
Neural networks with dynamic external

memory

Differentiable neural computer

Maciej Żelaszczyk

December 13, 2017

PhD Student in Computer Science

Division of Artificial Intelligence and Computational Methods

Faculty of Mathematics and Information Science

m.zelaszczyk@mini.pw.edu.pl

1

m.zelaszczyk@mini.pw.edu.pl

Recurrent neural networks

• Feedforward nets process one input at a time.

• Order might be important (e.g. text, sound, video).

• Need to divide data into chunks and process it in sequence.

• Adapt feedforward architecture.

Source: Gakhov, A., Recurrent Neural Networks. Part 1: Theory

2

Recurrent neural networks

• Feedforward nets process one input at a time.

• Order might be important (e.g. text, sound, video).

• Need to divide data into chunks and process it in sequence.

• Adapt feedforward architecture.

Source: Gakhov, A., Recurrent Neural Networks. Part 1: Theory

2

Recurrent neural networks

• Feedforward nets process one input at a time.

• Order might be important (e.g. text, sound, video).

• Need to divide data into chunks and process it in sequence.

• Adapt feedforward architecture.

Source: Gakhov, A., Recurrent Neural Networks. Part 1: Theory

2

Recurrent neural networks

• Feedforward nets process one input at a time.

• Order might be important (e.g. text, sound, video).

• Need to divide data into chunks and process it in sequence.

• Adapt feedforward architecture.

Source: Gakhov, A., Recurrent Neural Networks. Part 1: Theory

2

Recurrent neural networks

• Feedforward nets process one input at a time.

• Order might be important (e.g. text, sound, video).

• Need to divide data into chunks and process it in sequence.

• Adapt feedforward architecture.

Source: Gakhov, A., Recurrent Neural Networks. Part 1: Theory

2

Vanilla RNNs

• Classic RNN architecture.

ht = tanh

([
U W

] [ht−1

xt

])

• Possible to think of ht as of internal memory.

• In practice, this only works for a couple of steps.

• Gradient either vanishes or explodes during training.

Source: Gakhov, A., Recurrent Neural Networks. Part 1: Theory
3

Vanilla RNNs

• Classic RNN architecture.

ht = tanh

([
U W

] [ht−1

xt

])
• Possible to think of ht as of internal memory.

• In practice, this only works for a couple of steps.

• Gradient either vanishes or explodes during training.

Source: Gakhov, A., Recurrent Neural Networks. Part 1: Theory
3

Vanilla RNNs

• Classic RNN architecture.

ht = tanh

([
U W

] [ht−1

xt

])
• Possible to think of ht as of internal memory.

• In practice, this only works for a couple of steps.

• Gradient either vanishes or explodes during training.

Source: Gakhov, A., Recurrent Neural Networks. Part 1: Theory
3

Vanilla RNNs

• Classic RNN architecture.

ht = tanh

([
U W

] [ht−1

xt

])
• Possible to think of ht as of internal memory.

• In practice, this only works for a couple of steps.

• Gradient either vanishes or explodes during training.

Source: Gakhov, A., Recurrent Neural Networks. Part 1: Theory
3

Vanishing gradient problem

• First explanation of unstable gradients in [Hochreiter, 1991].

• General idea: multiplying by d
dx tanhx = 1− tanh2x ∈ (0, 1].

• Formal argument: based on eigenvalues.

• Vanilla RNNs are inherently unstable in training.

• Memory is limited to < 10 steps.

Source: Gakhov, A., Recurrent Neural Networks. Part 1: Theory

4

Vanishing gradient problem

• First explanation of unstable gradients in [Hochreiter, 1991].

• General idea: multiplying by d
dx tanhx = 1− tanh2x ∈ (0, 1].

• Formal argument: based on eigenvalues.

• Vanilla RNNs are inherently unstable in training.

• Memory is limited to < 10 steps.

Source: Gakhov, A., Recurrent Neural Networks. Part 1: Theory

4

Vanishing gradient problem

• First explanation of unstable gradients in [Hochreiter, 1991].

• General idea: multiplying by d
dx tanhx = 1− tanh2x ∈ (0, 1].

• Formal argument: based on eigenvalues.

• Vanilla RNNs are inherently unstable in training.

• Memory is limited to < 10 steps.

Source: Gakhov, A., Recurrent Neural Networks. Part 1: Theory

4

Vanishing gradient problem

• First explanation of unstable gradients in [Hochreiter, 1991].

• General idea: multiplying by d
dx tanhx = 1− tanh2x ∈ (0, 1].

• Formal argument: based on eigenvalues.

• Vanilla RNNs are inherently unstable in training.

• Memory is limited to < 10 steps.

Source: Gakhov, A., Recurrent Neural Networks. Part 1: Theory

4

Vanishing gradient problem

• First explanation of unstable gradients in [Hochreiter, 1991].

• General idea: multiplying by d
dx tanhx = 1− tanh2x ∈ (0, 1].

• Formal argument: based on eigenvalues.

• Vanilla RNNs are inherently unstable in training.

• Memory is limited to < 10 steps.

Source: Gakhov, A., Recurrent Neural Networks. Part 1: Theory

4

Long-short term memory

• Specifically design an architecture to circumvent vanishing

gradients [Hochreiter and Schmidhuber, 1997].

• General idea: additive interactions transport gradients better.

• Add a separate state cell ct.

Source: Olah, C., Understanding LSTM Networks

5

Long-short term memory

• Specifically design an architecture to circumvent vanishing

gradients [Hochreiter and Schmidhuber, 1997].

• General idea: additive interactions transport gradients better.

• Add a separate state cell ct.

Source: Olah, C., Understanding LSTM Networks

5

Long-short term memory

• Specifically design an architecture to circumvent vanishing

gradients [Hochreiter and Schmidhuber, 1997].

• General idea: additive interactions transport gradients better.

• Add a separate state cell ct.

Source: Olah, C., Understanding LSTM Networks

5

Long-short term memory

• Specifically design an architecture to circumvent vanishing

gradients [Hochreiter and Schmidhuber, 1997].

• General idea: additive interactions transport gradients better.

• Add a separate state cell ct.

Source: Olah, C., Understanding LSTM Networks

5

Long-short term memory

• In practice, this works relatively well (text classification,

translation etc.).

• Memory persists for ≈ 100 steps.

• State cell was not designed as memory in traditional sense.

Source: Olah, C., Understanding LSTM Networks

6

Long-short term memory

• In practice, this works relatively well (text classification,

translation etc.).

• Memory persists for ≈ 100 steps.

• State cell was not designed as memory in traditional sense.

Source: Olah, C., Understanding LSTM Networks

6

Long-short term memory

• In practice, this works relatively well (text classification,

translation etc.).

• Memory persists for ≈ 100 steps.

• State cell was not designed as memory in traditional sense.

Source: Olah, C., Understanding LSTM Networks

6

Limits of LSTMs

Despite their undeniable success, LSTMs suffer from a number of

limitations:

1. 100 steps is not how human memory works.

