Nat holds P[n] from NAT_1:sch 2(Basis, IndStep);
```

then for n being Nat holds Sum idseq n = n * (n+1)/2;

```
Mizar
Theorem: another example
 defpred S[Nat] means Sum sqr idseq 1 = \frac{1}{(1+1)} \cdot \frac{2}{(2+1+1)}
 Basis: S[0] proof
   dom sqr idseq 0 = dom idseq 0 by VALUED_1:11 .= {} by RELAT_1:3
  hence Sum sqr idseq 0 = 0 by RELAT_1:41, RVSUM_1:72
    = 0 * (0+1) * (2 * 0+1) / 6;
 end;
 IndStep: for n being Nat st S[n] holds S[n+1] proof
   let n be Nat such that IndHyp: S[n];
 Aux: idseg n is FinSequence of REAL by RVSUM_1:145;
   thus Sum sqr idseq (n+1)
      = Sum sqr ((idseq n)^{<+n+1+>}) by FINSEQ_2:51
     .= Sum ((sqr idseq n) ^ (sqr <*n+1*>)) by Aux, RVSUM_1:144
     .= Sum ((sqr idseq n) ^ <* (n+1) ^2*>) by RVSUM_1:55
     .= Sum sqr idseq n + (n+1)^2 by RVSUM_1:74
     = n * (n+1) * (2*n+1) / 6 + (n+1) * (n+1) by IndHyp,SQUARE_1:def 1
     = (n+1) * (n+1+1) * (2*(n+1)+1) / 6;
 end;
```

for n being Nat holds S[n] from NAT_1:sch 2(Basis, IndStep); then for n being Nat holds Sum sqr_idseq n = n*(n+1)*(2*n+1)/6;

The MIZAR language

► The language mimics traditional mathematics.

- Based on classical, typed, first order logic with equality. The natural deduction system of Jaśkowski (Fitch).
- Definitions of constructors:

Constructor	Construction	Example	
Predicate	Atomic formula	x is_a_fixpoint_of f	
Functor	Term	lfp (X, f)	
Mode	Туре	Relation of X, Y	
Attribute	Adjective	n is even	
Structure	Туре	struct DB-Rel (# <i>fields</i> #)	

Propositional schemes with free second order variables.

MML: MIZAR Mathematical Library: foundations

Unit HIDDEN: primitive notions set, in, = Unit TARSKI: Tarski-Grothendieck set theory axioms

Axiom of extensionality equality of sets
 Axiom of singleton and pair existence
 Axiom of union existence
 Axiom of regularity no infinite descending ε chains
 Axioms of replacement functional image of a set
 Tarski's axiom of strongly inaccessible cardinals

TG = ZF - { some existence axioms } - { AC } + { large cardinals }

Operational built-ins:

BOOLE, SUBSET, ARITHM, REAL, NUMERALS

イロト (日本) (日本) (日本) (日本)

Mizar

MML – MIZAR Mathematical Library

MML is a collection of articles.

What is a MIZAR article?

What is in MML?

Analogy to *What is a published paper?* March 2003: 765 articles September 2008: 1033 articles May 2012: 1147 articles

Basic mathematical toolkit: relations, functions, ...

How many of these?

On top of the toolkit (some examples)

- Set theory
- Meta-logic
- Algebra
- Analysis
- Topology
- Number theory
- Graph theory

Reflection lemma Gödel completness theorem FTA, Wedderburn theorem I'Hôpital theorem Jordan curve theorem Bertrand's postulate, CRT Chordal graphs recognition

MML – MIZAR Mathematical Library

Some efforts focused in narrower areas

- Continuous lattices
- Algebra of polynomials
- Real and complex analysis
- Modeling computations
- Graph algorithms

The blow-up factor for the number of words (tokens) is ≈ 10 when translating mathematical monographs into MIZAR

MML: Some Numbers

	3.46.767	4.100.1011	4.187.1147	
	Apr '03	Apr '08	May '12	
Theorems	33178	46506	51762	
Definitions	6557	8804	10158	
Schemes	684	756	787	
Constructors				
Functor	5043	6823	7768	
Mode	406	438	447	
Predicate	684	878	1013	
Attribute	1498	2043	2345	
Structures	88	116	132	
Registrations				
Existential	1416	1861	2219	
Functorial	2796	4568	6598	
Conditional	1025	1496	2044	

Functor: example of a definition

```
From XBOOLE_0
```

イロト (同) (ヨ) (ヨ) (ヨ) () ()

```
definition let X, Y be set;
  func X \setminus / Y \rightarrow set means x in it iff x in X or x in Y:
  existence proof
    take union {X,Y}; let x;
    thus x in union {X,Y} implies x in X or x in Y
              proof ... end;
    assume x in X or x in Y; ...
    hence x in union {X, Y} by ...
  end;
  uniqueness proof let A1, A2 be set such that
   A6: x in A1 iff x in X or x in Y and
   A7: x in A2 iff x in X or x in Y;
        . . .
        hence A1 = A2 by TARSKI:2;
  end;
  commutativity;
  idempotence;
end;
```

Predicate, attribute, cluster: examples

From ASYMPT_0

