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Vanilla RNNs

e Classic RNN architecture.

(o)

e Possible to think of hy as of internal memory.
e In practice, this only works for a couple of steps.
e Gradient either vanishes or explodes during training.
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Vanishing gradient problem

e First explanation of unstable gradients in [Hochreiter, 1991].
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Vanishing gradient problem

e First explanation of unstable gradients in [Hochreiter, 1991].
e General idea: multiplying by d%tanhx =1 —tanh®x € (0,1].
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Vanishing gradient problem

e First explanation of unstable gradients in [Hochreiter, 1991].
e General idea: multiplying by d%tanhx =1 —tanh®x € (0,1].
e Formal argument: based on eigenvalues.
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Vanishing gradient problem

First explanation of unstable gradients in [Hochreiter, 1991].

General idea: multiplying by d%tanhx =1 —tanh®x € (0,1].

Formal argument: based on eigenvalues.

Vanilla RNNs are inherently unstable in training.
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Vanishing gradient problem

First explanation of unstable gradients in [Hochreiter, 1991].

General idea: multiplying by d%tanhx =1 —tanh®x € (0,1].

Formal argument: based on eigenvalues.

Vanilla RNNs are inherently unstable in training.
e Memory is limited to < 10 steps.
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Long-short term memory

e In practice, this works relatively well (text classification,
translation etc.).
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Long-short term memory

e In practice, this works relatively well (text classification,
translation etc.).

e Memory persists for =~ 100 steps.

e State cell was not designed as memory in traditional sense.
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Limits of LSTMs

Despite their undeniable success, LSTMs suffer from a number of
limitations:
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Limits of LSTMs

Despite their undeniable success, LSTMs suffer from a number of
limitations:

1. 100 steps is not how human memory works.
2. In practice, hidden state hy is modified at each time step.

3. Increasing the size of memory is equivalent to expanding the
vector hy and the whole network. No. of weights grows at
least linearly with required memory.

4. Memory might become "hard-coded.” Specific parts of the
network might be used to detect given features. Location and
content are intertwined.

Source: Graves, A., [JCNN 2017 Plenary Talk: Frontiers in Recurrent Neural Network Research



Memory/location entaglement

Cell sensitive to position in line:

The sole importance of the crossi

that it plainly and indubitably p
a
a

the Berezina lies in the fact
the fallacy of all the plans for
soundness of the only possible

cutting off the enemy's retreat e
e general mass of the army

line of action--the one Kutuzov

demanded--namely, imply to follo t enemy up. The French crowd fled
at a continually increasing speed and all its energy was directed to
reaching its goal., It fled like a wounded animal and it was impossibl@
to block its path. This was shown not so much by the arrangements it
made for crossing as by what took place at the bridges. When the bridges
broke down, unarmed soldiers, people from Moscow and women with children
Wwho were with the French transport, all--carried on by vis inertiae--
pressed forward into boats and into the ice-covered water and did not;

surrender .
Cell that turns on inside quotes:
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Source: Karpathy, A., The Unreasonable Effectiveness of Recurrent Neural Networks
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Networks with external memory

Adding an external memory source mitigates some of the

mentioned problems:

1. Not all of the memory is interacted with all the time. Specific
parts of memory are accessed at each time step. Memory is
" protected.”

2. Computational cost is not necesarily scaling up with the size
of the memory. In theory, memory can be very large. Analogy:
increase amount of RAM without changing the CPU.

3. Content is separated out from location. Computation
separated from memory.

4. Easier to deal with variables, linked lists, etc. Abstraction
comes in handy.

Source: Graves, A., [JCNN 2017 Plenary Talk: Frontiers in Recurrent Neural Network Research
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Differentiable neural computer

Cast abstract idea in concrete architecture: Differentiable neural
computer (DNC) [Graves et al., 2016]. Design principles:

e Differentiable end-to-end.

e Read-write memory.
Overview of DNC:

a) Controller - neural network, e.g. deep LSTM.

c) Memory matrix.

(a)
(b) Read and write heads.
(c)
(d)

Memory usage vector and temporal link matrix.
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Differentiable neural computer

d Memory usage
a Controller b Read and write heads € Memory and temporal links

Output
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Source: [Graves et al., 2016]
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Controller

Neural network A. Let's use a deep LSTM architecture, which
carries a hidden state vector [h:tl hﬂ

Input:

e External input x; € RX.

e Rread vectorsrl ;,....rR € My_y € RVW,
Output:
e Controller output vector v = W, [h% hé} eRY.
e Interface vector & = W [h% hﬂ € RIWXR)+3WH5R+3
e Memory-augmented output vector
yr = v + W, [r% rf} cRY.