2. In practice, hidden state ht is modified at each time step.

3. Increasing the size of memory is equivalent to expanding the

vector ht and the whole network. No. of weights grows at

least linearly with required memory.

4. Memory might become ”hard-coded.” Specific parts of the

network might be used to detect given features. Location and

content are intertwined.

Source: Graves, A., IJCNN 2017 Plenary Talk: Frontiers in Recurrent Neural Network Research

7

Limits of LSTMs

Despite their undeniable success, LSTMs suffer from a number of

limitations:

1. 100 steps is not how human memory works.

2. In practice, hidden state ht is modified at each time step.

3. Increasing the size of memory is equivalent to expanding the

vector ht and the whole network. No. of weights grows at

least linearly with required memory.

4. Memory might become ”hard-coded.” Specific parts of the

network might be used to detect given features. Location and

content are intertwined.

Source: Graves, A., IJCNN 2017 Plenary Talk: Frontiers in Recurrent Neural Network Research

7

Limits of LSTMs

Despite their undeniable success, LSTMs suffer from a number of

limitations:

1. 100 steps is not how human memory works.

2. In practice, hidden state ht is modified at each time step.

3. Increasing the size of memory is equivalent to expanding the

vector ht and the whole network. No. of weights grows at

least linearly with required memory.

4. Memory might become ”hard-coded.” Specific parts of the

network might be used to detect given features. Location and

content are intertwined.

Source: Graves, A., IJCNN 2017 Plenary Talk: Frontiers in Recurrent Neural Network Research

7

Limits of LSTMs

Despite their undeniable success, LSTMs suffer from a number of

limitations:

1. 100 steps is not how human memory works.

2. In practice, hidden state ht is modified at each time step.

3. Increasing the size of memory is equivalent to expanding the

vector ht and the whole network. No. of weights grows at

least linearly with required memory.

4. Memory might become ”hard-coded.” Specific parts of the

network might be used to detect given features. Location and

content are intertwined.

Source: Graves, A., IJCNN 2017 Plenary Talk: Frontiers in Recurrent Neural Network Research

7

Limits of LSTMs

Despite their undeniable success, LSTMs suffer from a number of

limitations:

1. 100 steps is not how human memory works.

2. In practice, hidden state ht is modified at each time step.

3. Increasing the size of memory is equivalent to expanding the

vector ht and the whole network. No. of weights grows at

least linearly with required memory.

4. Memory might become ”hard-coded.” Specific parts of the

network might be used to detect given features. Location and

content are intertwined.

Source: Graves, A., IJCNN 2017 Plenary Talk: Frontiers in Recurrent Neural Network Research

7

Memory/location entaglement

Source: Karpathy, A., The Unreasonable Effectiveness of Recurrent Neural Networks

8

Networks with external memory

Adding an external memory source mitigates some of the

mentioned problems:

1. Not all of the memory is interacted with all the time. Specific

parts of memory are accessed at each time step. Memory is

”protected.”

2. Computational cost is not necesarily scaling up with the size

of the memory. In theory, memory can be very large. Analogy:

increase amount of RAM without changing the CPU.

3. Content is separated out from location. Computation

separated from memory.

4. Easier to deal with variables, linked lists, etc. Abstraction

comes in handy.

Source: Graves, A., IJCNN 2017 Plenary Talk: Frontiers in Recurrent Neural Network Research

9

Networks with external memory

Adding an external memory source mitigates some of the

mentioned problems:

1. Not all of the memory is interacted with all the time. Specific

parts of memory are accessed at each time step. Memory is

”protected.”

2. Computational cost is not necesarily scaling up with the size

of the memory. In theory, memory can be very large. Analogy:

increase amount of RAM without changing the CPU.

3. Content is separated out from location. Computation

separated from memory.

4. Easier to deal with variables, linked lists, etc. Abstraction

comes in handy.

Source: Graves, A., IJCNN 2017 Plenary Talk: Frontiers in Recurrent Neural Network Research

9

Networks with external memory

Adding an external memory source mitigates some of the

mentioned problems:

1. Not all of the memory is interacted with all the time. Specific

parts of memory are accessed at each time step. Memory is

”protected.”

2. Computational cost is not necesarily scaling up with the size

of the memory. In theory, memory can be very large. Analogy:

increase amount of RAM without changing the CPU.

3. Content is separated out from location. Computation

separated from memory.

4. Easier to deal with variables, linked lists, etc. Abstraction

comes in handy.

Source: Graves, A., IJCNN 2017 Plenary Talk: Frontiers in Recurrent Neural Network Research

9

Networks with external memory

Adding an external memory source mitigates some of the

mentioned problems:

1. Not all of the memory is interacted with all the time. Specific

parts of memory are accessed at each time step. Memory is

”protected.”

2. Computational cost is not necesarily scaling up with the size

of the memory. In theory, memory can be very large. Analogy:

increase amount of RAM without changing the CPU.

3. Content is separated out from location. Computation

separated from memory.

4. Easier to deal with variables, linked lists, etc. Abstraction

comes in handy.

Source: Graves, A., IJCNN 2017 Plenary Talk: Frontiers in Recurrent Neural Network Research

9

Networks with external memory

Adding an external memory source mitigates some of the

mentioned problems:

1. Not all of the memory is interacted with all the time. Specific

parts of memory are accessed at each time step. Memory is

”protected.”

2. Computational cost is not necesarily scaling up with the size

of the memory. In theory, memory can be very large. Analogy:

increase amount of RAM without changing the CPU.

3. Content is separated out from location. Computation

separated from memory.

4. Easier to deal with variables, linked lists, etc. Abstraction

comes in handy.

Source: Graves, A., IJCNN 2017 Plenary Talk: Frontiers in Recurrent Neural Network Research

9

Differentiable neural computer

Cast abstract idea in concrete architecture: Differentiable neural

computer (DNC) [Graves et al., 2016]. Design principles:

• Differentiable end-to-end.

• Read-write memory.

Overview of DNC:

(a) Controller - neural network, e.g. deep LSTM.

(b) Read and write heads.

(c) Memory matrix.

(d) Memory usage vector and temporal link matrix.

10

Differentiable neural computer

Cast abstract idea in concrete architecture: Differentiable neural

computer (DNC) [Graves et al., 2016]. Design principles:

• Differentiable end-to-end.

• Read-write memory.

Overview of DNC:

(a) Controller - neural network, e.g. deep LSTM.

(b) Read and write heads.

(c) Memory matrix.

(d) Memory usage vector and temporal link matrix.

10

Differentiable neural computer

Cast abstract idea in concrete architecture: Differentiable neural

computer (DNC) [Graves et al., 2016]. Design principles:

• Differentiable end-to-end.

• Read-write memory.

Overview of DNC:

(a) Controller - neural network, e.g. deep LSTM.

(b) Read and write heads.

(c) Memory matrix.

(d) Memory usage vector and temporal link matrix.

10

Differentiable neural computer

Cast abstract idea in concrete architecture: Differentiable neural

computer (DNC) [Graves et al., 2016]. Design principles:

• Differentiable end-to-end.

