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What does a randomness mean?
I What is a intuition behind concept of the randomness?

Randomness is the lack of pattern or predictability in events. [1]
I For machine learning methods we need a formal definition of randomness.

What is a mathematical definition of the randomness?
I Probability theory is a mathematical framework that allows us to reason about

phenomena or experiments whose outcome is uncertain.
I We will talk about probability space which formally is a triple (Ω, F, P )

I Ω is a sample space. This space contains all possible outcomes of experiment, i.e.
number of dots on a thrown dice. Typical elements of Ω are often denoted by ω, and
are called elementary outcomes, or simply outcomes. The sample space can be
finite, countable or uncountable.

I F is a σ-field, which is a collection of subsets of Ω. σ-field means that:
1. ∅ ∈ F ;
2. A ∈ F → Ω−A ∈ F ;

3.
∞⋃
i=1

Ai ∈ F .

We could interpret this field as set of results of interested experiments, i.e. a dice
throw which outcome dot number greater than 4.Typical elements of this space are
called events or random events. Note that the formal requirements for F do not
presuppose correct representation of ,,real” random events space.



Probability space

I P is a probability measure which provide us information about ,,chance” to
observe some set of outcomes. In a very beginning approach to probability theory
we described probability as proportion of number interested events which cover
our requirements to all events. Unfortunately this approach doesn’t allow us to
use whole analytical instruments so instead of it we want to use some concepts
based on measure theory.

I Because of need of formalization of P we use probability axioms (Ko lmogrow
Axioms):

1. P (A) > 0;
2. P (Ω) = 1;

3. P

(⋃
i=1

Ai

)
=
∑
i=1

P (Ai),

where Ai ∩Aj = ∅ for i 6= j.



Probability space

I Because of this axioms:

P

( ⋃
ω∈A
{ω}

)
= P (A) (1)

P

( ⋃
ω∈Ω

{ω}
)

= P (Ω) = 1 (2)

I For simplifying notation we often denote P ({ω}) as P (ω).



Probability space

I Let’s try to describe probability for every outcome of random generating number
from [0; 1]. Note that since sum is a binary operator we couldn’t handle with
infinite sequence of adding probabilities. Because of that (1) doesn’t allow us to
directly handle with this situation. When the sample space Ω is uncountable, the
idea of defining the probability of a general subset of Ω in terms of the
probabilities of elementary outcomes runs into difficulties. This is the main reason
of setting σ-field to probability space definition. The idea is to assign probability
value for a whole subset not for a specific element.

I The pair (Ω, F ) is called a measurable space and the triple (Ω, F, P ) is called a
probability space.



Random variable

I A random variable is a measurable function from the set of possible outcomes Ω
to some set E, X : Ω→ E. Usually E = R.

I The random variable doesn’t represent probability, which as we have already said
is represented by measure P . The main purpose of introducing it is to easily
describe some numerical properties of outcomes, i.e. a number of people taller
than 1.9m in a population or the number of dice throws with number of dots
higher than 4.

I Let’s X be a random variable which describes a sum of dots which outcomes in a
sequence of three throws. ”How likely is it that the value of X is equal to 3?”
which formally we denote as P ({ω : X(ω) = 3}). For simplifying notation we
often will describe it as: P (X = 3)



Random variable

I In case of getting random variable’s value in process of executing some experiment
we will call random variable observable, otherwise we will call it unobservable.

I Collection of all probabilities for each possible value of a random variable allow us
to define some object called probability distribution. We describe this object by
probability density function (PDF) for uncountable random variables and
probability mass function (PMF) for discrete variables. Note that PDF would
rather represent probability concentration than direct probability values. PDF can
take values higher than 1. Integrate PDF over some area allow to receive a
probability of event.

I In context of machine learning based on probability theory we would often use
term sampling distribution which could be interpreted as collect some
observation of random variable instances.



Random variable

I Conditional probability describes probability of observing some value of random
variable when some specific values of other random variables was observed.

P (X|Y ) =
P (X ∩ Y )

P (Y )

could be read as ”the probability of X under the condition Y” or ”the conditional
probability of X given Y”.



Random variable

I In case when observation of any values of random variable X doesn’t have
influence of a observed value of other random variable Y we call them
independent. Independence of random variables X and Y means for subset of
sample space (event) value for specific value of Y X does have still the same
distribution.

