
Antiplagiarism system for R language

Overview, conclusions and ideas

Maciej Bartoszuk
16 czerwca 2016

Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej



Table of contents

1. Introduction

2. Antiplagiarism - general information

3. Input sequences

4. Preliminary choice of function pairs

5. Comparison algorithms

6. Experimental results

7. Presentation of antiplagiarism results to an end user

8. Future work

1/71



Introduction



R language

R [1] language is used in many fields:

• Statistical computations
• Data analysis
• Data mining
• Machine learning
• Bioinformatics

Antiplagiarism system 2/71



Where the antiplagiarism system is needed?

• Teaching students – increasing quality of education process
• Research of CRAN packages dependencies
• Code cloning/reusing in big IT projects – increasing quality of software

Antiplagiarism system 3/71



Existing antiplagiarism systems

• JPLAG [2, 3], based on tokens
• MOSS [4], based on tokens, q-grams
• GPLAG [5, 6, 7], based on program dependency graph

All of them are dedicated to another languages, like C++ or Haskell.
Experimental results showed they do not deal with R very well.

Antiplagiarism system 4/71



Facts and myths about antiplagiarism systems

Antiplagiarism system 5/71



Facts and myths about antiplagiarism systems – Myth #1

One could think it works in fire-and-forget (odpal i zapomnij) way: the source
codes are inputed, and a system detects plagiarisms with 100% certainty, and
after that it sends an e-mail to a dean and remove students from USOS or set
zero points for a task.

Antiplagiarism system 6/71



Facts and myths about antiplagiarism systems – Myth #2

One could think also that, it is so smart that if two students wrote the same
algorithm with the same code, but one initialize a variable with zero (and it is
correct), while the second one with one (incorrect), the system would recognize it
and consider it as not a plagiarism.

Antiplagiarism system 7/71



Facts and myths about antiplagiarism systems – Fact #1

No system executes the code which is examined. It is inconvenient and
dangerous.

Antiplagiarism system 8/71



Facts and myths about antiplagiarism systems – Myth #3

Some people suggest that to compare results returned by functions. Strange (and
the same) results of two functions should trigger an alert. It contradicts Fact #1
and also would be inconvenient for an end user. End user wants fire-and-forget,
remember?

Antiplagiarism system 9/71



Facts and myths about antiplagiarism systems – Fact #2

There are no fire-and-forget systems. There are many reasons for that:

• a description of a task can impose a solution,
• in every submission different degree of similarity is suspect
• some information about students’ relationships is sometimes helpful
• some information about circumstances in which a task was written is

sometimes helpful
• ability to solve a task of each student is also helpful

Antiplagiarism system 10/71



Facts and myths about antiplagiarism systems – Fact #3

So what can we offer?

• a sorted list of pairs sorted by some similarity measure
• displaying two functions next to each other
• displaying two functions after some normalization (without comments, the

same indentation style)

Antiplagiarism system 11/71



SimilaR

SimilaR.Rexamine.com

Antiplagiarism system 12/71



Antiplagiarism - general
information



Assumptions

Assumptions can change as work progresses, but for today:

• We calculate similarity between two functions fi and fj in R. We do not
consider scripts, subset of function nor group of functions.

• We assume that there is only R code in function and there are no C++ calls.

Antiplagiarism system 13/71



Overview

.

.

.

Input Output

Knowledge
base

Preprocessing

Aggregation

Clustering

Similarity 
measure  
#1

Similarity 
measure  
#2

Similarity 
measure  
#m

Figure 1: Overview
Antiplagiarism system 14/71



Typical attacks from plagiarists

Easy:

• Add/remove comments
• Change names of variables
• Change “<-” into “=” or “->”

Moderate:

• Change order of lines of code
• Add/remove line(s) of code
• Expand/shrink of function calls, e.g.:
1 x [ orde r ( u n l i s t ( l a p p l y ( x , f ) ) ) ]

and

1 y <− u n l i s t ( l a p p l y ( x , f ) )
2 o <− orde r ( y )
3 x [ o ]

15/71



Typical attacks from plagiarists

Hard:
• Change loop into its equivalent form (for into while, but also into lapply), e.g.:
1 y <− numeric ( n )
2 k <− 1
3 f o r ( i i n x )
4 {
5 y [ k ] <− s q r t ( i )
6 k <− k+1
7 }

and

1 y <− u n l i s t ( l a p p l y ( x , f u n c t i o n ( e l ement ){ r e t u r n ( s q r t ( e l ement ) ) } )

or even

1 y <− s q r t ( x )

16/71



Observations

Method µ should be:

• Reflexive: µ(fi , fi) = 1,
• There is no need to be symmetric µ(fi , fj) = µ(fj , fi) (!),
• Transitivity also can be discussed.

Antiplagiarism system 17/71



Why method should not be symmetric?