• Read-write memory.

Overview of DNC:

(a) Controller - neural network, e.g. deep LSTM.

(b) Read and write heads.

(c) Memory matrix.

(d) Memory usage vector and temporal link matrix.

10

Differentiable neural computer

Cast abstract idea in concrete architecture: Differentiable neural

computer (DNC) [Graves et al., 2016]. Design principles:

• Differentiable end-to-end.

• Read-write memory.

Overview of DNC:

(a) Controller - neural network, e.g. deep LSTM.

(b) Read and write heads.

(c) Memory matrix.

(d) Memory usage vector and temporal link matrix.

10

Differentiable neural computer

Cast abstract idea in concrete architecture: Differentiable neural

computer (DNC) [Graves et al., 2016]. Design principles:

• Differentiable end-to-end.

• Read-write memory.

Overview of DNC:

(a) Controller - neural network, e.g. deep LSTM.

(b) Read and write heads.

(c) Memory matrix.

(d) Memory usage vector and temporal link matrix.

10

Differentiable neural computer

Cast abstract idea in concrete architecture: Differentiable neural

computer (DNC) [Graves et al., 2016]. Design principles:

• Differentiable end-to-end.

• Read-write memory.

Overview of DNC:

(a) Controller - neural network, e.g. deep LSTM.

(b) Read and write heads.

(c) Memory matrix.

(d) Memory usage vector and temporal link matrix.

10

Differentiable neural computer

Cast abstract idea in concrete architecture: Differentiable neural

computer (DNC) [Graves et al., 2016]. Design principles:

• Differentiable end-to-end.

• Read-write memory.

Overview of DNC:

(a) Controller - neural network, e.g. deep LSTM.

(b) Read and write heads.

(c) Memory matrix.

(d) Memory usage vector and temporal link matrix.

10

Differentiable neural computer

Source: [Graves et al., 2016]

11

Controller

Neural network N . Let’s use a deep LSTM architecture, which

carries a hidden state vector
[
h1
t . . . hL

t

]
.

Input:

• External input xt ∈ RX .

• R read vectors r1
t−1, . . . , r

R
t−1 ∈ Mt−1 ∈ RN×W .

Output:

• Controller output vector vt = Wy

[
h1
t . . . hL

t

]
∈ RY .

• Interface vector ξ̂t = Wξ

[
h1
t . . . hL

t

]
∈ R(W×R)+3W+5R+3.

• Memory-augmented output vector

yt = vt + Wr

[
r1
t . . . rRt

]
∈ RY .

12

Controller

Neural network N . Let’s use a deep LSTM architecture, which

carries a hidden state vector
[
h1
t . . . hL

t

]
.

Input:

• External input xt ∈ RX .

• R read vectors r1
t−1, . . . , r

R
t−1 ∈ Mt−1 ∈ RN×W .

Output:

• Controller output vector vt = Wy

[
h1
t . . . hL

t

]
∈ RY .

• Interface vector ξ̂t = Wξ

[
h1
t . . . hL

t

]
∈ R(W×R)+3W+5R+3.

• Memory-augmented output vector

yt = vt + Wr

[
r1
t . . . rRt

]
∈ RY .

12

Controller

Neural network N . Let’s use a deep LSTM architecture, which

carries a hidden state vector
[
h1
t . . . hL

t

]
.

Input:

• External input xt ∈ RX .

• R read vectors r1
t−1, . . . , r

R
t−1 ∈ Mt−1 ∈ RN×W .

Output:

• Controller output vector vt = Wy

[
h1
t . . . hL

t

]
∈ RY .

• Interface vector ξ̂t = Wξ

[
h1
t . . . hL

t

]
∈ R(W×R)+3W+5R+3.

• Memory-augmented output vector

yt = vt + Wr

[
r1
t . . . rRt

]
∈ RY .

12

Controller

Neural network N . Let’s use a deep LSTM architecture, which

carries a hidden state vector
[
h1
t . . . hL

t

]
.

Input:

• External input xt ∈ RX .

• R read vectors r1
t−1, . . . , r

R
t−1 ∈ Mt−1 ∈ RN×W .

Output:

• Controller output vector vt = Wy

[
h1
t . . . hL

t

]
∈ RY .

• Interface vector ξ̂t = Wξ

[
h1
t . . . hL

t

]
∈ R(W×R)+3W+5R+3.

• Memory-augmented output vector

yt = vt + Wr

[
r1
t . . . rRt

]
∈ RY .

12

Controller

Neural network N . Let’s use a deep LSTM architecture, which

carries a hidden state vector
[
h1
t . . . hL

t

]
.

Input:

• External input xt ∈ RX .

• R read vectors r1
t−1, . . . , r

R
t−1 ∈ Mt−1 ∈ RN×W .

Output:

• Controller output vector vt = Wy

[
h1
t . . . hL

t

]
∈ RY .

• Interface vector ξ̂t = Wξ

[
h1
t . . . hL

t

]
∈ R(W×R)+3W+5R+3.

• Memory-augmented output vector

yt = vt + Wr

[
r1
t . . . rRt

]
∈ RY .

12

Controller

Neural network N . Let’s use a deep LSTM architecture, which

carries a hidden state vector
[
h1
t . . . hL

t

]
.

Input:

• External input xt ∈ RX .

• R read vectors r1
t−1, . . . , r

R
t−1 ∈ Mt−1 ∈ RN×W .

Output:

• Controller output vector vt = Wy

[
h1
t . . . hL

t

]
∈ RY .

• Interface vector ξ̂t = Wξ

[
h1
t . . . hL

t

]
∈ R(W×R)+3W+5R+3.

• Memory-augmented output vector

yt = vt + Wr

[
r1
t . . . rRt

]
∈ RY .

12

Controller

Neural network N . Let’s use a deep LSTM architecture, which

carries a hidden state vector
[
h1
t . . . hL

t

]
.

Input:

• External input xt ∈ RX .

• R read vectors r1
t−1, . . . , r

R
t−1 ∈ Mt−1 ∈ RN×W .

Output:

• Controller output vector vt = Wy

[
h1
t . . . hL

t

]
∈ RY .

• Interface vector ξ̂t = Wξ

[
h1
t . . . hL

t

]
∈ R(W×R)+3W+5R+3.

• Memory-augmented output vector

yt = vt + Wr

[
r1
t . . . rRt

]
∈ RY .

12

Interface vector

• Interface vector before processing ξ̂t =[
kr ,1
t . . . kr ,R

t ; β̂r ,1t . . . β̂r ,Rt ; kw
t ; β̂wt ; êt ; vt ; f̂ 1

t . . . f̂
R
t ; ĝa

t ; ĝw
t ; π̂1

t . . . π̂
R
t

]

• Define: oneplus(x) = 1 + ln (1 + ex) ∈ [1,∞).

• Define: softmax(x)j = e
xj∑
i e

xi
.