P (X|Y ) =
P (X ∩ Y )

P(Y)
=
P (X)P (Y )

P (Y )
= P (X).

normalization factor for evaluation distribution probability in a subspace



Bayes theorem

For simplify some analysis we decompose random process into two parts. A prior
probability P (A) represent probability of some process evaluated in basics of collected
information before experiment was done. We could interpret it as the initial degree of
belief in A. A posterior P (A|B) is a probability after experiment was done (and event
B happens), is the degree of belief having accounted for B. P (B|A) is the probability
of observing event B given that A is true.

P (A|B) =
P (B|A)P (A)

P (B)
.

P (A ∩B) = P (A|B)P (B) = P (B|A)P (A) ⇐⇒ P (A|B) =
P (B|A)P (A)

P (B)
.

Bayes theorem is a common used in machine learning, i.e. classification, for machine
learning engineers is fundamental theorem of probability theory.



Marginal distribution

Marginal distribution represents a distribution of some subset of random variables.
Marginal is ”going to ask about just one (or a few) factor at a time”. For continuous
distributions:

pX(x) =

∫
y
pX|Y (x|y) pY (y) dy = EY

[
pX|Y (x|Y )

]
For discrete distribution formula is analogical with exchanging integral into discrete
”equivalent” operation of sum.



Marginal distribution



Marginal distribution



Maximum likelihood estimation

I Let’s consider us some observation from a normal distribution. How to estimate
parameters of this distribution?

I Maximum likelihood estimation (MLE) method is a vary used tool for
estimating parameters in order to finding distribution which optimize likelihood of
sampling our data.



Maximum likelihood estimation

I Common approach focus on an optimization of log of the MLE criterion. Since
the log function is monotonic it allow to find the same optimal solution as
optimization based on direct MLE criterion.

I Application of log-likelihood function allow to simplify some computation and is
more resistance to loss precision on processing very small likelihood values on
computers.

I MLE approach is common called ”classical (frequentist) inference”

I What is wrong with this approach? Nothing, but is not corresponding to our
intuitive understanding of problem. Data is assumed to be random, parameter is
fixed. From mathematical point of view this approach don’t allow to be so easily
interpreted in a learning (estimating) process.



Bayesian parameter estimation

I Based on Bayes theorem. We assume that parameters of model are random
variables.

I We specify some distribution of joint distribution over data and parameters
p(X, θ)

p(y, θ) = p(y|θ)p(θ);

I We combine the data we have collected with our prior beliefs is done via Bayes’
theorem:

p(θ|y) =
p(θ)p(y|θ)
p(y)

= p(θ|x) =
p(x|θ) p(θ)∫
p(x|θ) p(θ) dθ

..



Bayesian parameter estimation

I We need to specify prior distribution of θ.

I If the posterior distributions p(θ|x) are in the same family as the prior probability
distribution p(θ), the prior and posterior are then called conjugated.

I Conjugation of distribution in Bayesian statistics is very desired property of
distributions. It could simplify analysis and computation.

I Fortunately all distribution from an exponential family have corresponding to
them conjugate distributions.



Bernoulli distribution

For simple experiment which could outcome with ”success” or ”fail” with probability
equals p of receiving success we use Bernoulli distribution:

P (X = 1) = 1− P (X = 0) = 1− q = p.

f(k; p) =

p if k = 1,

1− p if k = 0.



Binomial distribution

Consider experiment which is a sequence of independent experiments described by
Bernoulli distribution. The probability of getting exactly k ”successes” in n trials is
given by:

P (X = k) =

(
n

k

)
︸︷︷︸

number of k combinations

pk(1− p)n−k︸ ︷︷ ︸
sequence of k successes



Poisson distribution

The Poisson distribution is a continuous ”generalization” of binomial distribution. In
binomial distribution we talk about some steps, in each of them we performed one
experiment. What if we would want to swap this discrete steps into continuous time?
Poisson limit theorem:
if n→∞, p→ 0, such that np→ λ then:

n!

(n− k)!k!
pk(1− p)n−k → e−λ

λk

k!
.

λ is interpreted as expected number of ”successes” in some period.



Poisson distribution

Note that since np = λ, we can rewrite p = λ/n so:

lim
n→∞

n!

(n− k)!k!