```
definition let f be Real_Sequence;
 attr f is eventually-nonnegative means
                                              :: ASYMPT_0:def 4
  ex N st for n st n \geq N holds f.n \geq 0;
end;
registration
 cluster eventually-nonnegative eventually-nonzero positive
    eventually-positive eventually-nondecreasing Real_Sequence;
 existence proof
   reconsider f = NAT - > 1 as Function of NAT, REAL by FUNCOP_1:57;
  take f:
   thus f is eventually-nonnegative proof ... end;
   thus f is eventually-nonzero proof ... end;
   . . .
 end;
end;
definition
let f be eventually-nonnegative Real_Sequence, b be Nat;
pred f is_smooth_wrt b means
                                               :: ASYMPT 0:def 19
  f is eventually-nondecreasing & f taken_every b in Big_Oh(f);
end;
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Clusters: examples

From ASYMPT_0

```
registration
 cluster eventually-nonnegative eventually-nonzero
          -> eventually-positive Real_Sequence;
  coherence proof let f be Real Sequence; assume
A3: f is eventually-nonnegative & f is eventually-nonzero;
    then consider N such that
A4: for n st n \geq N holds f.n \geq 0 by Def4;
A8: n \ge N \& n \ge M by A6, XXREAL_0:2;
    f.n <> 0 by A5, A6, A7, XXREAL_0:2;
    hence thesis by A4, A8;
 end:
end;
registration
 let f, g be eventually-nonnegative Real_Sequence;
 cluster f+g -> eventually-nonnegative;
 coherence proof
   ... let n; ...
  hence (f + g) \cdot n \ge 0 by SEQ_1:11;
 end;
end:
                                       イロト (同) (ヨ) (ヨ) (ヨ) () ()
```

Mode: example

From FINSEQ_1

```
definition let D be set:
 mode FinSequence of D -> FinSequence means
       rng it c= D;
   existence proof
    . . .
  end;
 end;
registration
 let D be set;
 cluster FinSequence-like PartFunc of NAT, D;
  existence
  proof {} is PartFunc of NAT,D by RELSET_1:25;
    hence thesis:
 end;
end:
definition let D be set:
 redefine mode FinSequence of D
                         -> FinSequence-like PartFunc of NAT, D;
 coherence proof ... end;
end:
                                       イロト (同) (ヨ) (ヨ) (ヨ) () ()
```

Hierarchy of notions: example

```
FinSequence of D -> FinSequence
FinSequence is FinSequence-like Function
FinSequence-like attribute to Relation
Relation is Relation-like set
Relation-like attribute to set
Function is Function-like Relation-like set
Function-like attribute to set
FinSequence of D -> FinSequence-like PartFunc of NAT,D
```

```
NAT -> Subset of REAL
REAL -> set :: a construction of reals is behind it
Subset of X is Element of bool X
Element of X -> set
bool X -> set
```

```
PartFunc of X,Y is Function-like Relation of X,Y
Relation of X,Y -> Subset of [:X,Y:]
[:X,Y:] -> set
```

Concerns of (not only casual) authors

- Learning the system
- Knowing the library
- Searching the library
- Reading formal proofs
- Presentation of formal proofs
- Gaps in the library
- Algebraic manipulations
- Introducing new notations
- Theory vs examples

Article processing: batch

Including a new article into MML

Presentation and distribution

Source articles

- Library files (internal)
- MIZAR abstract of an article a text file of definitions and theorems but without proofs
- Abstracts and entire article available hyper-linked in html/xml for web browsing thanks to Josef Urban)
- Abstracts automatically T_EXed and published and on paper Formalized Mathematics
- Work on MIZAR Encyclopedia: monographic articles

Applications

- Building a data base of formalized mathematics
- Exporting from MIZAR to other systems
- Education: logic and mathematics
- Specification and verification

Josef Urban applies AI to play with MML

- Can an automated prover prove theorems from MML which have been proved by hand?
 - All premises are exported
 - Most provers choke on several thousand premises
- Machine learning to find the relevant premises for a theorem.
 - Assists humans when proving Well, not really. Too many false positives.
 - Assists theorem provers on simpler cases with spectacular results.
- Escape to ATP from MIZAR
- ATPs as a search engine for facts in MML

Jesse Alama translates ATP found proofs to MIZAR.

Lessons from MIZAR

- Any similar project should focus on building a data base.
- Any similar system will evolve: language, checker, ...
- The evolution will be driven by the growing data base.
- How to involve mathematicians?
- How to find authors?
- Who will pay for all this?
- What has happened to QED? A project to build a computer system that effectively represents all important mathematical knowledge and techniques.