12
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Interacting with memory
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1. Content-based addressing:
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Writing to memory

1. Content-based addressing:
exp{D(k,M[i,])B}
o C(M.k, B[] = Eotm i )57
e cosine similarity D(u,v) g € [F1,1]
o ¢/ =C(M—1,k{,3¢) € Sn
2. Dynamic memory allocation:
e memory retention vector i, = [[~, (1 - ft"wgil) e [0, 1V
e memory usage vector
u; = (Ut71 + W?/_]_ —Uut_10 WtW_l) ] ¢t & [O, 1]N
e sort indices of memory locations in ascending order of usage,
o € NT, ¢:[1] is the least used location
e allocation weighting
addelil] = (1 — uelde i) TTZ; weleelil] € An
3. Write weighting:
o w =g [gfa: + (1 - gf)ci] € A
4. Actual write operation: My = M;_ 10 (E —wWe/]) +wWv/
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M,
w) wl
/G Vo [\ [qw e (v,
ki ) raus | (JE) (9t) (ot (er) (v)
; . y
' ! | s
Content-based weighting History-based write weighting =
(Sec3.3.1) (Sec3.3.2) \ FD"
uy ar \y
S .. Final write weighting w(w? Write to memory
o (sec3.3.3) ‘ (Sec3.3.3)
/ !
M,
by P Lo
G
I/
History-based read
Content-based weighting weighting (Sec 3.3.4) -
334 ] o
i P 3 i L Y]
oD AR a
< \f . l/
> Final read weighting (Sec 3.3.5) w)" — "‘a"(g’;;;)’“” _.®

Source: Hsin, C., Implementation and Optimization of Differentiable Neural Computers

16



Reading from memory

1. Content-based addressing:

17



Reading from memory

1. Content-based addressing:
o ¢t =C(Me, k", BL") € Sn

17



Reading from memory

1. Content-based addressing:
o ¢t =C(Me, k", BL") € Sn

2. Temporal memory linkage:

17



Reading from memory

1. Content-based addressing:
o ¢ =C(Me, k", Br') € Sn
2. Temporal memory linkage:
e temporal link matrix L, € [0, 1]V*N L,[i,-] € An, L[, j] € An

17



Reading from memory

1. Content-based addressing:
o ;' =C(Me, Kk, BP") € Sh

2. Temporal memory linkage:
e temporal link matrix L, € [0, 1]V*N L,[i,-] € An, Le[,j] € An
e precedence weighting p; = (1 — >, wy'[i]) pr—1 + W}’ € Ay

17



Reading from memory

1. Content-based addressing:
o ¢ =C(Me, k", Br') € Sn
2. Temporal memory linkage:
e temporal link matrix L, € [0, 1]V*N L,[i,-] € An, Le[,j] € An
e precedence weighting p; = (1 — >, wy'[i]) pr—1 + W}’ € Ay
e linkage logic: Vi: L¢[i,i] =0, L¢[i,j] =
(1= wli] = w'lj]) Lealio ] + wi'[i]pe-1li]

17



Reading from memory

1. Content-based addressing:
o ¢ =C(Me, k", Br') € Sn
2. Temporal memory linkage:
e temporal link matrix L, € [0, 1]V*N L,[i,-] € An, L[, j] € An

e precedence weighting p; = (1 — >, wy'[i]) pr—1 + W}’ € Ay
e linkage logic: Vi: L¢[i,i] =0, L¢[i,j] =

(L= wli] = wi'J]) Lealis ] + wi[/lpe—1 /]
e forward weighting: f; = L,w;'; € Ay

17



Reading from memory

1. Content-based addressing:
o ¢ =C(Me, k", Br') € Sn
2. Temporal memory linkage:
e temporal link matrix L, € [0, 1]V*N L,[i,-] € An, Le[,j] € An
e precedence weighting p; = (1 — >, wy'[i]) pr—1 + W}’ € Ay
linkage logic: Vi : Li[i,i] =0, L[/, j] =
(1= wli] = w'lj]) Le-alis ] + wi'[i]pe-1li]

forward weighting: fi = L,w}',; € Ay

backward weighting: b = LIwp', € Ay
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e temporal link matrix L, € [0, 1]V*N L,[i,-] € An, Le[,j] € An
e precedence weighting p; = (1 — >, wy'[i]) pr—1 + W}’ € Ay
e linkage logic: Vi: L¢[i,i] =0, L¢[i,j] =
(L= wli] = wi'J]) Lealis ] + wi[/lpe—1 /]
o forward weighting: f; = L.w;”; € Ay
e backward weighting: b} = L] w]'; € Ay
3. Read weighting:

o wi' = mi[1]b} + wi[2ct’ + m[3]f € Ay
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Reading from memory