Consider example, where f1:
1 s <− 0
2 f o r ( i i n x ){ s <− s + i }

and f2:
1 s <− 0
2 f o r ( i i n x ){ s <− s + i }
3 m <− 0
4 f o r ( i i n x ){m <− m∗ i }

We are interested in method which returns µ(f1, f2) = 1 and µ(f2, f1) = 0.5.

Antiplagiarism system 18/71



Transitivity discussion

Consider example, where f1:
1 s <− 0
2 f o r ( i i n x ){ s <− s + i }

and f2:
1 s <− 0
2 f o r ( i i n x ){ s <− s + i }
3 model <− glm ( c l a s s ~ age + hiEduc , fami ly=binomial )

and f3:
1 model <− glm ( c l a s s ~ age + hiEduc , fami ly=binomial )

We are interested in method which returns µ(f1, f2) ≈ 0.5 and µ(f2, f3) ≈ 0.5, but
µ(f1, f3) = 0. But maybe in later work we should use transitive closure and find
clusters?

19/71



Some method µl :

• Transform source code to one of the three input sequences
• Use one of the three comparison algorithms

It gives us some number of methods.

Antiplagiarism system 20/71



Input sequences



Possible sequences

• Letters

Antiplagiarism system 21/71



Pros and cons of letters

Advantages:

• Easy to implement ,
• Deals fairly well with easy attacks, such as changing names of variables

Drawbacks:

• It does not “understand” code, so it cannot take advantage of parse
information, such as loops, function calls, variable assignments etc.

• Cannot deal with more sophisticated attacks.

Antiplagiarism system 22/71



Possible sequences

• Letters
• Tokens

Antiplagiarism system 23/71



Tokens

Based on [2, 3].

Let’s begin with an example. For function f :
1 f <− f u n c t i o n ( x )
2 {
3 s t o p i f n o t ( i s . numeric ( x ) )
4 y <− sum ( x )
5 y
6 }

we obtain such tokens:
1 SYMBOL, LEFT_ASSIGN , FUNCTION, ’ ( ’ , SYMBOL_FORMALS, ’ ) ’ ,
2 ’ { ’ ,
3 SYMBOL_FUNCTION_CALL , ’ ( ’ , SYMBOL_FUNCTION_CALL , ’ ( ’ , SYMBOL, ’ ) ’ , ’ ) ’ ,
4 SYMBOL, LEFT_ASSIGN , SYMBOL_FUNCTION_CALL , ’ ( ’ , SYMBOL, ’ ) ’ ,
5 SYMBOL,
6 ’ } ’

As we can see, we try to obtain some more general symbols from source code than string of letters.
We try to find big “tiles” of matching tokens in both functions. 24/71



Pros and cons of tokens

Advantages:

• Invulnerable for changing names of variables
• Based on some parse data,
• Deals with swapping big fragments of code.

Drawbacks:

• It is easy to get false positive, because some different fragments of code can
result in the same tokens sequence, e.g. call two different functions with the
same number of arguments (and every argument is a variable).

• Does not deal with swapping small fragments of code.
• Generally does not deal with expanging/shrinking function calls

Antiplagiarism system 25/71



Possible sequences

• Letters
• Tokens
• Function calls counts

Antiplagiarism system 26/71



Pros and cons of function calls counts

Advantages:

• Easy to implement

• Surprisingly very effective

• Hard to deceive by all types of attacks

Drawbacks:

• In theory many false positives can be obtained, but experimental results does not
confirm this concern,

• Sometimes there are “synonyms” for functions, such as nrow() (number of rows),
ncol() (number of columns) and dim() (number of rows and columns together),

• Plagiarist can create aliases for functions, e.g. l <- lapply and use l instead of
lapply.

27/71



Possible sequences

• Letters
• Tokens
• Function calls counts
• Program Dependence Graph

Antiplagiarism system 28/71



Program dependence graph

Based on [5, 6, 7].
Algorithm:

• Create program dependence graph for every function fi ,
• Compare how similar two program dependence graphs are

Antiplagiarism system 29/71



What is a program dependency graph?

Program dependency graph consists of:

• Control dependency graph
• Data dependency graph

Antiplagiarism system 30/71



Control dependency graph

Control dependency edges are black.

1 sum <− f u n c t i o n ( x )
2 {
3 s <− 0
4 m <− 1
5 f o r ( i i n x )
6 {
7 s <− s + i
8 m <− m∗ i
9 }
10
11 i f ( s < 0)
12 {
13 s <− −s
14 p r i n t ( " Nega t i v e s " )
15 }
16 i f (m < 0)
17 {
18 m <− −m
19 p r i n t ( " Nega t i v e m" )
20 }
21 r e t u r n ( s )
22 }

Entry
x

s <− 0

m <− 1
For

i:x

Body

s <− s + i

m <− m * i

<:s:0 <− s < 0

If

s < 0

s <− −s

print("Negative s")

<:m:0 <− m < 0 If m < 0

m <− −m

print("Negative m")

return(s)

31/71



Data dependency graph

Data dependency edges are blue.

