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What does a randomness mean?

» What is a intuition behind concept of the randomness?
Randomness is the lack of pattern or predictability in events. [1]

» For machine learning methods we need a formal definition of randomness.
What is a mathematical definition of the randomness?

> Probability theory is a mathematical framework that allows us to reason about
phenomena or experiments whose outcome is uncertain.

» We will talk about probability space which formally is a triple (2, F, P)

» () is a sample space. This space contains all possible outcomes of experiment, i.e.
number of dots on a thrown dice. Typical elements of ) are often denoted by w, and
are called elementary outcomes, or simply outcomes. The sample space can be
finite, countable or uncountable.

» I is a o-field, which is a collection of subsets of (2. o-field means that:

1. DeF;
2. AeF=-Q—-AcF,;
3. UJAeF.

=1
We could interpret this field as set of results of interested experiments, i.e. a dice
throw which outcome dot number greater than 4.Typical elements of this space are
called events or random events. Note that the formal requirements for F' do not

presuppose correct representation of ,,real” random events space.



Probability space

» P is a probability measure which provide us information about ,,chance” to
observe some set of outcomes. In a very beginning approach to probability theory
we described probability as proportion of number interested events which cover
our requirements to all events. Unfortunately this approach doesn't allow us to
use whole analytical instruments so instead of it we want to use some concepts
based on measure theory.

» Because of need of formalization of P we use probability axioms (Kotmogrow
Axioms):

1. P(A)>0;
2. P(Q) =1;

3.P<L_JA1-) ; P(A;),
= fori ).

where A, NA



Probability space

» Because of this axioms:

P(U ) =Py

wEA

P(U ) =P@=10)

we

» For simplifying notation we often denote P({w}) as P(w).



Probability space

> Let's try to describe probability for every outcome of random generating number
from [0; 1]. Note that since sum is a binary operator we couldn’t handle with
infinite sequence of adding probabilities. Because of that (1) doesn't allow us to
directly handle with this situation. When the sample space 2 is uncountable, the
idea of defining the probability of a general subset of €2 in terms of the
probabilities of elementary outcomes runs into difficulties. This is the main reason
of setting o-field to probability space definition. The idea is to assign probability
value for a whole subset not for a specific element.

» The pair (2, F') is called a measurable space and the triple (2, F, P) is called a
probability space.



Random variable

» A random variable is a measurable function from the set of possible outcomes €2
tosomeset £/, X : Q — E. Usually £ =R.

» The random variable doesn’t represent probability, which as we have already said
is represented by measure P. The main purpose of introducing it is to easily
describe some numerical properties of outcomes, i.e. a number of people taller
than 1.9m in a population or the number of dice throws with number of dots
higher than 4.

> Let's X be a random variable which describes a sum of dots which outcomes in a
sequence of three throws. "How likely is it that the value of X is equal to 37"
which formally we denote as P({w : X (w) = 3}). For simplifying notation we
often will describe it as: P(X = 3)



Random variable

> In case of getting random variable's value in process of executing some experiment
we will call random variable observable, otherwise we will call it unobservable.

» Collection of all probabilities for each possible value of a random variable allow us
to define some object called probability distribution. We describe this object by
probability density function (PDF) for uncountable random variables and
probability mass function (PMF) for discrete variables. Note that PDF would
rather represent probability concentration than direct probability values. PDF can
take values higher than 1. Integrate PDF over some area allow to receive a
probability of event.

> In context of machine learning based on probability theory we would often use
term sampling distribution which could be interpreted as collect some
observation of random variable instances.



Random variable

» Conditional probability describes probability of observing some value of random
variable when some specific values of other random variables was observed.

P(XNY)

PXIY) = =55

could be read as "the probability of X under the condition Y" or "the conditional
probability of X given Y".



Random variable

> In case when observation of any values of random variable X doesn’t have
influence of a observed value of other random variable Y we call them
independent. Independence of random variables X and Y means for subset of
sample space (event) value for specific value of Y X does have still the same
distribution.
PX|Y) = P(XNY) _ P(X)P(Y) _ p(X).
P(Y) P(Y)

N\

normalization factor for evaluation distribution probability in a subspace




Bayes theorem

For simplify some analysis we decompose random process into two parts. A prior
probability P(A) represent probability of some process evaluated in basics of collected
information before experiment was done. We could interpret it as the initial degree of
belief in A. A posterior P(A|B) is a probability after experiment was done (and event
B happens), is the degree of belief having accounted for B. P(B|A) is the probability
of observing event B given that A is true.