(
λ

n

)k (
1− λ

n

)n−k
= lim

n→∞

n(n− 1) . . . (n− k + 1)

k!

λk

nk

(
1− λ

n

)n−k

(1− p)n−k =

(
1− λ

n

)n−k
=

(
1− λ

n

)n(
1− λ

n

)−k
n→∞−−−→ e−λ

lim
n→∞

n(n− 1)(n− 2) . . . (n− k + 1)

nkk!
=

1

k!
.



Poisson distribution

Finally Poisson distribution can be described by an equation:

f(k, λ) = λk

k! e−λ .

factor of ”success” events and ordering factor of ”fail” events

Poisson distribution is often used in modeling occurrence of random events in time (i.e.
queueing theory). For example to evaluate ”how likely is to receive 100k requests for a
server in period of one hour?”



Multinomial distribution

Multinomial distribution is generalization of the binomial distribution. Instead of
”success” and ”fail” we consider more possible outcomes, but the sample space is still
finite.

P (X1 = x1 and . . . and Xk = xk) =


n!

x1! · · ·xk!
px11 · · · p

xk
k , when

∑k
i=1 xi = n

0 otherwise,

The probability mass function can be expressed using the gamma function Γ(x) as:

P (X1 = x1 and . . . and Xk = xk) =
Γ(
∑

i xi + 1)∏
i Γ(xi + 1)

k∏
i=1

pxii .



Gamma function

We can interpret gamma function Γ(t) as continuous ”generalization” of factorial. For
t > 0:

Γ(t) =

∫ ∞
0

xt−1e−x dx

Using integration by parts we can easily show that:

Γ(t+ 1) = tΓ(t).

Γ(n) = 1 · 2 · 3 · · · (n− 1) = (n− 1)!



Beta function

Beta function is defined by:

B(x, y) =

∫ 1

0
tx−1(1− t)y−1 dt

We can express beta function by relationship of gamma functions:

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)



Dirichlet distribution

Dirichlet distribution is the conjugate prior of the categorical distribution and
multinomial distribution.

f (x1, · · · , xK ;α1, · · · , αK) =
1

B(α)

K∏
i=1

xαi−1
i ,

For k − 1 dimensional simplex:

x1, · · · , xK−1 > 0,

x1 + · · ·+ xK−1 < 1,

xK = 1− x1 − · · · − xK−1,

∀iαi > 0

or f(x;α) = 0 if x is not a PMF.



Dirichlet distribution

Where B(α) is a multivariate beta function:

B(α) =

K∏
i=1

Γ(αi)

Γ
(∑K

i=1 αi

) , α = (α1, · · · , αK).

From our point of view fact that Dirichlet distribution is a conjugate prior to the
multinomial distribution is very important.



Dirichlet distribution - figures from [2]

Figures from [2]



Dirichlet distribution - figures from [2]



Does God play Dice?

I As we mentioned randomness doesn’t have formal math definition. Intuitively we
could understand randomness as lack of knowledge about deterministic rules in
some process, of course it does not mean that something which we interpret as
random doesn’t have any pattern.

I We could say probability theory focus on description some processes based on
their outcomes without any deeper analysis of reason, semantic or deterministic
rules which made observer outcome.

I Note that this is exactly what we require in machine learning models.



Generative topic models



Latent Dirichlet Allocation - generative process

I Let’s assume that document from corpus D could be generated by following
process:

1. Choose number of words N ∼ Poisson(ξ)
2. Choose topic mixture θ ∼ Dir(α)
3. For each of the N words wn:

3.1 Choose a topic zn ∼ Multinomial(θi).
3.2 Choose a word from p(wn|zn, β) where wn ∼ Multinomial(ϕzn), which is a

multinomial probability conditioned on the topic zn

I The dimensionality k of the Dirichlet distribution (and thus the dimensionality of
the topic variable z) is assumed known and fixed.

I The Poisson assumption is not critical to anything that follows and more realistic
document length distributions can be used as needed. Note that N is independent
of all the other data generating variables (θ and z)



Latent Dirichlet Allocation

I The word probabilities are parametrized by a k × V matrix β where
βi,j = p(wj = 1|zi = 1), which we treat as a fixed quantity that is to be
estimated.