1 sum <− f u n c t i o n ( x )
2 {
3 a <− 5
4 b <− 6
5 f o r ( i i n x )
6 {
7 c <− a + b − i
8 }
9 }

Entry

x

a <− 5

b <− 6

For

i:x

Body

+:a:b <− a + b

c <− a + b − i

Antiplagiarism system 32/71



Pros and cons of program dependency graph

Advantages:

• This method uses the most information from parse tree, so theoretically has
the biggest potential,

• Immune to changing names of variables, swapping lines of code,
expanging/shrinking of function calls,

• Deals with changing loop types.

Drawbacks:

• Difficult to implement,
• Algorithms comparing two graphs can be expensive,
• False positives and negatives are possible.

Antiplagiarism system 33/71



Preliminary choice of function
pairs



Ideas

• Extract and save some features from examined functions

• Find a way to get two functions, where features are the same, but these
functions are of different length (the difference is large)

• MOSS examines q-grams
• Some idea is using metric trees, but the triangle inequality has to be fulfilled,
• Does the data can be stored in database and is adding new data possible?

Antiplagiarism system 34/71



Ideas

• Extract and save some features from examined functions
• Find a way to get two functions, where features are the same, but these

functions are of different length (the difference is large)

• MOSS examines q-grams
• Some idea is using metric trees, but the triangle inequality has to be fulfilled,
• Does the data can be stored in database and is adding new data possible?

Antiplagiarism system 34/71



Ideas

• Extract and save some features from examined functions
• Find a way to get two functions, where features are the same, but these

functions are of different length (the difference is large)
• MOSS examines q-grams

• Some idea is using metric trees, but the triangle inequality has to be fulfilled,
• Does the data can be stored in database and is adding new data possible?

Antiplagiarism system 34/71



Ideas

• Extract and save some features from examined functions
• Find a way to get two functions, where features are the same, but these

functions are of different length (the difference is large)
• MOSS examines q-grams
• Some idea is using metric trees, but the triangle inequality has to be fulfilled,

• Does the data can be stored in database and is adding new data possible?

Antiplagiarism system 34/71



Ideas

• Extract and save some features from examined functions
• Find a way to get two functions, where features are the same, but these

functions are of different length (the difference is large)
• MOSS examines q-grams
• Some idea is using metric trees, but the triangle inequality has to be fulfilled,
• Does the data can be stored in database and is adding new data possible?

Antiplagiarism system 34/71



Latent Dirichlet Allocation

LDA [8] fulfills all (or most) requirements.

• „successor” of Latent Semantic Analysis (LSA) method, which is also called
Latent Semantic Indexing (LSI)

• In the literature every word of source code is used,
• In this work functions names and tokens are used
• Function names are additionally splitted by dot (.), dash (-) or underscore

mark (_), e.g., is.numeric or stri_locate_all.

Antiplagiarism system 35/71



Latent Dirichlet Allocation

LDA [8] fulfills all (or most) requirements.

• „successor” of Latent Semantic Analysis (LSA) method, which is also called
Latent Semantic Indexing (LSI)

• In the literature every word of source code is used,

• In this work functions names and tokens are used
• Function names are additionally splitted by dot (.), dash (-) or underscore

mark (_), e.g., is.numeric or stri_locate_all.

Antiplagiarism system 35/71



Latent Dirichlet Allocation

LDA [8] fulfills all (or most) requirements.

• „successor” of Latent Semantic Analysis (LSA) method, which is also called
Latent Semantic Indexing (LSI)

• In the literature every word of source code is used,
• In this work functions names and tokens are used

• Function names are additionally splitted by dot (.), dash (-) or underscore
mark (_), e.g., is.numeric or stri_locate_all.

Antiplagiarism system 35/71



Latent Dirichlet Allocation

LDA [8] fulfills all (or most) requirements.

• „successor” of Latent Semantic Analysis (LSA) method, which is also called
Latent Semantic Indexing (LSI)

• In the literature every word of source code is used,
• In this work functions names and tokens are used
• Function names are additionally splitted by dot (.), dash (-) or underscore

mark (_), e.g., is.numeric or stri_locate_all.

Antiplagiarism system 35/71



Latent Dirichlet Allocation

Antiplagiarism system 36/71



Latent Dirichlet Allocation – technical details

• α = 0.05 – when α is large, nearly every document will be composed of
every topic in significant amounts. In contrast when α is small, each
document will be composed of only a few topics in significant amounts,

• β – estimated by the algorithm, larger values of β favor a greater number of
words per topic, while smaller values of β favor fewer words per topic.

• Gibbs sampling

• k = max (NumberOfFunctions
10 , 2) – topic count

Antiplagiarism system 37/71



Latent Dirichlet Allocation – technical details

• α = 0.05 – when α is large, nearly every document will be composed of
every topic in significant amounts. In contrast when α is small, each
document will be composed of only a few topics in significant amounts,

• β – estimated by the algorithm, larger values of β favor a greater number of
words per topic, while smaller values of β favor fewer words per topic.