• βr ,it = oneplus(β̂r ,it), βwt = oneplus(β̂wt)

• et = σ(êt), f it = σ(f̂ it), ga
t = σ(ĝa

t), gw
t = σ(ĝw

t)

• πit = softmax(π̂it)

• Interface vector after processing ξt =[
kr ,1
t . . . kr ,R

t ;βr ,1t . . . βr ,Rt ; kw
t ;βwt ; et ; vt ; f 1

t . . . f
R
t ; ga

t ; gw
t ;π1

t . . . π
R
t

]

13

Interface vector

• Interface vector before processing ξ̂t =[
kr ,1
t . . . kr ,R

t ; β̂r ,1t . . . β̂r ,Rt ; kw
t ; β̂wt ; êt ; vt ; f̂ 1

t . . . f̂
R
t ; ĝa

t ; ĝw
t ; π̂1

t . . . π̂
R
t

]
• Define: oneplus(x) = 1 + ln (1 + ex) ∈ [1,∞).

• Define: softmax(x)j = e
xj∑
i e

xi
.

• βr ,it = oneplus(β̂r ,it), βwt = oneplus(β̂wt)

• et = σ(êt), f it = σ(f̂ it), ga
t = σ(ĝa

t), gw
t = σ(ĝw

t)

• πit = softmax(π̂it)

• Interface vector after processing ξt =[
kr ,1
t . . . kr ,R

t ;βr ,1t . . . βr ,Rt ; kw
t ;βwt ; et ; vt ; f 1

t . . . f
R
t ; ga

t ; gw
t ;π1

t . . . π
R
t

]

13

Interface vector

• Interface vector before processing ξ̂t =[
kr ,1
t . . . kr ,R

t ; β̂r ,1t . . . β̂r ,Rt ; kw
t ; β̂wt ; êt ; vt ; f̂ 1

t . . . f̂
R
t ; ĝa

t ; ĝw
t ; π̂1

t . . . π̂
R
t

]
• Define: oneplus(x) = 1 + ln (1 + ex) ∈ [1,∞).

• Define: softmax(x)j = e
xj∑
i e

xi
.

• βr ,it = oneplus(β̂r ,it), βwt = oneplus(β̂wt)

• et = σ(êt), f it = σ(f̂ it), ga
t = σ(ĝa

t), gw
t = σ(ĝw

t)

• πit = softmax(π̂it)

• Interface vector after processing ξt =[
kr ,1
t . . . kr ,R

t ;βr ,1t . . . βr ,Rt ; kw
t ;βwt ; et ; vt ; f 1

t . . . f
R
t ; ga

t ; gw
t ;π1

t . . . π
R
t

]

13

Interface vector

• Interface vector before processing ξ̂t =[
kr ,1
t . . . kr ,R

t ; β̂r ,1t . . . β̂r ,Rt ; kw
t ; β̂wt ; êt ; vt ; f̂ 1

t . . . f̂
R
t ; ĝa

t ; ĝw
t ; π̂1

t . . . π̂
R
t

]
• Define: oneplus(x) = 1 + ln (1 + ex) ∈ [1,∞).

• Define: softmax(x)j = e
xj∑
i e

xi
.

• βr ,it = oneplus(β̂r ,it), βwt = oneplus(β̂wt)

• et = σ(êt), f it = σ(f̂ it), ga
t = σ(ĝa

t), gw
t = σ(ĝw

t)

• πit = softmax(π̂it)

• Interface vector after processing ξt =[
kr ,1
t . . . kr ,R

t ;βr ,1t . . . βr ,Rt ; kw
t ;βwt ; et ; vt ; f 1

t . . . f
R
t ; ga

t ; gw
t ;π1

t . . . π
R
t

]

13

Interface vector

• Interface vector before processing ξ̂t =[
kr ,1
t . . . kr ,R

t ; β̂r ,1t . . . β̂r ,Rt ; kw
t ; β̂wt ; êt ; vt ; f̂ 1

t . . . f̂
R
t ; ĝa

t ; ĝw
t ; π̂1

t . . . π̂
R
t

]
• Define: oneplus(x) = 1 + ln (1 + ex) ∈ [1,∞).

• Define: softmax(x)j = e
xj∑
i e

xi
.

• βr ,it = oneplus(β̂r ,it), βwt = oneplus(β̂wt)

• et = σ(êt), f it = σ(f̂ it), ga
t = σ(ĝa

t), gw
t = σ(ĝw

t)

• πit = softmax(π̂it)

• Interface vector after processing ξt =[
kr ,1
t . . . kr ,R

t ;βr ,1t . . . βr ,Rt ; kw
t ;βwt ; et ; vt ; f 1

t . . . f
R
t ; ga

t ; gw
t ;π1

t . . . π
R
t

]

13

Interface vector

• Interface vector before processing ξ̂t =[
kr ,1
t . . . kr ,R

t ; β̂r ,1t . . . β̂r ,Rt ; kw
t ; β̂wt ; êt ; vt ; f̂ 1

t . . . f̂
R
t ; ĝa

t ; ĝw
t ; π̂1

t . . . π̂
R
t

]
• Define: oneplus(x) = 1 + ln (1 + ex) ∈ [1,∞).

• Define: softmax(x)j = e
xj∑
i e

xi
.

• βr ,it = oneplus(β̂r ,it), βwt = oneplus(β̂wt)

• et = σ(êt), f it = σ(f̂ it), ga
t = σ(ĝa

t), gw
t = σ(ĝw

t)

• πit = softmax(π̂it)

• Interface vector after processing ξt =[
kr ,1
t . . . kr ,R

t ;βr ,1t . . . βr ,Rt ; kw
t ;βwt ; et ; vt ; f 1

t . . . f
R
t ; ga

t ; gw
t ;π1

t . . . π
R
t

]

13

Interface vector

• Interface vector before processing ξ̂t =[
kr ,1
t . . . kr ,R

t ; β̂r ,1t . . . β̂r ,Rt ; kw
t ; β̂wt ; êt ; vt ; f̂ 1

t . . . f̂
R
t ; ĝa

t ; ĝw
t ; π̂1

t . . . π̂
R
t

]
• Define: oneplus(x) = 1 + ln (1 + ex) ∈ [1,∞).

• Define: softmax(x)j = e
xj∑
i e

xi
.

