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Ranking & selection problem

1 We want to choose from N alternatives

2 Every alternative has some true and unknown value µ̃i

3 The objective is to �nd the alternative that has the highest value

4 Measurement of each alternative is associated with IID noise following
N(0, σ2ε)

Applications

Various �avors of A/B testing, examples:

1 website design

2 clinical trials

3 discrete simulation optimization
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Earlier work

What does �selecting best alternative� mean?

1 maximize probability of correct selection: Pr(µ̃s = maxi µ̃i )

2 minimize expected loss: E (maxi µ̃i − µ̃s)
if s is a selected alternative.

Standard algorithms:

1 single step rules (e.g. allocate all budget equally to all alternatives)

2 two-step rules

3 batch rules (e.g. optimal computing budget allocation)

4 one-step ahead sequential rules (e.g. Knowledge Gradient)
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Knowledge Gradient policy (1)

1 Bayesian approach

2 Prior beliefs
Y1

Y2

...
YN

 = N



µ(0),1
µ(0),2
...

µ(0),N

 ,

σ2(0),1 0 · · · 0

0 σ2(0),2 · · · 0
...

...
. . .

...
0 0 · · · σ2(0),N




3 Sequential policy

4 One measurement at a time policy
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Knowledge Gradient policy (2)

1 At step k we measure alternative i and obtain value y we update our
beliefs

σ2(k),i =

(
1

σ2(k−1),i
+

1

σ2ε

)−1

µ(k),i =

(
µ
(k−1)
i

σ2(k−1),i
+

y

σ2ε

)
σ2(k),i

2 If we decide stop after k steps we choose argmaxi µ(k),i

3 How to select which alternative to measure at step k?

argmaxi E (max
j
µ(k),j)

B. Kami«ski (WSE) Asynchronous Knowledge Gradient October 25, 2017 6 / 18



Knowledge Gradient policy: idea
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Asynchronous parallelization

Idea

Extend the Knowledge Gradient policy to allow for parallel evaluation of
alternatives.
Possible approaches:

synchronous new tasks are assigned to all workers at the same time

asynchronous every worker is independently assigned a new task

Why asynchronous?

high variance of execution time of individual computation

heterogeneous computing power across nodes in a cluster

worker failures need to be handled
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What do we expect from the AKG policy?

1 the expected improvement of quality of the solution per measurement
is lower in AKG than in KG

2 the expected time to reach the desired quality of solution is lower in
AKG than in KG
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Asynchronous Knowledge Gradient (1)

We have a set W denoting a pool of workers

We want to assign a new task to worker ∈W immediately after it
becomes available

When deciding we have to consider jobs already running in parallel

The number of scheduled but not observed measurements of
alternatives is s = (s1, s2, . . . , sN)

Choose to measure alternative that provides the highest expected
increase of outcome conditional on s
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Asynchronous Knowledge Gradient (2)

Decision rule:

AKG (k , s) = argmaxi∈{1,2,...,N}E
(
V(k)|s+ei

)
where:

V(k)|s = max
i∈{1,2,...,N}

M(k),i |si .

and M(k),i |si is distribution of beliefs about µi conditional on the fact that
it will be measured si times.
It can be shown that:

if si = 0 then the distribution is concentrated at µ(k),i

if si > 0 then the distribution is normal with mean µ(k),i and variance:

σ2(k),i |si = σ2(k),i −

(
1

σ2(k),i
+

si
σ2ε

)−1
.
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Computational approach

Denote CDF of M(k),i |si by F(k),i |si (x).

Let:

C(k)|s(x) =
∏
i

F(k),i |si (x)

then

E (V(k)|s) =

∫
1

0

1− C(k)|s
(
t−1 − 1

)
− C(k)|s

(
1− t−1

)
t2

dt.
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AKG is convergent
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Worker state diagram in master�slave architecture
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Scenarios for simulation experiments

algorithm N workers � |W | steps � k repetitions

KG {5, 10} 1 85 114122
AKG {5, 10} {1, 2, 3, 4, 5} 85 114122
KG 20 1 85 107560
AKG 20 {1, 2, 3, 4, 5} 85 107560
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Expected loss by number of workers |W | (1)
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Expected loss by number of workers |W | (2)
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Concluding remarks

Main results

modi�cation of the Knowledge Gradient policy to asynchronous
execution

procedure is numerically traceable and simple to execute in
master�slave architecture . . .

. . . a care is required to cleanup computations

appealing scaling properties with number of workers

More details

B. Kami«ski, P. Szufel: On parallel policies for ranking and selection
problems, Journal of Applied Statistics, 2017,
doi:10.1080/02664763.2017.1390555
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