• Gibbs sampling

• k = max (NumberOfFunctions
10 , 2) – topic count

Antiplagiarism system 37/71



Latent Dirichlet Allocation – technical details

• α = 0.05 – when α is large, nearly every document will be composed of
every topic in significant amounts. In contrast when α is small, each
document will be composed of only a few topics in significant amounts,

• β – estimated by the algorithm, larger values of β favor a greater number of
words per topic, while smaller values of β favor fewer words per topic.

• Gibbs sampling

• k = max (NumberOfFunctions
10 , 2) – topic count

Antiplagiarism system 37/71



Latent Dirichlet Allocation – technical details

• α = 0.05 – when α is large, nearly every document will be composed of
every topic in significant amounts. In contrast when α is small, each
document will be composed of only a few topics in significant amounts,

• β – estimated by the algorithm, larger values of β favor a greater number of
words per topic, while smaller values of β favor fewer words per topic.

• Gibbs sampling

• k = max (NumberOfFunctions
10 , 2) – topic count

Antiplagiarism system 37/71



Latent Dirichlet Allocation – technical details

• θ – some parameter,
• for a pair of functions (fi , fj):

• get sets of topics Ti and Tj , where assignments of topic are above θ,
• mi – topic with maximum assignment in Ti , the same for mj and Tj ,
• Tij = Ti ∩ Tj ,
• the pair (fi , fj) should be compared if mi ∈ Tij or mj ∈ Tij .

Antiplagiarism system 38/71



Comparison algorithms



Comparison algorithms

• Edit distance

• Generalized longest common subsequence
• Smith-Waterman Algorithm [9]

Antiplagiarism system 39/71



Comparison algorithms

• Edit distance
• Generalized longest common subsequence

• Smith-Waterman Algorithm [9]

Antiplagiarism system 39/71



Comparison algorithms

• Edit distance
• Generalized longest common subsequence
• Smith-Waterman Algorithm [9]

Antiplagiarism system 39/71



Smith-Waterman Algorithm

• A CACAC T A
• A G CACAC A

Antiplagiarism system 40/71



Smith-Waterman Algorithm

H =



− A C A C A C T A
− 0 0 0 0 0 0 0 0 0
A 0 2 1 2 1 2 1 1 2
G 0 1 1 1 1 1 1 0 1
C 0 1 3 2 3 2 3 2 2
A 0 2 2 5 4 5 4 4 4
C 0 1 4 4 7 6 7 6 6
A 0 2 3 6 6 9 8 8 8
C 0 1 4 5 8 8 11 10 10
A 0 2 3 6 7 10 10 10 12


Antiplagiarism system 41/71



Smith-Waterman Algorithm

T =



− A C A C A C T A
− 0 0 0 0 0 0 0 0 0
A 0 ↖ ← ↖ ← ↖ ← ← ↖
G 0 ↑ ↖ ↑ ↖ ↑ ↖ ↖ ↑
C 0 ↑ ↖ ← ↖ ← ↖ ← ←
A 0 ↖ ↑ ↖ ← ↖ ← ← ↖
C 0 ↑ ↖ ↑ ↖ ← ↖ ← ←
A 0 ↖ ↑ ↖ ↑ ↖ ← ← ↖
C 0 ↑ ↖ ↑ ↖ ↑ ↖ ← ←
A 0 ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↖


Antiplagiarism system 42/71



Comparison algorithms

• Edit distance,
• Generalized longest common subsequence,
• Smith-Waterman Algorithm,
• q-grams distance,

• McGregor algorithm (Most common graph problem),
• Graph kernel (graphs, labels)

Antiplagiarism system 43/71



Comparison algorithms

• Edit distance,
• Generalized longest common subsequence,
• Smith-Waterman Algorithm,
• q-grams distance,
• McGregor algorithm (Most common graph problem),

• Graph kernel (graphs, labels)

Antiplagiarism system 43/71



Comparison algorithms

• Edit distance,
• Generalized longest common subsequence,
• Smith-Waterman Algorithm,
• q-grams distance,
• McGregor algorithm (Most common graph problem),
• Graph kernel (graphs, labels)

Antiplagiarism system 43/71



Weisfeiler-Lehman subtree graph kernel

Described in [10].

Antiplagiarism system 44/71



Symmetric and not symmetric versions of methods

• All of aforementioned methods can be formulated in symmetric version
(µk(fi , fj) = µk(fj , fi)) and not symmetric (µk(fi , fj) 6= µk(fj , fi))

• In classic scenario, when group of functions is submitted and the system is
supposed to find similar functions only in the set, not symmetric versions are
used,

• symmetric versions are used when distances between functions are desired to
create a metric space (needed for metric trees, described further)

Antiplagiarism system 45/71



T-norms

• Not symmetric methods seems to be more flexible,
• unfortunately, the most common scenario is when user/tutor wants only

these pairs, in which both functions are both similar to each other,
• what is more, one pair of functions should be displayed only once on website

(legibility, readability)
• so the question is how to aggregate two values µk(fi , fj) and µk(fj , fi) into

one?