P(4|p) = LB LA (BIL/(%D @

P(AN B) = P(A|B)P(B) = P(B|A)P(A) < P(A|B) = P(BJ%J;W.

Bayes theorem is a common used in machine learning, i.e. classification, for machine
learning engineers is fundamental theorem of probability theory.



Marginal distribution

Marginal distribution represents a distribution of some subset of random variables.
Marginal is " going to ask about just one (or a few) factor at a time”. For continuous
distributions:

px(z) = / Pty (l9) py (u) dy = Ey [pxpy(2lY)]
)

For discrete distribution formula is analogical with exchanging integral into discrete
"equivalent” operation of sum.



Marginal distribution

The World’s Population in 2000, by Latitude

horizontal axis shows the sum of all population at each degree of latitude

The World’s Population in 2000, by Longitude

180°




Marginal distribution




Maximum likelihood estimation

» Let's consider us some observation from a normal distribution. How to estimate
parameters of this distribution?

» Maximum likelihood estimation (MLE) method is a vary used tool for
estimating parameters in order to finding distribution which optimize likelihood of
sampling our data.
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Maximum likelihood estimation

» Common approach focus on an optimization of log of the MLE criterion. Since
the log function is monotonic it allow to find the same optimal solution as
optimization based on direct MLE criterion.

> Application of log-likelihood function allow to simplify some computation and is
more resistance to loss precision on processing very small likelihood values on
computers.

» MLE approach is common called " classical (frequentist) inference”

» What is wrong with this approach? Nothing, but is not corresponding to our
intuitive understanding of problem. Data is assumed to be random, parameter is
fixed. From mathematical point of view this approach don't allow to be so easily
interpreted in a learning (estimating) process.



Bayesian parameter estimation

» Based on Bayes theorem. We assume that parameters of model are random
variables.

» We specify some distribution of joint distribution over data and parameters
p(X,0)

p(y,0) = p(y|0)p(0);

» We combine the data we have collected with our prior beliefs is done via Bayes'

theorem:
pOplo) _ o\ p(l6)p(6)
o) 7 Cl) [ p(x|0) p(0) do”

p(ly) =



Bayesian parameter estimation

» We need to specify prior distribution of 4.

» If the posterior distributions p(f|x) are in the same family as the prior probability
distribution p(#), the prior and posterior are then called conjugated.

» Conjugation of distribution in Bayesian statistics is very desired property of
distributions. It could simplify analysis and computation.

» Fortunately all distribution from an exponential family have corresponding to
them conjugate distributions.



Bernoulli distribution

For simple experiment which could outcome with "success” or "fail” with probability
equals p of receiving success we use Bernoulli distribution:



Binomial distribution

Consider experiment which is a sequence of independent experiments described by
Bernoulli distribution. The probability of getting exactly & "successes” in n trials is
given by:

rx=n- (}) P p)

sequence of k successes
number of & combinations



Poisson distribution

The Poisson distribution is a continuous " generalization” of binomial distribution. In
binomial distribution we talk about some steps, in each of them we performed one
experiment. What if we would want to swap this discrete steps into continuous time?
Poisson limit theorem:

if n — oo,p — 0, such that np — X then:

n! k n—k A
R A

A is interpreted as expected number of "successes” in some period.



Poisson distribution

Note that since np = A, we can rewrite p = A\/n so:

hm <>\>k<1_>\>"k: o nn—=1)...(n—k+1)\ (1_)\>nk

n—oo (n — k)k! \ n n n—00 k! nk n




Poisson distribution

Finally Poisson distribution can be described by an equation:

AE )

f(k:,)\)/—! e \

factor of "success” events and ordering factor of "fail" events

Poisson distribution is often used in modeling occurrence of random events in time (i.e.

queueing theory). For example to evaluate "how likely is to receive 100k requests for a
server in period of one hour?”



Multinomial distribution

Multinomial distribution is generalization of the binomial distribution. Instead of
"success” and "fail” we consider more possible outcomes, but the sample space is still
finite.

1 k _
cee when E : , —
1‘]!--~.%'k!p1 Py i=1%i "

P(X; =z and ... and X} = 1) =

0 otherwise,

The probability mass function can be expressed using the gamma function I'(x) as:

k
1)
P(Xy =z and ... and X = x) = HZF i + H
(w; +
=1



Gamma function

We can interpret gamma function I'(¢) as continuous " generalization” of factorial. For
t>0:

Using integration by parts we can easily show that:
D(t+ 1) =tT'(¢).