• βr ,it = oneplus(β̂r ,it), βwt = oneplus(β̂wt)

• et = σ(êt), f it = σ(f̂ it), ga
t = σ(ĝa

t), gw
t = σ(ĝw

t)

• πit = softmax(π̂it)

• Interface vector after processing ξt =[
kr ,1
t . . . kr ,R

t ;βr ,1t . . . βr ,Rt ; kw
t ;βwt ; et ; vt ; f 1

t . . . f
R
t ; ga

t ; gw
t ;π1

t . . . π
R
t

]

13

Interacting with memory

Source: Hsin, C., Implementation and Optimization of Differentiable Neural Computers

14

Writing to memory

1. Content-based addressing:

• C(M, k, β)[i] = exp{D(k,M[i,·])β}∑
j exp{D(k,M[j,·])β}

• cosine similarity D(u, v) = u·v
|u||v| ∈ [−1, 1]

• cwt = C(Mt−1, kw
t , β

w
t) ∈ SN

2. Dynamic memory allocation:

• memory retention vector ψt =
∏R

i=1

(
1− f it wr ,i

t−1

)
∈ [0, 1]N

• memory usage vector

ut =
(
ut−1 + ww

t−1 − ut−1 ◦ww
t−1

)
◦ ψt ∈ [0, 1]N

• sort indices of memory locations in ascending order of usage,

φt ∈ N+, φt [1] is the least used location

• allocation weighting

at [φt [j]] = (1− ut [φt [j]])
∏j−1

i=1 ut [φt [i]] ∈ ∆N

3. Write weighting:

• ww
t = gw

t [g a
t at + (1− g a

t)cwt] ∈ ∆N

4. Actual write operation: Mt = Mt−1 ◦ (E −ww
t eTt) + ww

t vTt

15

Writing to memory

1. Content-based addressing:
• C(M, k, β)[i] = exp{D(k,M[i,·])β}∑

j exp{D(k,M[j,·])β}

• cosine similarity D(u, v) = u·v
|u||v| ∈ [−1, 1]

• cwt = C(Mt−1, kw
t , β

w
t) ∈ SN

2. Dynamic memory allocation:

• memory retention vector ψt =
∏R

i=1

(
1− f it wr ,i

t−1

)
∈ [0, 1]N

• memory usage vector

ut =
(
ut−1 + ww

t−1 − ut−1 ◦ww
t−1

)
◦ ψt ∈ [0, 1]N

• sort indices of memory locations in ascending order of usage,

φt ∈ N+, φt [1] is the least used location

• allocation weighting

at [φt [j]] = (1− ut [φt [j]])
∏j−1

i=1 ut [φt [i]] ∈ ∆N

3. Write weighting:

• ww
t = gw

t [g a
t at + (1− g a

t)cwt] ∈ ∆N

4. Actual write operation: Mt = Mt−1 ◦ (E −ww
t eTt) + ww

t vTt

15

Writing to memory

1. Content-based addressing:
• C(M, k, β)[i] = exp{D(k,M[i,·])β}∑

j exp{D(k,M[j,·])β}
• cosine similarity D(u, v) = u·v

|u||v| ∈ [−1, 1]

• cwt = C(Mt−1, kw
t , β

w
t) ∈ SN

2. Dynamic memory allocation:

• memory retention vector ψt =
∏R

i=1

(
1− f it wr ,i

t−1

)
∈ [0, 1]N

• memory usage vector

ut =
(
ut−1 + ww

t−1 − ut−1 ◦ww
t−1

)
◦ ψt ∈ [0, 1]N

• sort indices of memory locations in ascending order of usage,

φt ∈ N+, φt [1] is the least used location

• allocation weighting

at [φt [j]] = (1− ut [φt [j]])
∏j−1

i=1 ut [φt [i]] ∈ ∆N

3. Write weighting:

• ww
t = gw

t [g a
t at + (1− g a

t)cwt] ∈ ∆N

4. Actual write operation: Mt = Mt−1 ◦ (E −ww
t eTt) + ww

t vTt

15

Writing to memory

1. Content-based addressing:
• C(M, k, β)[i] = exp{D(k,M[i,·])β}∑

j exp{D(k,M[j,·])β}
• cosine similarity D(u, v) = u·v

|u||v| ∈ [−1, 1]

• cwt = C(Mt−1, kw
t , β

w
t) ∈ SN

2. Dynamic memory allocation:

• memory retention vector ψt =
∏R

i=1

(
1− f it wr ,i

t−1

)
∈ [0, 1]N

• memory usage vector

ut =
(
ut−1 + ww

t−1 − ut−1 ◦ww
t−1

)
◦ ψt ∈ [0, 1]N

• sort indices of memory locations in ascending order of usage,

φt ∈ N+, φt [1] is the least used location

• allocation weighting

at [φt [j]] = (1− ut [φt [j]])
∏j−1

i=1 ut [φt [i]] ∈ ∆N

3. Write weighting:

• ww
t = gw

t [g a
t at + (1− g a

t)cwt] ∈ ∆N

4. Actual write operation: Mt = Mt−1 ◦ (E −ww
t eTt) + ww

t vTt

15

Writing to memory

1. Content-based addressing:
• C(M, k, β)[i] = exp{D(k,M[i,·])β}∑

j exp{D(k,M[j,·])β}
• cosine similarity D(u, v) = u·v

|u||v| ∈ [−1, 1]

• cwt = C(Mt−1, kw
t , β

w
t) ∈ SN

2. Dynamic memory allocation:

• memory retention vector ψt =
∏R

i=1

(
1− f it wr ,i

t−1

)
∈ [0, 1]N

• memory usage vector

ut =
(
ut−1 + ww

t−1 − ut−1 ◦ww
t−1

)
◦ ψt ∈ [0, 1]N

• sort indices of memory locations in ascending order of usage,

φt ∈ N+, φt [1] is the least used location

• allocation weighting

at [φt [j]] = (1− ut [φt [j]])
∏j−1

i=1 ut [φt [i]] ∈ ∆N

3. Write weighting:

• ww
t = gw

t [g a
t at + (1− g a

t)cwt] ∈ ∆N

4. Actual write operation: Mt = Mt−1 ◦ (E −ww
t eTt) + ww

t vTt

15

Writing to memory

1. Content-based addressing:
• C(M, k, β)[i] = exp{D(k,M[i,·])β}∑

j exp{D(k,M[j,·])β}
• cosine similarity D(u, v) = u·v

|u||v| ∈ [−1, 1]

• cwt = C(Mt−1, kw
t , β

w
t) ∈ SN

2. Dynamic memory allocation:
• memory retention vector ψt =

∏R
i=1

(
1− f it wr ,i

t−1

)
∈ [0, 1]N

• memory usage vector

ut =
(
ut−1 + ww

t−1 − ut−1 ◦ww
t−1

)
◦ ψt ∈ [0, 1]N

• sort indices of memory locations in ascending order of usage,

φt ∈ N+, φt [1] is the least used location

• allocation weighting

at [φt [j]] = (1− ut [φt [j]])
∏j−1

i=1 ut [φt [i]] ∈ ∆N

3. Write weighting:

• ww
t = gw

t [g a
t at + (1− g a

t)cwt] ∈ ∆N

4. Actual write operation: Mt = Mt−1 ◦ (E −ww
t eTt) + ww

t vTt

15

Writing to memory

1. Content-based addressing:
• C(M, k, β)[i] = exp{D(k,M[i,·])β}∑

j exp{D(k,M[j,·])β}
• cosine similarity D(u, v) = u·v

|u||v| ∈ [−1, 1]