Antiplagiarism system 46/71



The answer is a t-norm. A t-norm is a function T : [0, 1]× [0, 1]→ [0, 1] which
satisfies the following properties:

• Commutativity: T (a, b) = T (b, a)
• Monotonicity: T (a, b) ≤ T (c , d) if a ≤ c and b ≤ d
• Associativity: T (a,T (b, c)) = T (T (a, b), c)
• The number 1 acts as identity element: T (a, 1) = a

Among exemplary t-norms we find:

• minimum T (a, b) = min(a, b),
• product T (a, b) = a · b,
• Łukasiewicz t-norm: T (a, b) = max(0, a + b − 1).

So big value of any t-norm assure that both functions are similar to each other,
while small value means that at least one function is not so similar to the second.

Antiplagiarism system 47/71



Experimental results



Creating learning set

• We obtained homeworks from students
• We manually found plagiarisms
• We also created artificial plagiarism functions for found pairs of plagiarism

(ca. 30 000 unique pairs of functions)

Antiplagiarism system 48/71



Creating testing set

• We obtained ca. 400 pairs from a SimilaR.Rexamine.com,
• 5 grades of plagiarism can be chosen: totally different, dissimilar, hard to

say, similar and definitely similar,
• We classified options similar and definitely similar as a plagiarism class and

the rest as not plagiarism.

Antiplagiarism system 49/71

SimilaR.Rexamine.com


Notation

• True Positives (TP): Plagiarism from learning set detected by our system
• False Positives (FP): Detected pair which is not plagiarism
• False Negatives (FN): Plagiarism pair not detected by our system
• True Negatives (TN): Pair which is not plagiarism and is not detected by

our system

Antiplagiarism system 50/71



Observations

• 2% of all function pairs are plagiarisms,
• System which always returns “no plagiarism” has 98% accuracy,
• It is totally useless,
• We have to use another methods of assessment, like recall (how many of all

plagiarism pairs are detected) and precision (how many of returned pairs are
actually plagiarisms)

Antiplagiarism system 51/71



Methods of assessment

• Error rate is (FP+FN)/(TP+FP+FN+TN),
• Precision is TP/(TP+FP),
• Recall is TP/(TP+FN),
• Accuracy is (TP+TN)/(TP+FP+FN+TN),

Antiplagiarism system 52/71



Aggregation operators

Our approach is to consider data from 4 methods as a following data frame:
f1 , f2 , method1 , method2 , method3 , method4 , p l a g i a r i sm
vectorSum , l i s tSummat ion , 0 . 6 , 0 . 7 , 0 . 9 , 1 . 0 , 1
vectorSum , regexpTagger , 0 . 2 , 0 . 4 , 0 . 1 , 0 . 2 , 0
.
.
.

We build statistical model for such data (of course we do not consider functions’
names). We chose a random forest for now, but future work on choosing
appropriate statistical system is planned.

Antiplagiarism system 53/71



Possible methods

1. program dependence graph – maximum

common subgraph isomorphism,

2. letters – edit distance,

3. f.calls – edit distance,

4. tokens – edit distance,

5. letters – generalized longest common sequence,

6. f.calls – generalized longest common sequence,

7. tokens – generalized longest common sequence,

8. letters – 1-grams distance,

9. f.calls – 1-grams distance,

10. tokens – 1-grams distance,

11. letters – 2-grams distance,

12. f.calls – 2-grams distance,

13. tokens – 2-grams distance,

14. letters – 3-grams distance,

15. f.calls – 3-grams distance,

16. tokens – 3-grams distance,

17. letters – 4-grams distance,

18. f.calls – 4-grams distance,

19. tokens – 4-grams distance

Antiplagiarism system 54/71



Features Acc. Prec. Rec. F-meas. Comment

1 Assym. 0.9893 0.814 0.704 0.755 program dependence graphSym. 0.9881 0.887 0.557 0.684

7 Assym. 0.9928 0.831 0.863 0.847 tokens – GLCSSym. 0.9925 0.849 0.825 0.837

1, . . . , 19 Assym. 0.9971 0.951 0.931 0.941 all featuresSym. 0.9967 0.933 0.928 0.931

1, 2, 7, 9 Assym. 0.9963 0.922 0.924 0.923 standard approachSym. 0.9957 0.912 0.900 0.906
1, 3, 4, 7, 8, 9, 10 Assym. 0.9977 0.967 0.928 0.947 statistical methods12, 15, 16, 18, 19 Sym. 0.9971 0.955 0.923 0.939
1, 2, 3, 4, 6, 7, 9, Assym. 0.9977 0.969 0.933 0.951
13, 15, 16, 18, 19 Sym. 0.9975 0.954 0.943 0.949 common sense