I Given the parameters α and β, the joint distribution of a topic mixture θ, a set of
N words w and corresponding to them topics z is given by:

p(θ, z, w|α, β) = p(θ|α)
N∏
n=1

p(zn|θ)p(wn|zn, β)︸ ︷︷ ︸
words and corresponding topicstopic mixture, parameters of word distribution



Latent Dirichlet Allocation

I Integrating over θ and summing over z, we obtain the marginal distribution of a
document:

p(w|α, β) =

∫
p(θ|α)

(
N∏
n=1

∑
zn

p(zn|θ)p(wn|zn, β)

)
dθ

I Taking the product of the marginal probabilities of single documents, we obtain
the probability of a corpus:

p(D|α, β) =

M∏
d=1

∫
p(θd|α)

(
Nd∏
n=1

∑
zdn

p(zdn|θd)p(wdn|zdn, β)

)
dθd



Latent Dirichlet Allocation

I We can distinguish three levels:

1. α - sampled once per corpus
2. θ - sampled once per document
3. w, z - sampled once per word



Latent Dirichlet Allocation



LDA - inference

I The posterior distribution is intractable for exact inference, a wide variety of
approximate inference algorithms can be considered for LDA, including Laplace
approximation, variational approximation, and Markov chain Monte Carlo.

I We will focus on variational approximation orignaly proposed by Blei in [3].

I The basic idea of convexity-based variational inference is to make use of Jensen’s
inequality to obtain an adjustable lower bound on the log likelihood [4][3].
Essentially, one considers a family of lower bounds, indexed by a set of variational
parameters. The variational parameters are chosen by an optimization procedure
that attempts to find the tightest possible lower bound.



LDA - inference

I Application of variational inference need to specify new variational distribution
which allow to simplify optimization process.

I Graphical model representation of LDA:



LDA - inference

Graphical model representation of the variational distribution used to approximate the
posterior in LDA (simple modification of the original graphical model in which some of
the edges and nodes are removed):



LDA - inference

Variational distribution:

q(θ, z|γ, φ) = q(θ|γ)

N∏
n=1

q(zn|φn)

where the Dirichlet parameter γ and the multinomial parameters (φ1, . . . , φN ) are the
free variational parameters. The optimization problem is defined by:

(γ∗, φ∗) = argmin
γ,φ

D(q(θ, z|γ, φ)||p(θ, z|w,α, β))

where the D is a e Kullback-Leibler (KL) divergence between the variational
distribution and the actual posterior distribution .



LDA - inference

One method to minimize this function is to use an iterative fixed-point method,
yielding update equations of:

φni ∝ βiwn exp Eq[log(θi|γ)]

γi = αi +

N∑
n=1

φni

as shown in [3] Eq[log(θi|γ)] could be computed as:

Eq[log(θi|γ)] = Ψ(γi)−Ψ(

k∑
j=1

γj)

Ψ is a log of gamma function, which is computable via Taylor approximations.



LDA - inference

Variational EM method take form for E-step:



LDA - inference

M-step: Maximize the resulting lower bound on the log likelihood with respect to the
model parameters α and β. This corresponds to finding maximum likelihood estimates
with expected sufficient statistics for each document under the approximate posterior
which is computed in the E-step.
The β update is based on fact that:

βij ∝
M∑
d=1

Nd∑
n=1

φ∗dniw
j
dni

The α update uses a linear-scaling Newton-Rhapson algorithm to determine the
optimal alpha, with updates carried out in log-space (assuming a uniform α):

log(αt+1) = log(αt)−
dL
dα

d2L
dα2α+ dL

dα



Smoothed LDA

For very large corpora frequently occurs problem of sparsity. It is very likely to contain
words that did not appear in any of the documents in a training corpus. Maximum
likelihood estimates of the multinomial parameters assign zero probability to such
words, and thus zero probability to new documents. Smoothed version of LDA model
is based on Dirichlet smoothing. Each row in β matrix is treated as each row is
independently drawn from an exchangeable Dirichlet distribution.



Application of topic models



Application of topic models
Topic models are common used in many problems. We can get examples of application
it in [5], [6] or [7].



Application of topic models



Application of topic models



Application of topic models



Application of topic models



Application of topic models



Application of topic models

Figure: Taken from [7]. Note that is a modification of original LDA model for catching
correlation between two kinds of words (in this example text and visual)
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