Asynchronous Knowledge Gradient Policy for Ranking and Selection

Bogumił Kamiński

Decision Analysis and Support Unit Warsaw School of Economics

October 25, 2017

B. Kamiński (WSE)

Asynchronous Knowledge Gradient

October 25, 2017

1 / 18

Ranking & selection problem

- We want to choose from N alternatives
- 2 Every alternative has some true and unknown value $ilde{\mu}_i$
- 3 The objective is to find the alternative that has the highest value
- 4 Measurement of each alternative is associated with IID noise following $N(0, \sigma_{\varepsilon}^2)$

Applications

Various flavors of A/B testing, examples:

- 1 website design
- 2 clinical trials
- 3 discrete simulation optimization

- 3

What does "selecting best alternative" mean?

- **1** maximize probability of correct selection: $Pr(\tilde{\mu}_s = \max_i \tilde{\mu}_i)$
- 2 minimize expected loss: $E(\max_i \tilde{\mu}_i \tilde{\mu}_s)$
- if *s* is a selected alternative.

Standard algorithms:

- **1** single step rules (e.g. allocate all budget equally to all alternatives)
- two-step rules
- **3** batch rules (e.g. optimal computing budget allocation)
- I one-step ahead sequential rules (e.g. Knowledge Gradient)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Knowledge Gradient policy (1)

- 1 Bayesian approach
- 2 Prior beliefs

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_N \end{bmatrix} = N \left(\begin{bmatrix} \mu_{(0),1} \\ \mu_{(0),2} \\ \vdots \\ \mu_{(0),N} \end{bmatrix}, \begin{bmatrix} \sigma_{(0),1}^2 & 0 & \cdots & 0 \\ 0 & \sigma_{(0),2}^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{(0),N}^2 \end{bmatrix} \right)$$

- Sequential policy
- I One measurement at a time policy

э

Knowledge Gradient policy (2)

At step k we measure alternative i and obtain value y we update our beliefs

$$\sigma_{(k),i}^2 = \left(\frac{1}{\sigma_{(k-1),i}^2} + \frac{1}{\sigma_{\varepsilon}^2}\right)^{-1}$$
$$\mu_{(k),i} = \left(\frac{\mu_i^{(k-1)}}{\sigma_{(k-1),i}^2} + \frac{y}{\sigma_{\varepsilon}^2}\right)\sigma_{(k),i}^2$$

- 2 If we decide stop after k steps we choose arg max $_i \mu_{(k),i}$
- 3 How to select which alternative to measure at step k?

$$\arg\max_i E(\max_j \mu_{(k),j})$$

B. Kamiński (WSE)

Knowledge Gradient policy: idea

Image: A matched block of the second seco

- B

Asynchronous parallelization

Idea

Extend the Knowledge Gradient policy to allow for parallel evaluation of alternatives. Possible approaches: synchronous new tasks are assigned to all workers at the same time asynchronous every worker is independently assigned a new task

Why asynchronous?

- high variance of execution time of individual computation
- heterogeneous computing power across nodes in a cluster
- worker failures need to be handled

What do we expect from the AKG policy?

- the expected improvement of quality of the solution per measurement is lower in AKG than in KG
- 2 the expected time to reach the desired quality of solution is lower in AKG than in KG

Asynchronous Knowledge Gradient (1)

- We have a set W denoting a pool of workers
- We want to assign a new task to worker ∈ W immediately after it becomes available
- When deciding we have to consider jobs already running in parallel
- The number of scheduled but not observed measurements of alternatives is $\mathbf{s} = (s_1, s_2, \dots, s_N)$
- Choose to measure alternative that provides the highest expected increase of outcome conditional on s

Asynchronous Knowledge Gradient (2)

Decision rule:

$$AKG(k, \mathbf{s}) = \arg \max_{i \in \{1, 2, \dots, N\}} E\left(V_{(k)|\mathbf{s}+\mathbf{e}_i}\right)$$

where:

$$V_{(k)|\mathbf{s}} = \max_{i \in \{1,2,\dots,N\}} M_{(k),i|s_i}.$$

and $M_{(k),i|s_i}$ is distribution of beliefs about μ_i conditional on the fact that it will be measured s_i times.

It can be shown that:

• if $s_i = 0$ then the distribution is concentrated at $\mu_{(k),i}$

if $s_i > 0$ then the distribution is normal with mean $\mu_{(k),i}$ and variance:

$$\sigma_{(k),i|s_i}^2 = \sigma_{(k),i}^2 - \left(\frac{1}{\sigma_{(k),i}^2} + \frac{s_i}{\sigma_{\varepsilon}^2}\right)^{-1}$$

B. Kamiński (WSE)

October 25, 2017

Computational approach

Denote CDF of $M_{(k),i|s_i}$ by $F_{(k),i|s_i}(x)$.

Let:

$$C_{(k)|\mathbf{s}}(x) = \prod_{i} F_{(k),i|\mathbf{s}_i}(x)$$

then

$$E(V_{(k)|\mathbf{s}}) = \int_0^1 \frac{1 - C_{(k)|\mathbf{s}}(t^{-1} - 1) - C_{(k)|\mathbf{s}}(1 - t^{-1})}{t^2} dt.$$

AKG is convergent

Worker state diagram in master-slave architecture

Scenarios for simulation experiments

algorithm	N	workers — <i>W</i>	steps — <i>k</i>	repetitions
KG	$\{5, 10\}$	1	85	114122
AKG	$\{5, 10\}$	$\{1, 2, 3, 4, 5\}$	85	114122
KG	20	1	85	107560
AKG	20	$\{1, 2, 3, 4, 5\}$	85	107560

October 25, 2017

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Expected loss by number of workers |W| (1)

B. Kamiński (WSE)

Asynchronous Knowledge Gradient

0.1

Expected loss by number of workers |W| (2)

October 25, 2017

Concluding remarks

Main results

- modification of the Knowledge Gradient policy to asynchronous execution
- procedure is numerically traceable and simple to execute in master-slave architecture . . .
- ...a care is required to cleanup computations
- appealing scaling properties with number of workers

More details

B. Kamiński, P. Szufel: On parallel policies for ranking and selection problems, Journal of Applied Statistics, 2017, doi:10.1080/02664763.2017.1390555