Learning from few examples

One-shot learning with memory-augmented neural networks

Maciej Żelaszczyk

March 21, 2018

PhD Student in Computer Science Division of Artificial Intelligence and Computational Methods Faculty of Mathematics and Information Science

m.zelaszczyk@mini.pw.edu.pl

Warsaw University of Technology

• Network design: feedforward nets, CNNs, LSTMs, etc.

- Network design: feedforward nets, CNNs, LSTMs, etc.
- Computational resources: GPUs.

- Network design: feedforward nets, CNNs, LSTMs, etc.
- Computational resources: GPUs.
- Data: search engines, social networks.

- Network design: feedforward nets, CNNs, LSTMs, etc.
- Computational resources: GPUs.
- Data: search engines, social networks.
- Conditions: combination of the above.

- Network design: feedforward nets, CNNs, LSTMs, etc.
- Computational resources: GPUs.
- Data: search engines, social networks.
- Conditions: combination of the above.
- Success: image recognition, games, speech recognition, translation, etc.

- Network design: feedforward nets, CNNs, LSTMs, etc.
- Computational resources: GPUs.
- Data: search engines, social networks.
- Conditions: combination of the above.
- Success: image recognition, games, speech recognition, translation, etc.
- Learning relies heavily on extensive datasets.

- Network design: feedforward nets, CNNs, LSTMs, etc.
- Computational resources: GPUs.
- Data: search engines, social networks.
- Conditions: combination of the above.
- Success: image recognition, games, speech recognition, translation, etc.
- Learning relies heavily on extensive datasets.
- Sometimes the net is not as important as the data.

• Backpropagation, stochastic gradient descent.

- Backpropagation, stochastic gradient descent.
- Extensive, incremental learning.

- Backpropagation, stochastic gradient descent.
- Extensive, incremental learning.
- Weights updated slowly.

- Backpropagation, stochastic gradient descent.
- Extensive, incremental learning.
- Weights updated slowly.
- Gradual changes in network behavior.

- Backpropagation, stochastic gradient descent.
- Extensive, incremental learning.
- Weights updated slowly.
- Gradual changes in network behavior.
- Possibility to freeze network, show new classes and retrain.

- Backpropagation, stochastic gradient descent.
- Extensive, incremental learning.
- Weights updated slowly.
- Gradual changes in network behavior.
- Possibility to freeze network, show new classes and retrain.
- Substantial number of new instances needed.

- Backpropagation, stochastic gradient descent.
- Extensive, incremental learning.
- Weights updated slowly.
- Gradual changes in network behavior.
- Possibility to freeze network, show new classes and retrain.
- Substantial number of new instances needed.
- Possibly inefficient with respect to data.

• Generalize from very few examples.

- Generalize from very few examples.
- Network has a degree of general knowledge.

- Generalize from very few examples.
- Network has a degree of general knowledge.
- Quickly adapts to new instances.

- Generalize from very few examples.
- Network has a degree of general knowledge.
- Quickly adapts to new instances.
- Single observations shift network behavior dramatically.

- Generalize from very few examples.
- Network has a degree of general knowledge.
- Quickly adapts to new instances.
- Single observations shift network behavior dramatically.
- Rapid inference.

- Generalize from very few examples.
- Network has a degree of general knowledge.
- Quickly adapts to new instances.
- Single observations shift network behavior dramatically.
- Rapid inference.
- Data efficient to add new classes.

- Generalize from very few examples.
- Network has a degree of general knowledge.
- Quickly adapts to new instances.
- Single observations shift network behavior dramatically.
- Rapid inference.
- Data efficient to add new classes.
- Modular design.

• Meta-learning [Schmidhuber et al., 1997].

- Meta-learning [Schmidhuber et al., 1997].
- Various incarnations of the idea.

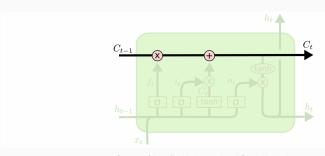
- Meta-learning [Schmidhuber et al., 1997].
- Various incarnations of the idea.
- General premise learning occurs on two levels:

- Meta-learning [Schmidhuber et al., 1997].
- Various incarnations of the idea.
- General premise learning occurs on two levels:
 - 1. Within a task, e.g. bind input data to class in a particular dataset.