Antiplagiarism system 55/71



Dataset

• Dataset from the Example,
• the number of unique observations equals to m = 30628,
• the benchmark data set is of the following form:

j 1 2 3 4 5 6 7 8 . . .

x (j)
1 0.82 0.58 0.15 0.37 0.17 0.22 0.69 0.87 . . .

x (j)
2 0.73 0.41 0.25 0.26 0.02 0.13 0.90 0.70 . . .

x (j)
3 0.63 0.84 0.38 0.40 0.11 0.46 0.72 0.83 . . .

x (j)
4 0.92 0.75 0.48 0.39 0.12 0.28 0.80 0.92 . . .

y (j) 1.00 0.75 0.50 0.25 0.00 0.25 0.75 1.00 . . .

Antiplagiarism system 56/71



Exemplary spline bases

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) p = 1, k = 2
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) p = 3, k = 2

Figure 2: Exemplary B-spline basis functions Nt
j−p,p(x) as a function of x ,

j = 1, . . . , p + k + 1; t is a vector of equidistant knots, k is the number of the internal
knots, while p is the polynomial degree. 57/71



Optimization details

• Rewrite the above equation in terms of a bi-level
minimization procedure,

• the inner-level part, for a fixed w, optimizes for c and in fact can be written
in the form of a standard quadratic programming task with linear
constraints

minimize
m∑

l=1

(( ∑n
i=1 wi

∑η
j=1 c(i)

j Nt
j−p,p

(
x (l)

i

) )
− y (l)

)2
+ λw

∑n
i=1 w2

i w.r.t. w, c

• the outer-level component, optimizing for w, can be solved via some
non-linear solver – we propose to rely on the CMA-ES [11, 12] algorithm
and logarithmic barrier functions for the constraints on w.

58/71



Performance

Table 1: Performance of the fitted models (accuracy, precision, recall, F -measures,
squared L2 error). The proposed method is based on λw = 33, w1 = 0.35, w2 = 0.15,
w3 = 0.15, w4 = 0.35, p = 3, k = 1 for optimizing F-measure (a) and λw = 30,
w1 = 0.30, w2 = 0.16, w3 = 0.15, w4 = 0.39, p = 1, k = 4 for optimizing d22 (b).

method accuracy precision recall F d22

Proposed method (a) 0.997 0.921 0.933 0.927 106.62
Proposed method (b) 0.997 0.900 0.920 0.910 95.85
Linear regression 0.995 0.810 0.969 0.883 103.53
Logistic regression 0.997 0.885 0.960 0.921 —
Random forest 0.998 0.927 0.956 0.941 —

Antiplagiarism system 59/71



Performance

Table 2: Performance measures as functions of different weighting vectors; p = 3,
k = 1, λw = 0, with and without idempotization.

w1 w2 w3 w4 accuracyprecision recall F d22 idempot.

1 0 0 0 0.992 0.848 0.693 0.763 186.30 Yes
0 1 0 0 0.995 0.927 0.787 0.851 208.74 Yes
0 0 1 0 0.994 0.803 0.853 0.828 316.04 Yes
0 0 0 1 0.996 0.904 0.840 0.871 136.67 Yes

0.27 0.06 0.38 0.29 0.996 0.952 0.800 0.870 137.34 No
0.41 0.12 0.07 0.40 0.997 0.919 0.907 0.913 107.69 Yes

Antiplagiarism system 60/71



Performance

0.0 0.4 0.8

0.0

0.2

0.4

0.6

0.8

1.0

x1

0.0 0.4 0.8

0.0

0.2

0.4

0.6

0.8

1.0

x2

0.0 0.4 0.8

0.0

0.2

0.4

0.6

0.8

1.0

x3

0.0 0.4 0.8

0.0

0.2

0.4

0.6

0.8

1.0

x4

(a) p = 1, k = 4

0.0 0.4 0.8

0.0

0.2

0.4

0.6

0.8

1.0

x1

0.0 0.4 0.8

0.0

0.2

0.4

0.6

0.8

1.0

x2

0.0 0.4 0.8

0.0

0.2

0.4

0.6

0.8

1.0

x3

0.0 0.4 0.8

0.0

0.2

0.4

0.6

0.8

1.0

x4

(b) p = 3, k = 1

Figure 3: Best B-splines of different degrees fit to the training sample. 61/71



Performance

−20 0 20 40 60 80

0.905

0.910

0.915

0.920

0.925

0.930

(a) F -measure (greater is better)
−20 0 20 40 60 80

96.0

96.5

97.0

97.5

98.0

(b) d22 (less is better)

Figure 4: F -measure and squared error as a function of the λw regularization
coefficient.