• cwt = C(Mt−1, kw
t , β

w
t) ∈ SN

2. Dynamic memory allocation:
• memory retention vector ψt =

∏R
i=1

(
1− f it wr ,i

t−1

)
∈ [0, 1]N

• memory usage vector

ut =
(
ut−1 + ww

t−1 − ut−1 ◦ww
t−1

)
◦ ψt ∈ [0, 1]N

• sort indices of memory locations in ascending order of usage,

φt ∈ N+, φt [1] is the least used location

• allocation weighting

at [φt [j]] = (1− ut [φt [j]])
∏j−1

i=1 ut [φt [i]] ∈ ∆N

3. Write weighting:

• ww
t = gw

t [g a
t at + (1− g a

t)cwt] ∈ ∆N

4. Actual write operation: Mt = Mt−1 ◦ (E −ww
t eTt) + ww

t vTt

15

Writing to memory

1. Content-based addressing:
• C(M, k, β)[i] = exp{D(k,M[i,·])β}∑

j exp{D(k,M[j,·])β}
• cosine similarity D(u, v) = u·v

|u||v| ∈ [−1, 1]

• cwt = C(Mt−1, kw
t , β

w
t) ∈ SN

2. Dynamic memory allocation:
• memory retention vector ψt =

∏R
i=1

(
1− f it wr ,i

t−1

)
∈ [0, 1]N

• memory usage vector

ut =
(
ut−1 + ww

t−1 − ut−1 ◦ww
t−1

)
◦ ψt ∈ [0, 1]N

• sort indices of memory locations in ascending order of usage,

φt ∈ N+, φt [1] is the least used location

• allocation weighting

at [φt [j]] = (1− ut [φt [j]])
∏j−1

i=1 ut [φt [i]] ∈ ∆N

3. Write weighting:

• ww
t = gw

t [g a
t at + (1− g a

t)cwt] ∈ ∆N

4. Actual write operation: Mt = Mt−1 ◦ (E −ww
t eTt) + ww

t vTt

15

Writing to memory

1. Content-based addressing:
• C(M, k, β)[i] = exp{D(k,M[i,·])β}∑

j exp{D(k,M[j,·])β}
• cosine similarity D(u, v) = u·v

|u||v| ∈ [−1, 1]

• cwt = C(Mt−1, kw
t , β

w
t) ∈ SN

2. Dynamic memory allocation:
• memory retention vector ψt =

∏R
i=1

(
1− f it wr ,i

t−1

)
∈ [0, 1]N

• memory usage vector

ut =
(
ut−1 + ww

t−1 − ut−1 ◦ww
t−1

)
◦ ψt ∈ [0, 1]N

• sort indices of memory locations in ascending order of usage,

φt ∈ N+, φt [1] is the least used location

• allocation weighting

at [φt [j]] = (1− ut [φt [j]])
∏j−1

i=1 ut [φt [i]] ∈ ∆N

3. Write weighting:

• ww
t = gw

t [g a
t at + (1− g a

t)cwt] ∈ ∆N

4. Actual write operation: Mt = Mt−1 ◦ (E −ww
t eTt) + ww

t vTt

15

Writing to memory

1. Content-based addressing:
• C(M, k, β)[i] = exp{D(k,M[i,·])β}∑

j exp{D(k,M[j,·])β}
• cosine similarity D(u, v) = u·v

|u||v| ∈ [−1, 1]

• cwt = C(Mt−1, kw
t , β

w
t) ∈ SN

2. Dynamic memory allocation:
• memory retention vector ψt =

∏R
i=1

(
1− f it wr ,i

t−1

)
∈ [0, 1]N

• memory usage vector

ut =
(
ut−1 + ww

t−1 − ut−1 ◦ww
t−1

)
◦ ψt ∈ [0, 1]N

• sort indices of memory locations in ascending order of usage,

φt ∈ N+, φt [1] is the least used location

• allocation weighting

at [φt [j]] = (1− ut [φt [j]])
∏j−1

i=1 ut [φt [i]] ∈ ∆N

3. Write weighting:

• ww
t = gw

t [g a
t at + (1− g a

t)cwt] ∈ ∆N

4. Actual write operation: Mt = Mt−1 ◦ (E −ww
t eTt) + ww

t vTt

15

Writing to memory

1. Content-based addressing:
• C(M, k, β)[i] = exp{D(k,M[i,·])β}∑

j exp{D(k,M[j,·])β}
• cosine similarity D(u, v) = u·v

|u||v| ∈ [−1, 1]

• cwt = C(Mt−1, kw
t , β

w
t) ∈ SN

2. Dynamic memory allocation:
• memory retention vector ψt =

∏R
i=1

(
1− f it wr ,i

t−1

)
∈ [0, 1]N

• memory usage vector

ut =
(
ut−1 + ww

t−1 − ut−1 ◦ww
t−1

)
◦ ψt ∈ [0, 1]N

• sort indices of memory locations in ascending order of usage,

φt ∈ N+, φt [1] is the least used location

• allocation weighting

at [φt [j]] = (1− ut [φt [j]])
∏j−1

i=1 ut [φt [i]] ∈ ∆N

3. Write weighting:
• ww

t = gw
t [g a

t at + (1− g a
t)cwt] ∈ ∆N

4. Actual write operation: Mt = Mt−1 ◦ (E −ww
t eTt) + ww

t vTt

15

Writing to memory

1. Content-based addressing:
• C(M, k, β)[i] = exp{D(k,M[i,·])β}∑

j exp{D(k,M[j,·])β}
• cosine similarity D(u, v) = u·v

|u||v| ∈ [−1, 1]

• cwt = C(Mt−1, kw
t , β

w
t) ∈ SN

2. Dynamic memory allocation:
• memory retention vector ψt =

∏R
i=1

(
1− f it wr ,i

t−1

)
∈ [0, 1]N

• memory usage vector

ut =
(
ut−1 + ww

t−1 − ut−1 ◦ww
t−1

)
◦ ψt ∈ [0, 1]N

• sort indices of memory locations in ascending order of usage,

φt ∈ N+, φt [1] is the least used location

• allocation weighting

at [φt [j]] = (1− ut [φt [j]])
∏j−1

i=1 ut [φt [i]] ∈ ∆N

3. Write weighting:
• ww

t = gw
t [g a

t at + (1− g a
t)cwt] ∈ ∆N

4. Actual write operation: Mt = Mt−1 ◦ (E −ww
t eTt) + ww

t vTt
15

Interacting with memory

Source: Hsin, C., Implementation and Optimization of Differentiable Neural Computers

16

Reading from memory

1. Content-based addressing:

• cr ,it = C(Mt , k
r ,i
t , β

r ,i
t) ∈ SN

2. Temporal memory linkage:

• temporal link matrix Lt ∈ [0, 1]N×N , Lt [i , ·] ∈ ∆N , Lt [·, j] ∈ ∆N

• precedence weighting pt = (1−
∑

i ww
t [i]) pt−1 + ww

t ∈ ∆N

• linkage logic: ∀i : Lt [i , i] = 0, Lt [i , j] =

(1−ww
t [i]−ww

t [j]) Lt−1[i , j] + ww
t [i]pt−1[j]

• forward weighting: f it = Ltw
r ,i
t−1 ∈ ∆N

• backward weighting: bi
t = LTt wr ,i

t−1 ∈ ∆N

3. Read weighting:

• wr ,i
t = πi

t [1]bi
t + πi

t [2]cr ,it + πi
t [3]f it ∈ ∆N

4. Actual read operation: rit = MT
t wr ,i

t .