'n)=1-2-3---(n—1)=(n—-1)!



Beta function

Beta function is defined by:

1
B(z,y) = / U (L[’
0
We can express beta function by relationship of gamma functions:

['(z)l'(y)

Bloy) = T(z +y)



Dirichlet distribution

Dirichlet distribution is the conjugate prior of the categorical distribution and
multinomial distribution.

a) ;

K
. a; —1
f(l'l,"',LL'K,Oél,"', K H o
For k£ — 1 dimensional simplex:

r1, - ,xr_1 > 0,
1+t <1,
rg=1—x1 - —2K_1,
Vio; >0

or f(z;a) =0 if x is not a PMF.



Dirichlet distribution

Where B(«) is a multivariate beta function:

K
I1 T(ev)
Bla)= 21— o= (o, ,0K).

r (Zfil ai) |

From our point of view fact that Dirichlet distribution is a conjugate prior to the
multinomial distribution is very important.



Dirichlet distribution - figures from [2]

11 1 1
o = [10, 10, 10] a = [2,5,15]
Figure 1: Density plots (blue = low, red = high) for the Dirichlet distribution over the probability simplex in
E? for various values of the parameter e«. When o = [e, ¢, ¢] for some ¢ > 0, the density is symmetric about
the uniform pmf (which occurs in the middle of the simplex), and the special case o = [1,1, 1] shown in

the top-left is the uniform distribution over the simplex. When 0 < ¢ < 1, there are sharp peaks of density
almost at the vertices of the simplex and the densi
plot show

is mini

5 ule away from the wvert
an example of this case for o = [.1,.1,.1], one only blue (low density) b all of the
s crammed up against the edge of the probability simplex (clearer in next figure). When ¢ > 1, the
=ity becomes concentrated in the center of the simplex, as shown in the bottom-left. Finally, if o is not

a constant vector, the density is not symmetric, as illustrated in the bottom-right. @

The top-right




Dirichlet distribution - figures from [2]
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Does God play Dice?

> As we mentioned randomness doesn’t have formal math definition. Intuitively we
could understand randomness as lack of knowledge about deterministic rules in
some process, of course it does not mean that something which we interpret as
random doesn't have any pattern.

» We could say probability theory focus on description some processes based on
their outcomes without any deeper analysis of reason, semantic or deterministic
rules which made observer outcome.

> Note that this is exactly what we require in machine learning models.



Generative topic models

PROBABILISTIC GENERATIVE PROCESS
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Latent Dirichlet Allocation - generative process

> Let's assume that document from corpus D could be generated by following
process:
1. Choose number of words N ~ Poisson(§)

2. Choose topic mixture § ~ Dir(«)
3. For each of the N words w,,:

3.1 Choose a topic z, ~ Multinomial(6;).
3.2 Choose a word from p(wn|2n, 8) where w, ~ Multinomial(y.,, ), which is a
multinomial probability conditioned on the topic z,,
» The dimensionality &k of the Dirichlet distribution (and thus the dimensionality of
the topic variable z) is assumed known and fixed.
» The Poisson assumption is not critical to anything that follows and more realistic
document length distributions can be used as needed. Note that IV is independent
of all the other data generating variables (6 and z2)



Latent Dirichlet Allocation

» The word probabilities are parametrized by a &k x V' matrix 5 where
Bi; = p(wj = 1]z; = 1), which we treat as a fixed quantity that is to be
estimated.

» Given the parameters o and 3, the joint distribution of a topic mixture @, a set of
N words w and corresponding to them topics z is given by:

N
p(@,Z,ZU‘Oé,B): p(0|04) Hp(zn|0)p(wn|znaﬁ)

n=1

topic mixture, parameters of word distribution words and Cor;gpond;ng topics



Latent Dirichlet Allocation

> Integrating over # and summing over z, we obtain the marginal distribution of a
document:

plwle, B) = / (6]a) (Hzpznw (wnl 2, >>
n=1 zn

» Taking the product of the marginal probabilities of single documents, we obtain
the probability of a corpus:

p(Dla, H/ (0dlc) <H > p(zanl0a)p wdnlzdn,ﬁ)> dfq

1 zdn



Latent Dirichlet Allocation

» We can distinguish three levels:
1. «a - sampled once per corpus
2. 0 - sampled once per document
3. w, z - sampled once per word