62/71



Presentation of antiplagiarism
results to an end user



Clustering

• When we have the results, some tools which make possible to have a big
picture of the results are needed,

• one of them is clustering. A spectral clustering is used to group functions
into "families". It can be useful to get a clique of cheating students or to
realize that all students have very similar solutions in one task for some
reason,

• other methods of visualization are planned, e.g. a graph of distances,
• single-linkage clustering

Antiplagiarism system 63/71



Future work



Possible enhancements

• Inserting a code of called functions to a code of examined function,
• Displaying pairs of function in the three-dimensional space,
• Improve function comparing PDGs

Antiplagiarism system 64/71



Example

Katarzyna Z :

1 od l<−f u n c t i o n ( space , x1 , x2 ){
2 s q r t ( ( space [ x1 ,1]− space [ x2 ,1 ] )^2+
3 ( space [ x1 ,2]− space [ x2 , 2 ] ) ^ 2 ) }
4
5 f i n d C l o s e s t P o i n t s <− f u n c t i o n ( space ){
6 s t o p i f n o t ( i s . matr i x ( space ) , i s . numeric ( space ) ,
7 nco l ( space )==2,nrow ( space )>0 , a l l ( i s . f i n i t e ( space ) ) )
8
9 r <− nrow ( space )
10 i f ( r==1) r e t u r n ( I n f )
11 i f ( r==2) r e t u r n ( od l ( space , 1 , 2 ) )
12 i f ( r==3) r e t u r n (min ( od l ( space , 1 , 2 ) ,
13 od l ( space , 1 , 3 ) , od l ( space , 2 , 3 ) ) )
14
15 #space sor towane po x
16 space_x <− space [ orde r ( space [ , 1 ] ) , ]
17
18 mediana <− f l o o r ( r /2)
19 #wartosc d l a moje j mediany
20 xmid <− space_x [ mediana , 1 ]

21 lewy <− space_x [ 1 : mediana , ]
22 prawy <− space_x [ ( mediana+1): r , ]
23
24 dL <− Reca l l ( l ewy )
25 dR <− Reca l l ( prawy )
26 dMin <− min ( dL , dR)
27
28 #przypadek lewy − prawy p o d z b i o r :
29 #Band <− space [ abs ( space [ ,1] − xmid)<=dMin , ]
30 Band <− subse t ( space , abs ( space [ ,1]− xmid)<=dMin )
31 m <− nrow (Band )
32
33 i f (m<2) r e t u r n ( dMin ) #n i e ma co sprawdzac
34
35 Band <− Band [ orde r (Band [ , 2 ] ) , ] #Band sor towane po y
36
37 f o r ( i i n 1 : (m−1)){
38 f o r ( j i n ( i +1):m) {
39 i f ( abs (Band [ i ,2]−Band [ j , 2 ] ) <= dMin ) {
40 newd <− od l (Band , i , j )
41 i f ( newd<=dMin ) dMin <− newd }}}
42 dMin
43 } 65/71



Example

Aleksandra B :

1 f i n d C l o s e s t P o i n t s <− f u n c t i o n ( space ){
2
3 s t o p i f n o t ( i s . matr i x ( space ) , nco l ( space )==2,
4 i s . numeric ( space ) , i s . f i n i t e ( space ) ,
5 nrow ( space )>0)
6 nrow = nrow ( space )
7 i f (nrow<=3) {
8 i f ( nrow==1) dMin = I n f
9 i f ( nrow == 2) {
10 dMin = s q r t ( ( space [ 1 , 1 ] − space [2 ,1 ] )^2+
11 ( space [ 1 , 2 ] − space [ 2 , 2 ] ) ^ 2 ) }
12 i f ( nrow == 3) {
13 od l1 = s q r t ( ( space [ 1 , 1 ] − space [2 ,1 ] )^2+
14 ( space [ 1 , 2 ] − space [ 2 , 2 ] ) ^ 2 )
15 od l2 = s q r t ( ( space [ 1 , 1 ] − space [3 ,1 ] )^2+
16 ( space [ 1 , 2 ] − space [ 3 , 2 ] ) ^ 2 )
17 od l3 = s q r t ( ( space [ 2 , 1 ] − space [3 ,1 ] )^2+
18 ( space [ 2 , 2 ] − space [ 3 , 2 ] ) ^ 2 )
19 dMin = min ( odl1 , od l2 , od l 3 )}
20 r e t u r n ( dMin ) }
21 # s o r t u j e wzgledem wspo l r z ednych x−owych
22 s o r t <− space [ orde r ( space [ , 1 ] ) , ]
23 p o d z i a l <− f l o o r ( nrow/2)