17

Reading from memory

1. Content-based addressing:

• cr ,it = C(Mt , k
r ,i
t , β

r ,i
t) ∈ SN

2. Temporal memory linkage:

• temporal link matrix Lt ∈ [0, 1]N×N , Lt [i , ·] ∈ ∆N , Lt [·, j] ∈ ∆N

• precedence weighting pt = (1−
∑

i ww
t [i]) pt−1 + ww

t ∈ ∆N

• linkage logic: ∀i : Lt [i , i] = 0, Lt [i , j] =

(1−ww
t [i]−ww

t [j]) Lt−1[i , j] + ww
t [i]pt−1[j]

• forward weighting: f it = Ltw
r ,i
t−1 ∈ ∆N

• backward weighting: bi
t = LTt wr ,i

t−1 ∈ ∆N

3. Read weighting:

• wr ,i
t = πi

t [1]bi
t + πi

t [2]cr ,it + πi
t [3]f it ∈ ∆N

4. Actual read operation: rit = MT
t wr ,i

t .

17

Reading from memory

1. Content-based addressing:

• cr ,it = C(Mt , k
r ,i
t , β

r ,i
t) ∈ SN

2. Temporal memory linkage:

• temporal link matrix Lt ∈ [0, 1]N×N , Lt [i , ·] ∈ ∆N , Lt [·, j] ∈ ∆N

• precedence weighting pt = (1−
∑

i ww
t [i]) pt−1 + ww

t ∈ ∆N

• linkage logic: ∀i : Lt [i , i] = 0, Lt [i , j] =

(1−ww
t [i]−ww

t [j]) Lt−1[i , j] + ww
t [i]pt−1[j]

• forward weighting: f it = Ltw
r ,i
t−1 ∈ ∆N

• backward weighting: bi
t = LTt wr ,i

t−1 ∈ ∆N

3. Read weighting:

• wr ,i
t = πi

t [1]bi
t + πi

t [2]cr ,it + πi
t [3]f it ∈ ∆N

4. Actual read operation: rit = MT
t wr ,i

t .

17

Reading from memory

1. Content-based addressing:

• cr ,it = C(Mt , k
r ,i
t , β

r ,i
t) ∈ SN

2. Temporal memory linkage:

• temporal link matrix Lt ∈ [0, 1]N×N , Lt [i , ·] ∈ ∆N , Lt [·, j] ∈ ∆N

• precedence weighting pt = (1−
∑

i ww
t [i]) pt−1 + ww

t ∈ ∆N

• linkage logic: ∀i : Lt [i , i] = 0, Lt [i , j] =

(1−ww
t [i]−ww

t [j]) Lt−1[i , j] + ww
t [i]pt−1[j]

• forward weighting: f it = Ltw
r ,i
t−1 ∈ ∆N

• backward weighting: bi
t = LTt wr ,i

t−1 ∈ ∆N

3. Read weighting:

• wr ,i
t = πi

t [1]bi
t + πi

t [2]cr ,it + πi
t [3]f it ∈ ∆N

4. Actual read operation: rit = MT
t wr ,i

t .

17

Reading from memory

1. Content-based addressing:

• cr ,it = C(Mt , k
r ,i
t , β

r ,i
t) ∈ SN

2. Temporal memory linkage:

• temporal link matrix Lt ∈ [0, 1]N×N , Lt [i , ·] ∈ ∆N , Lt [·, j] ∈ ∆N

• precedence weighting pt = (1−
∑

i ww
t [i]) pt−1 + ww

t ∈ ∆N

• linkage logic: ∀i : Lt [i , i] = 0, Lt [i , j] =

(1−ww
t [i]−ww

t [j]) Lt−1[i , j] + ww
t [i]pt−1[j]

• forward weighting: f it = Ltw
r ,i
t−1 ∈ ∆N

• backward weighting: bi
t = LTt wr ,i

t−1 ∈ ∆N

3. Read weighting:

• wr ,i
t = πi

t [1]bi
t + πi

t [2]cr ,it + πi
t [3]f it ∈ ∆N

4. Actual read operation: rit = MT
t wr ,i

t .

17

Reading from memory

1. Content-based addressing:

• cr ,it = C(Mt , k
r ,i
t , β

r ,i
t) ∈ SN

2. Temporal memory linkage:

• temporal link matrix Lt ∈ [0, 1]N×N , Lt [i , ·] ∈ ∆N , Lt [·, j] ∈ ∆N

• precedence weighting pt = (1−
∑

i ww
t [i]) pt−1 + ww

t ∈ ∆N

• linkage logic: ∀i : Lt [i , i] = 0, Lt [i , j] =

(1−ww
t [i]−ww

t [j]) Lt−1[i , j] + ww
t [i]pt−1[j]

• forward weighting: f it = Ltw
r ,i
t−1 ∈ ∆N

• backward weighting: bi
t = LTt wr ,i

t−1 ∈ ∆N

3. Read weighting:

• wr ,i
t = πi

t [1]bi
t + πi

t [2]cr ,it + πi
t [3]f it ∈ ∆N

4. Actual read operation: rit = MT
t wr ,i

t .

17

Reading from memory

1. Content-based addressing:

• cr ,it = C(Mt , k
r ,i
t , β

r ,i
t) ∈ SN

2. Temporal memory linkage:

• temporal link matrix Lt ∈ [0, 1]N×N , Lt [i , ·] ∈ ∆N , Lt [·, j] ∈ ∆N

• precedence weighting pt = (1−
∑

i ww
t [i]) pt−1 + ww

t ∈ ∆N

• linkage logic: ∀i : Lt [i , i] = 0, Lt [i , j] =

(1−ww
t [i]−ww

t [j]) Lt−1[i , j] + ww
t [i]pt−1[j]

• forward weighting: f it = Ltw
r ,i
t−1 ∈ ∆N

• backward weighting: bi
t = LTt wr ,i

t−1 ∈ ∆N

3. Read weighting:

• wr ,i
t = πi

t [1]bi
t + πi

t [2]cr ,it + πi
t [3]f it ∈ ∆N

4. Actual read operation: rit = MT
t wr ,i

t .

17

Reading from memory

1. Content-based addressing:

• cr ,it = C(Mt , k
r ,i
t , β

r ,i
t) ∈ SN

2. Temporal memory linkage:

• temporal link matrix Lt ∈ [0, 1]N×N , Lt [i , ·] ∈ ∆N , Lt [·, j] ∈ ∆N

• precedence weighting pt = (1−
∑

i ww
t [i]) pt−1 + ww

t ∈ ∆N

• linkage logic: ∀i : Lt [i , i] = 0, Lt [i , j] =

(1−ww
t [i]−ww

t [j]) Lt−1[i , j] + ww
t [i]pt−1[j]

• forward weighting: f it = Ltw
r ,i
t−1 ∈ ∆N

• backward weighting: bi
t = LTt wr ,i

t−1 ∈ ∆N

3. Read weighting:

• wr ,i
t = πi

t [1]bi
t + πi

t [2]cr ,it + πi
t [3]f it ∈ ∆N

4. Actual read operation: rit = MT
t wr ,i

t .