Latent Dirichlet Allocation

topic simplex

word simplex

The topic simplex for three topics embedded in the word simplex for three words. The
corners of the word simplex correspond to the three distributions where each word (re-
spectively) has probability one, The three points of the topic simplex correspond to three
different distributions over words. The mixture of unigrams places each document at one
of the corners of the topic simplex. The pLSI model induces an empirical distribution on
the topic simplex denoted by x. LDA places a smooth distribution on the topic simplex

denoted by the contour lines. @



LDA -

inference

The posterior distribution is intractable for exact inference, a wide variety of
approximate inference algorithms can be considered for LDA, including Laplace
approximation, variational approximation, and Markov chain Monte Carlo.

We will focus on variational approximation orignaly proposed by Blei in [3].

The basic idea of convexity-based variational inference is to make use of Jensen's
inequality to obtain an adjustable lower bound on the log likelihood [4][3].
Essentially, one considers a family of lower bounds, indexed by a set of variational
parameters. The variational parameters are chosen by an optimization procedure
that attempts to find the tightest possible lower bound.



LDA - inference

» Application of variational inference need to specify new variational distribution
which allow to simplify optimization process.

» Graphical model representation of LDA:

ﬁQ\

OO

&)

@



LDA - inference

Graphical model representation of the variational distribution used to approximate the
posterior in LDA (simple modification of the original graphical model in which some of
the edges and nodes are removed):

M




LDA - inference

Variational distribution:

N
q(0, 217, ¢) = q(017) ] a(znlen)
n=1

where the Dirichlet parameter 7 and the multinomial parameters (¢1,...,¢xN) are the
free variational parameters. The optimization problem is defined by:

(v, ¢") = argr;linD(q(H, 2|y, 9)|Ip(, zlw, o, B))
s

where the D is a e Kullback-Leibler (KL) divergence between the variational
distribution and the actual posterior distribution .



LDA - inference

One method to minimize this function is to use an iterative fixed-point method,
yielding update equations of:

d)ni X Biwn exp Eq [IOg(th/)]

N
Vi = o + Z ®ni
n=1

as shown in [3] E,[log(6i|y)] could be computed as:

k
Eq[log(0i[7)] = U (v:) = ¥(>_ )

Jj=1

¥ is a log of gamma function, which is computable via Taylor approximations.



LDA - inference

Variational EM method take form for E-step:

(1)
)
3)
(4)
(3)
(6)
(7
(8)
)

initialize 92, := 1/k for all i and n
initialize y; :== o, + N /k for all i
repeat
forn=1to N
fori=1tok
= Biw, exp(*¥(Y)))
normalize ¢! to sum to 1.
Y=ot X o
until convergence

&)

@



LDA - inference

M-step: Maximize the resulting lower bound on the log likelihood with respect to the
model parameters o and 3. This corresponds to finding maximum likelihood estimates
with expected sufficient statistics for each document under the approximate posterior
which is computed in the E-step.

The S update is based on fact that:

M Ny

J
Bij o Z Z DiniWen

d=1n=1

The « update uses a linear-scaling Newton-Rhapson algorithm to determine the
optimal alpha, with updates carried out in log-space (assuming a uniform «):

log(a'*1) =log(at) — ﬁ



Smoothed LDA

For very large corpora frequently occurs problem of sparsity. It is very likely to contain
words that did not appear in any of the documents in a training corpus. Maximum
likelihood estimates of the multinomial parameters assign zero probability to such
words, and thus zero probability to new documents. Smoothed version of LDA model
is based on Dirichlet smoothing. Each row in 8 matrix is treated as each row is
independently drawn from an exchangeable Dirichlet distribution.

”Q@Bk
OO




Application of topic models
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Application of topic models

Topic models are common used in many problems. We can get examples of application
it in [5], [6] or [7].