23 xmid <− s o r t [ p od z i a l , 1 ] #wyl iczam mediane
24
25 #d z i e l e na dwa p o d z b i o r y
26 lewy <− s o r t [ 1 : p od z i a l , ]
27 prawy <− s o r t [ ( p o d z i a l + 1) : nrow , ]
28 dMin <− min ( Reca l l ( l ewy ) , Reca l l ( prawy ) )
29 # sprawdzam t r z e c i p rzypadek
30 Band <− s o r t [ abs ( s o r t [ ,1]− xmid)<=dMin , ]
31 m <− nrow (Band )
32 i f ( i s . n u l l (m) ) m = 0
33 i f (m<2) r e t u r n ( dMin )
34 # s o r t u j e wzgledem wspo l r z ednych y−owych
35 Band <− Band [ orde r (Band [ , 2 ] ) , ]
36
37 f o r ( i i n 1 : (m−1)){
38 f o r ( j i n ( ( i +1):m)){
39 i f (Band [ i ,2]−Band [ j ,2]<=dMin ) {
40 o d l e g l o s c <− s q r t ( ( Band [ i , 1 ] − Band [ j ,1 ] )^2+
41 (Band [ i , 2 ] − Band [ j , 2 ] ) ^ 2 )
42 i f ( o d l e g l o s c <= dMin ) dMin = o d l e g l o s c

}
43 e l s e break
44 } }
45 dMin
46 }

66/71



Statistical system

• On our website people submit and evaluate new data,
• Our statistical system should use these pieces of information to give more

precise answers,
• Online learning seems to be the solution.

Antiplagiarism system 67/71



Cost-sensitive learning

• One user is patient and has time to check every single pair returned by our
system, event incorrect ones, but certainly does not want to omit even one
single plagiarism,

• Second user demands different behavior: only correct pairs should be
displayed, even at the cost of some of similar pairs will be omitted,

• cost-sensitive learning seems to be an answer to such a demands. It is a
machine learning technique which takes into account that some types of
misclassifications may be worse than others.

Antiplagiarism system 68/71



Metric trees

• For now, user can submit a set of functions and get similarities only between
them,

• it would be an interesting scenario to find all similar functions, that are in a
database, to a submitted one fs ,

• usage of all methods is not acceptable for performance reasons,
• so tokens or call count method is used at first,
• but calculating all similarity between fs and all functions in a database seems

still to be not an optimal solution,
• so metric tree is used, which allows to find neighboring functions in O(log n)

time, where n is a number of functions in a database.

Antiplagiarism system 69/71



How metric tree works? (on the example of vp-tree, images from [13])

Antiplagiarism system 70/71



Images from [13]

Antiplagiarism system 71/71



Thank you for your attention.

m.bartoszuk@mini.pw.edu.pl

Antiplagiarism system 71/71



References I

R Core Team: R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria (2014).
http://www.R-project.org/.

Prechelt, L., Malpohl, G., Phlippsen, M.: JPlag: Finding plagiarisms among
a set of programs. Tech. rep. (2000).

Prechelt, L., Malpohl, G., Philippsen, M.: Finding plagiarisms among a set of
programs with JPlag. Journal of Universal Computer Science 8(11),
1016–1038 (2002).

Antiplagiarism system

http://www.R-project.org/


References II

Aiken, A.: MOSS (Measure of software similarity) plagiarism detection system.

http://theory.stanford.edu/~aiken/moss/.

Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph
and its use in optimization. ACM Trans. Program Lang. Syst. 9(3), 319–349
(1987).

Liu, Ch., Chen, C., Han, J., Yu, P.S.: GPLAG: Detection of Software
Plagiarism by Program Dependence Graph Analysis. In: Proc. 12th ACM
SIGKDD Intl. Conf. Knowledge Discovery and Data Mining (KDD’06),
872–881 (2006).

Antiplagiarism system

http://theory.stanford.edu/~aiken/moss/


References III

Qu, W., Jia, Y., Jiang, M.: Pattern mining of cloned codes in software
systems. Information Sciences 259 (2014), 544–554.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
Latent dirichlet allocation.
J. Mach. Learn. Res., 3:993–1022, March 2003.
T.F. Smith and M.S. Waterman.
Identification of common molecular subsequences.
Journal of Molecular Biology, 147(1):195 – 197, 1981.

Antiplagiarism system



References IV

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,
and Karsten M. Borgwardt.
Weisfeiler-lehman graph kernels.
J. Mach. Learn. Res., 12:2539–2561, November 2011.
Nikolaus Hansen.
The CMA Evolution Strategy: A Comparing Review, pages 75–102.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

Antiplagiarism system



References V

Anne Auger and Nikolaus Hansen.
Tutorial cma-es: Evolution strategies and covariance matrix
adaptation.
In Proceedings of the 14th Annual Conference Companion on Genetic and
Evolutionary Computation, GECCO ’12, pages 827–848, New York, NY,
USA, 2012. ACM.
http://www.huyng.com/posts/similarity-search-101-with-vantage-point-
trees/.

Antiplagiarism system


	Introduction
	Antiplagiarism - general information
	Input sequences
	Preliminary choice of function pairs
	Comparison algorithms
	Experimental results
	Presentation of antiplagiarism results to an end user
	Future work
	Appendix

