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Traditional deep learning

• Network design: feedforward nets, CNNs, LSTMs, etc.

• Computational resources: GPUs.

• Data: search engines, social networks.

• Conditions: combination of the above.

• Success: image recognition, games, speech recognition,

translation, etc.

• Learning relies heavily on extensive datasets.

• Sometimes the net is not as important as the data.
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Traditional deep learning

• Backpropagation, stochastic gradient descent.

• Extensive, incremental learning.

• Weights updated slowly.

• Gradual changes in network behavior.

• Possibility to freeze network, show new classes and retrain.

• Substantial number of new instances needed.

• Possibly inefficient with respect to data.
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Different learning paradigm

• Generalize from very few examples.

• Network has a degree of general knowledge.

• Quickly adapts to new instances.

• Single observations shift network behavior dramatically.

• Rapid inference.

• Data efficient to add new classes.

• Modular design.
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Learning to learn

• Meta-learning [Schmidhuber et al., 1997].

• Various incarnations of the idea.

• General premise - learning occurs on two levels:

1. Within a task, e.g. bind input data to class in a particular

dataset.

2. Across tasks - how task structure varies across target domains.

• Several neural net structures seem fit to meta-learn.
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Long-short term memory

• Introduced to circumvent the vanishing gradient problem

[Hochreiter and Schmidhuber, 1997].

• Architecture consists of:

1. Network weights and activation functions.

2. State cell.

Source: Olah, C., Understanding LSTM Networks
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Long-short term memory

• Dichotomy in design can accomodate two-tier learning.

• Weights used to learn across datasets, memory cell used to

cache representations.

• Learns never-before-seen quadratic functions with low number

of data samples [Hochreiter et al., 2001].

Source: Olah, C., Understanding LSTM Networks 7
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Limits of LSTMs

A scalable solution needs to meet several requirements:

1. Stable memory.

2. Addressable content.

3. No. of parameters independent of size of memory.
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Limits of LSTMs

LSTMs don’t satisfy these conditions:

1. In practice, hidden state ht is modified at each time step.

2. Increasing the size of memory is equivalent to expanding the

vector ht and the whole network. No. of weights grows at

least linearly with required memory.

3. Location and content are intertwined. Not easy to extract

content.

Source: Graves, A., IJCNN 2017 Plenary Talk: Frontiers in Recurrent Neural Network Research
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MANN

We could use memory-augmented neural networks (MANNs). One

example would be a Neural Turing machine (NTM) /

Differentiable neural computer (DNC) architecture:

1. External memory matrix is relatively stable.

2. Size of memory not directly related to size of network.

3. Content-based and usage-based addressing.

10



MANN

We could use memory-augmented neural networks (MANNs). One

example would be a Neural Turing machine (NTM) /

Differentiable neural computer (DNC) architecture:

1. External memory matrix is relatively stable.

2. Size of memory not directly related to size of network.

3. Content-based and usage-based addressing.

10



MANN

We could use memory-augmented neural networks (MANNs). One

example would be a Neural Turing machine (NTM) /

Differentiable neural computer (DNC) architecture:

1. External memory matrix is relatively stable.

2. Size of memory not directly related to size of network.

3. Content-based and usage-based addressing.

10



MANN

We could use memory-augmented neural networks (MANNs). One

example would be a Neural Turing machine (NTM) /

Differentiable neural computer (DNC) architecture:

1. External memory matrix is relatively stable.

2. Size of memory not directly related to size of network.

3. Content-based and usage-based addressing.

10



Differentiable neural computer

Source: [Graves et al., 2016]
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Differentiable neural computer

• Network architecture supports meta-learning.

• Weights of the controller updated to learn structure across

datasets.

• Input stored in external memory matrix, recalled to make

dataset-specific predictions.

• Weight updates allow us to extract representations of data,

memory enables rapid binding of information.
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Meta-learning setup

• Traditional approach: choose parameters θ to minimize cost L
on dataset D.

• Meta-learning approach: choose parameters θ∗ to minimize

expected cost L across a distribution of datasets p (D):

θ∗ = argminθED∼p(D) [L (D; θ)]

• An episode is a presentation of dataset

D = {dt}Tt=1 = {(xt, yt)}Tt=1

• For classification, xt is the input data, yt is the label.

• Data is presented to the network as follows:

(x1, null) , (x2, y1) , . . . , (xT, yT−1)

• At time t the correct label for the previous sample yt−1 is

provided along with a new query xt.
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Meta-learning setup

• At time t the network is asked to output label yt for query xt.

• Labels shuffled from dataset to dataset.

• Network has to store representations in memory until class

labels are presented, bind them and store for later use.

• Ideal performance: guess for first-seen class, use of memory to

perfectly classify this class going forward.

• System models the predictive distribution p (yt |xt,D1:t−1; θ).

• There is exploitable structure: a meta-learning model would

learn to bind input to appropriate class regardless of particular

input data or label.
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Meta-learning setup

Source: [Santoro et al., 2016]
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Source: [Santoro et al., 2016]
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Dataset

Omniglot dataset:

• Image classification dataset.

• 1,623 classes.

• Few examples per class.

• ”Transpose of MNIST.”

Source: [Lake et al., 2015]
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Experimental setup

• DNC/NTM parametrized by θ.

• Choose parameters θ∗ to minimize expected cost L across

samples from the Omniglot dataset.

• For classification, xt is the raw pixel input, yt is the label.

• Data is presented to the network as follows:

(x1, null) , (x2, y1) , . . . , (xT, yT−1)

• Network output is a softmax layer producing pt with elements:

pt(i) =
exp (Wop(i)ot)∑
j exp (Wop(j)ot)

• For one-hot labels, episode loss is

L (θ) = −
∑
t

yT
t log pt

18
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Experimental results

Source: [Santoro et al., 2016]
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Source: [Santoro et al., 2016]
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Experimental results

• Persistent memory interference.

Source: [Santoro et al., 2016] 21
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• Meta-learning to find a suitable memory-addressing procedure.

• Learning across tasks, not different samples from one task.

• Active learning.

• Attention mechanisms.
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