1. Content-based addressing:
o ;' =C(M k', BP") € Sn
2. Temporal memory linkage:
e temporal link matrix L, € [0, 1]V*N L,[i,-] € An, Le[,j] € An
e precedence weighting p; = (1 — >, wy'[i]) pr—1 + W}’ € Ay
e linkage logic: Vi: L¢[i,i] =0, L¢[i,j] =
(L= wli] = wi'J]) Lealis ] + wi[/lpe—1 /]
o forward weighting: f; = L.w;”; € Ay
e backward weighting: b} = L] w]'; € Ay
3. Read weighting:
o w)' = ri[1]b + wi[2]cy’ + mi[3]fi € A

4. Actual read operation: r; = M wy".
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Traversing London Underground

Baond
Street

Motting
Hill Gate

Green Park Leicester Square

Picecadilly
Circus

Gloucestar

Road G St Jamess
Wictaria Park
South Westminster
Kensington ]

Source: [Graves et al., 2016]
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Traversing London Underground

e London Underground as a graph.
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Traversing London Underground

London Underground as a graph.

Explicit vector representation of an edge:

[stationl station, line

e Queries: traversal, shortest path.

Training: graphs with random nodes and connections.

Curriculum learning with increasing complexity of graphs and

queries.

Tested without re-training on the London Underground graph.
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Traversal /shortest path

Traversal Shortest-path
Traversal question: Shortest-path question:
(Bondst, _, Central), (Moorgate, PiccadillyCircus, _)

(_,_, Circle), (_, _, Circle},
(_._, Circle), (_, _, Circle),
(. _,Jubilea), (_, _, Jubilee),

Answer: Answer:
(BondSt, NottingHillGate, Gentral) (Moorgate, Bank, Northern)
(NottingHillGate, GloucesterRd, Circle) (Bank, Holborn, Central)

: (Holborn, LeicesterSq, Piccadilly)
(Westminster, GreenPark, Jubilee) (LeicesterSq, PiccadillyCircus, Piccadilly)

(GreenPark, BondSt, Jubilee)

Source: [Graves et al., 2016] 20



Traversal

Decoded memory locations

en Fark. oria

Green Park>Piccadilly Circus
Piccadilly Circus>Leicester Sq
Piccadilly Circus>Green Park
Leicester Sq=Piccadilly Circus
Piccadilly Circus=Oxford Circus
Charing Cross>Piccadilly Circus
Piccadilly Circus>Charing Cross
Oxford Circus=Piccadilly Circus
Leicester Sq=Tottenham Court Rd
Charing Cross=>Leicester Sq
Leicester Sq>Charing Cross
Tottenham Court Rd>Leicester Sq
Victoria Victoria N

oria N
tral E

Cel
. North S
Piccadilly W

Bakerloo N
__Central E

Backward

Content

W Write head Forward
M Read head 1

W Read head 2

Backward
Content
Forward

Graph definition Query Answer
| [ |
|
a
[ |
[ |
|
n
L] | ]
| ] L}
]
| |
| |
| |
| |
|
| | |
u
| |
| [ |
[ | [ |
| [ |
| [ |
= |
b Read mode
ANEEEEEER
ENEENNENNNENEEEEEEE IEEEEN
a
NENEEN
HNEENEEEEEE
0 5 10 15 20 25 30
Time
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©
")
S
()
S
s
=

e Location content

d Read key

¥+ Decode ¥

To

¥+ Decode ¥

To

From

Line

From

3 [euay
S oopaseg
N ool@)eg

BUOJAIN

PY UNOD Weyusyol
sna1D AjjIPesald
SN2UID PIOIXO

bg usis@0ie]

ied UsalD

s5040 BueyD

BLOIIIN

PH ¥NOD Weyuspo|
snoalD) A ipeoald
SN2UID PIOIXO

bg usis@0ie]

ied UsalD

ss040 BueyD

2016]

N €
M Alpe22ld
3 Apesold

Source: [Graves et al.
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Further research

e Synthetic gradients [Jaderberg et al., 2016].
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Further research

e Synthetic gradients [Jaderberg et al., 2016].
e Speed up training.
e DNC with other types of neural networks.

Scale up.

Tasks beyond graphs.
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