“Arts” “Budgets” “Children” “Education”

NEW MILLION CHILDREN SCHOOL
FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC
BEST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-

tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research. education
and the social services”” Hearst Foundation President Randolph A. Hearst said Monday in

announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400.000 each. The Juilliard School, where music and
the performing arts are taught, will get $250.000. The Hearst Foundation, aleading supporter

of the Lincoln Center Consolidated Corporate Fund. will make its usual annual $100.000

donation, too. @




Application of topic models

Topic 247 Topic 5 Topic 43 Topic 56
word _prob. word _prob. word _ prob. word _prob.
DRUGS .069 RED .202 MIND .081 DOCTOR 074
DRUG .060 BLUE .099 THOUGHT .066 DR. .063
MEDICINE .027 GREEN .096 REMEMBER .064 PATIENT .061
EFFECTS .026 YELLOW .073 MEMORY .037 HOSPITAL .049
BODY .023 WHITE .048 THINKING .030 CARE .046
MEDICINES .019 COLOR .048 PROFESSOR  .028 MEDICAL .042
PAIN 016 BRIGHT .030 FELT .025 NURSE .031
PERSON .016 COLORS .029 REMEMBERED .022 PATIENTS .029
MARIJUANA .014 ORANGE .027 THOUGHTS .020 DOCTORS .028
LABEL .012 BROWN .027 FORGOTTEN .020 HEALTH .025
ALCOHOL .012 PINK .017 MOMENT .020 MEDICINE .017
DANGEROUS .011 LOOK .017 THINK .019 NURSING .017
ABUSE .009 BLACK .016 THING .016 DENTAL .015
EFFECT .009 PURPLE .015 WONDER .014 NURSES .013
KNOWN  .008 CROSS 011 FORGET .012 PHYSICIAN .012
PILLS .008 COLORED _ .009 RECALL .012 HOSPITALS .011




Application of topic models

Topic 77 Topic 82 Topic 166
word  prob. word  prob. word _prob.
MUSIC .090 LITERATURE .03l >
DANCE 034 POEM 028 BALI 129
SO 033 POETRY 027 GAME .065
POET .020 PLAYING .042
3N 026 PLAYS 019 HIT .032
SINGING 026 PLAYED 031
BAND 026 BASEBALL 027
PLAYED 023 GAMES .025
SANG 022 BAT 019
SONGS .021 RUN 019
DANCING .020 THROW .016
PIANO 017 POETS 011 BALLS 015
PLAYING 016 WRITER 011 TENNIS 011
RHYTHM 015 SHAKESPEARE 010 HOME .010
ALBERT 013 WRITTEN .009 CATCH .010
MUSICAL 013 STAGE .009 FIELD .010




Application of topic models
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Application of topic models

Tree Building Sign Croquet Polo Rocke




Application of topic models

Topic index | Typical word pairs

Topic | carsT, prototype™, tracksT, street, turn, marsh®, roofs, bengal®, forest?, tiger®
Topic 4 plane’, jet', skyT, sun, birds?, fly®, clouds®, snow, sand’, dunes’

Topic 27 snow’, icel, polar’, frozen', bear, mountain®, water, rocks®, grass, sky
Topic 48 island’, beach', sand, sea’, water?, sky, people, kauai', sunset, buildings
Topic 72 ocean’, coral®, fishT, rocks?, reefs3, water, orchid, boat3, sky, fan

Topic 1 water, skyT, tree, people, clouds’, grass, mountain, buildings, sun, snow
Topic 9 sky', jetT, pluneT, mountain, tree, water, sun, people, clouds, buildings
Topic 30 treef, grass', flowers?, people, field, house, mountain, sky, water, gurdcn§
Topic 41 icel, people, mountain3, sky, frost, snow?, clouds, water, rocks’, landscape
Topic 67 cars, buildings®, street’, people, sidewalk, lights’, window', post, store’, shops®




Application of topic models

Groundtruth: bike, velodrome,
racing

corrLDA: bike, people, blue, sky
corrCTM: velodrome, bike,
people, racing, cycling

Groundtruth: bird, natural, blue,
green

corrLDA: bird, animal, sky, flying
corrCTM: bird, park, animal,
natural, plant

Groundtruth:  computer, desk,
office

corrLDA: monitor, computer, desk
corrCTM:  monitor, computer,
office, desk, chair

Groundtruth: bus, yellow
corrLDA: bus, trip, airplane
corrCTM: bus, station, railway

Groundtruth: family, house, car
corrLDA: sky, bird, flying
corrCTM: blue, sky, airplane,
green

Groundtruth: cat
corrLDA: cat, pet, cute, black,

puppy
corrCTM: cat, kitty, cute, pet

Figure: Taken from [7]. Note that is a modification of original LDA model for catching
correlation between two kinds of words (in this example text and visual)
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