- Meta-learning [Schmidhuber et al., 1997].
- Various incarnations of the idea.
- General premise learning occurs on two levels:
 - 1. Within a task, e.g. bind input data to class in a particular dataset.
 - 2. Across tasks how task structure varies across target domains.

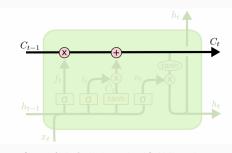
- Meta-learning [Schmidhuber et al., 1997].
- Various incarnations of the idea.
- General premise learning occurs on two levels:
 - Within a task, e.g. bind input data to class in a particular dataset.
 - 2. Across tasks how task structure varies across target domains.
- Several neural net structures seem fit to meta-learn.

• Introduced to circumvent the vanishing gradient problem [Hochreiter and Schmidhuber, 1997].

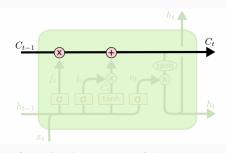


Source: Olah, C., Understanding LSTM Networks

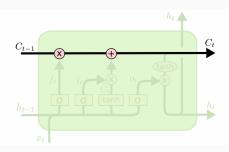
- Introduced to circumvent the vanishing gradient problem [Hochreiter and Schmidhuber, 1997].
- Architecture consists of:



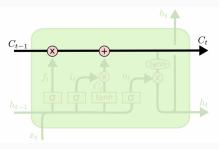
- Introduced to circumvent the vanishing gradient problem [Hochreiter and Schmidhuber, 1997].
- Architecture consists of:
 - 1. Network weights and activation functions.



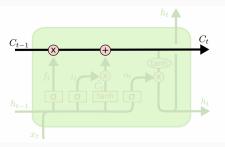
- Introduced to circumvent the vanishing gradient problem [Hochreiter and Schmidhuber, 1997].
- Architecture consists of:
 - 1. Network weights and activation functions.
 - 2. State cell.



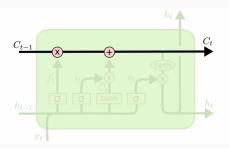
• Dichotomy in design can accomodate two-tier learning.



- Dichotomy in design can accomodate two-tier learning.
- Weights used to learn across datasets, memory cell used to cache representations.



- Dichotomy in design can accomodate two-tier learning.
- Weights used to learn across datasets, memory cell used to cache representations.
- Learns never-before-seen quadratic functions with low number of data samples [Hochreiter et al., 2001].



Limits of LSTMs

A scalable solution needs to meet several requirements:

A scalable solution needs to meet several requirements:

1. Stable memory.

A scalable solution needs to meet several requirements:

- 1. Stable memory.
- 2. Addressable content.

A scalable solution needs to meet several requirements:

- 1. Stable memory.
- 2. Addressable content.
- 3. No. of parameters independent of size of memory.

LSTMs don't satisfy these conditions:

LSTMs don't satisfy these conditions:

1. In practice, hidden state h_t is modified at each time step.

LSTMs don't satisfy these conditions:

- 1. In practice, hidden state h_t is modified at each time step.
- 2. Increasing the size of memory is equivalent to expanding the vector $\mathbf{h_t}$ and the whole network. No. of weights grows at least linearly with required memory.

LSTMs don't satisfy these conditions:

- 1. In practice, hidden state h_t is modified at each time step.
- 2. Increasing the size of memory is equivalent to expanding the vector $\mathbf{h_t}$ and the whole network. No. of weights grows at least linearly with required memory.
- 3. Location and content are intertwined. Not easy to extract content.

We could use memory-augmented neural networks (MANNs). One example would be a Neural Turing machine (NTM) / Differentiable neural computer (DNC) architecture:

We could use memory-augmented neural networks (MANNs). One example would be a Neural Turing machine (NTM) / Differentiable neural computer (DNC) architecture:

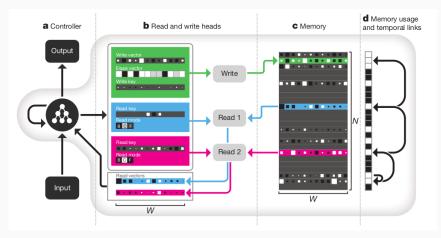
1. External memory matrix is relatively stable.

