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Ensemble - definition

An ensemble method is a technique that combines the predictions from multiple machine learning algorithms
together to make more accurate predictions than any individual model.
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Introduction —
Bias & Variance



Bias vs. Variance
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Bias vs. Variance
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Bias vs. Variance
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Ensemble —
Simple Voting, Bagging, Boosting



Data set used in this presentation

X1 ... X10 — standard independent Gaussian

v {1, TR0

—1 otherwise.

X1...X10 Y
200 -

1000 -

750 -
150 -

count

500-

count

50-

250 -

4
®1
6/10/2017



Bootstrap - theory

* Bootstrapping takes a random sample with replacement.
 Therandom sample is the same size as the original data set.
 Samples may be selected more than once and each sample has a 63.2% chance of showing up at least once.

 Some samples won’t be selected and these samples will be used to predict performance.
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Bagging - theory
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Bagging - example
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Random Forest - theory
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Random Forest - theory

1. For-b=1 to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree T to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n,,;, is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.

iii. Split the node into two daughter nodes.
2. Output the ensemble of trees {T}}%.
To make a prediction at a new point x:
Regression: AB("I') = L ZB Thix)
) J e I ¥ ‘. l.f B & —_— B b=1 b Y Sl

Classification: Let é’b(.'zir) be the class prediction of the bth random-forest
tree. Then CZ (x) = majority vote {Cy(z)}L.
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Random Forest - example
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Boosting - theory

FinAL CLASSIFIER

R ) ) o _ ) G(x) = sign E:ii= O Gon ()
1. Initialize the observation weights w; = 1/N, i =1,2,... N. ) [ ' }
- Gulx)

2. Form =1 to M:

(a) Fit a classifier GG,,,(z) to the training data using weights w;. X

(b) Compute !

Z;l w; I(y; # G(x;)) e Ga()
Z;l w; | T

€Ty =

(¢) Compute a,, = log((1 — err,,)/err,,). e Golr)
(d) Set w; + w; - explay, - I(y; # G, (z;))], i =1,2,..., N. T
3. Output G(x) = sign Z::le amGm(x)]. ----- Gi(x)
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Boosting - example
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Random Forest vs Boosting - comparison

* The Bias of bagged trees is the same as that of an individual tree, and the only hope of improvement is through
variance reduction. This is in contrast to boosting, where the trees are grown in an adaptive way to remove bias,
and hence are not i.d.

Random Forest vs Bagging - comparison

e Bagging uses only one parameter, which is the number of trees. Trees are fully grown using all the variables to
perform splits.
* Random Forest uses two parameters:
* First, same as in bagging the number of trees
* Second, is the number of features to search over to find the best feature to perform split
* Trees in general choose which variable to split on using a greedy algorithm that minimizes error. As such, even
with Bagging, the decision trees can have a lot of structural similarities and in turn have high correlation in their
predictions. Random Forest produces estimates with lower variance.

Random Forest, Bagging, Boosting — common features

e This algorithms will not overfit to training data.



Ensemble — other methods

* Simple average/majority voting
* Weighted average
e Stacking — applying meta-level model to individual models
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The end.