17

Reading from memory

1. Content-based addressing:

• cr ,it = C(Mt , k
r ,i
t , β

r ,i
t) ∈ SN

2. Temporal memory linkage:

• temporal link matrix Lt ∈ [0, 1]N×N , Lt [i , ·] ∈ ∆N , Lt [·, j] ∈ ∆N

• precedence weighting pt = (1−
∑

i ww
t [i]) pt−1 + ww

t ∈ ∆N

• linkage logic: ∀i : Lt [i , i] = 0, Lt [i , j] =

(1−ww
t [i]−ww

t [j]) Lt−1[i , j] + ww
t [i]pt−1[j]

• forward weighting: f it = Ltw
r ,i
t−1 ∈ ∆N

• backward weighting: bi
t = LTt wr ,i

t−1 ∈ ∆N

3. Read weighting:

• wr ,i
t = πi

t [1]bi
t + πi

t [2]cr ,it + πi
t [3]f it ∈ ∆N

4. Actual read operation: rit = MT
t wr ,i

t .

17

Reading from memory

1. Content-based addressing:

• cr ,it = C(Mt , k
r ,i
t , β

r ,i
t) ∈ SN

2. Temporal memory linkage:

• temporal link matrix Lt ∈ [0, 1]N×N , Lt [i , ·] ∈ ∆N , Lt [·, j] ∈ ∆N

• precedence weighting pt = (1−
∑

i ww
t [i]) pt−1 + ww

t ∈ ∆N

• linkage logic: ∀i : Lt [i , i] = 0, Lt [i , j] =

(1−ww
t [i]−ww

t [j]) Lt−1[i , j] + ww
t [i]pt−1[j]

• forward weighting: f it = Ltw
r ,i
t−1 ∈ ∆N

• backward weighting: bi
t = LTt wr ,i

t−1 ∈ ∆N

3. Read weighting:

• wr ,i
t = πi

t [1]bi
t + πi

t [2]cr ,it + πi
t [3]f it ∈ ∆N

4. Actual read operation: rit = MT
t wr ,i

t .

17

Reading from memory

1. Content-based addressing:

• cr ,it = C(Mt , k
r ,i
t , β

r ,i
t) ∈ SN

2. Temporal memory linkage:

• temporal link matrix Lt ∈ [0, 1]N×N , Lt [i , ·] ∈ ∆N , Lt [·, j] ∈ ∆N

• precedence weighting pt = (1−
∑

i ww
t [i]) pt−1 + ww

t ∈ ∆N

• linkage logic: ∀i : Lt [i , i] = 0, Lt [i , j] =

(1−ww
t [i]−ww

t [j]) Lt−1[i , j] + ww
t [i]pt−1[j]

• forward weighting: f it = Ltw
r ,i
t−1 ∈ ∆N

• backward weighting: bi
t = LTt wr ,i

t−1 ∈ ∆N

3. Read weighting:

• wr ,i
t = πi

t [1]bi
t + πi

t [2]cr ,it + πi
t [3]f it ∈ ∆N

4. Actual read operation: rit = MT
t wr ,i

t .

17

Traversing London Underground

Source: [Graves et al., 2016]

18

Traversing London Underground

• London Underground as a graph.

• Explicit vector representation of an edge:[
station1 station2 line

]
• Queries: traversal, shortest path.

• Training: graphs with random nodes and connections.

• Curriculum learning with increasing complexity of graphs and

queries.

• Tested without re-training on the London Underground graph.

19

Traversing London Underground

• London Underground as a graph.

• Explicit vector representation of an edge:[
station1 station2 line

]

• Queries: traversal, shortest path.

• Training: graphs with random nodes and connections.

• Curriculum learning with increasing complexity of graphs and

queries.

• Tested without re-training on the London Underground graph.

19

Traversing London Underground

• London Underground as a graph.

• Explicit vector representation of an edge:[
station1 station2 line

]
• Queries: traversal, shortest path.

• Training: graphs with random nodes and connections.

• Curriculum learning with increasing complexity of graphs and

queries.

• Tested without re-training on the London Underground graph.

19

Traversing London Underground

• London Underground as a graph.

• Explicit vector representation of an edge:[
station1 station2 line

]
• Queries: traversal, shortest path.

• Training: graphs with random nodes and connections.

• Curriculum learning with increasing complexity of graphs and

queries.

• Tested without re-training on the London Underground graph.

19

Traversing London Underground

• London Underground as a graph.

• Explicit vector representation of an edge:[
station1 station2 line

]
• Queries: traversal, shortest path.

• Training: graphs with random nodes and connections.

• Curriculum learning with increasing complexity of graphs and

queries.

• Tested without re-training on the London Underground graph.

19

Traversing London Underground

• London Underground as a graph.

• Explicit vector representation of an edge:[
station1 station2 line

]
• Queries: traversal, shortest path.

• Training: graphs with random nodes and connections.

• Curriculum learning with increasing complexity of graphs and

queries.

• Tested without re-training on the London Underground graph.

19

Traversal/shortest path

Source: [Graves et al., 2016] 20

Traversal

Source: [Graves et al., 2016]

21

Traversal

Source: [Graves et al., 2016]

22

Further research

• Synthetic gradients [Jaderberg et al., 2016].

• Speed up training.

• DNC with other types of neural networks.

• Scale up.

• Tasks beyond graphs.

23

Further research

• Synthetic gradients [Jaderberg et al., 2016].

• Speed up training.

• DNC with other types of neural networks.

• Scale up.

• Tasks beyond graphs.

23

Further research

• Synthetic gradients [Jaderberg et al., 2016].

• Speed up training.

• DNC with other types of neural networks.

• Scale up.

• Tasks beyond graphs.

23

Further research

• Synthetic gradients [Jaderberg et al., 2016].

• Speed up training.

• DNC with other types of neural networks.

• Scale up.

• Tasks beyond graphs.

23

Further research

• Synthetic gradients [Jaderberg et al., 2016].

• Speed up training.

• DNC with other types of neural networks.

• Scale up.

• Tasks beyond graphs.

23

Graves, A., Wayne, G., et al. (2016).

Hybrid computing using a neural network with dynamic

external memory.

Nature, 538:471–476.

Hochreiter, S. (1991).

Untersuchungen zu dynamischen neuronalen netzen.

Diploma thesis, Technical University Munich.

Hochreiter, S. and Schmidhuber, J. (1997).

Long short-term memory.

Neural Computation, 9(8):1735–1780.

Jaderberg, M., Czarnecki, W. M., et al. (2016).

Decoupled neural interfaces using synthetic gradients.

arXiv.

23