We could use memory-augmented neural networks (MANNs). One example would be a Neural Turing machine (NTM) / Differentiable neural computer (DNC) architecture:

- 1. External memory matrix is relatively stable.
- 2. Size of memory not directly related to size of network.

We could use memory-augmented neural networks (MANNs). One example would be a Neural Turing machine (NTM) / Differentiable neural computer (DNC) architecture:

- 1. External memory matrix is relatively stable.
- 2. Size of memory not directly related to size of network.
- 3. Content-based and usage-based addressing.



Source: [Graves et al., 2016]

• Network architecture supports meta-learning.

- Network architecture supports meta-learning.
- Weights of the controller updated to learn structure across datasets.

- Network architecture supports meta-learning.
- Weights of the controller updated to learn structure across datasets.
- Input stored in external memory matrix, recalled to make dataset-specific predictions.

- Network architecture supports meta-learning.
- Weights of the controller updated to learn structure across datasets.
- Input stored in external memory matrix, recalled to make dataset-specific predictions.
- Weight updates allow us to extract representations of data, memory enables rapid binding of information.

• Traditional approach: choose parameters θ to minimize cost $\mathcal L$ on dataset D.

- Traditional approach: choose parameters θ to minimize cost \mathcal{L} on dataset D.
- Meta-learning approach: choose parameters θ^* to minimize expected cost \mathcal{L} across a distribution of datasets p(D):

$$\theta^* = \operatorname{argmin}_{\theta} E_{D \sim p(D)} \left[\mathcal{L} \left(D; \theta \right) \right]$$

- Traditional approach: choose parameters θ to minimize cost \mathcal{L} on dataset D.
- Meta-learning approach: choose parameters θ^* to minimize expected cost \mathcal{L} across a distribution of datasets p(D):

$$\theta^* = \operatorname{argmin}_{\theta} E_{D \sim p(D)} \left[\mathcal{L} \left(D; \theta \right) \right]$$

An episode is a presentation of dataset

$$D = \{d_t\}_{t=1}^T = \{(\mathbf{x}_t, y_t)\}_{t=1}^T$$

- Traditional approach: choose parameters θ to minimize cost \mathcal{L} on dataset D.
- Meta-learning approach: choose parameters θ^* to minimize expected cost \mathcal{L} across a distribution of datasets p(D):

$$\theta^* = \operatorname{argmin}_{\theta} E_{D \sim p(D)} \left[\mathcal{L} \left(D; \theta \right) \right]$$

An episode is a presentation of dataset

$$D = \{d_t\}_{t=1}^T = \{(\mathbf{x_t}, y_t)\}_{t=1}^T$$

ullet For classification, $oldsymbol{x_t}$ is the input data, y_t is the label.

- Traditional approach: choose parameters θ to minimize cost \mathcal{L} on dataset D.
- Meta-learning approach: choose parameters θ^* to minimize expected cost \mathcal{L} across a distribution of datasets p(D):

$$\theta^* = \operatorname{argmin}_{\theta} E_{D \sim p(D)} \left[\mathcal{L} \left(D; \theta \right) \right]$$

An episode is a presentation of dataset

$$D = \{d_t\}_{t=1}^T = \{(\mathbf{x_t}, y_t)\}_{t=1}^T$$

- For classification, $\mathbf{x_t}$ is the input data, y_t is the label.
- Data is presented to the network as follows:

$$(\mathbf{x_1}, \mathsf{null}), (\mathbf{x_2}, y_1), \dots, (\mathbf{x_T}, y_{T-1})$$

- Traditional approach: choose parameters θ to minimize cost \mathcal{L} on dataset D.
- Meta-learning approach: choose parameters θ^* to minimize expected cost \mathcal{L} across a distribution of datasets p(D):

$$\theta^* = \operatorname{argmin}_{\theta} E_{D \sim p(D)} \left[\mathcal{L} \left(D; \theta \right) \right]$$

An episode is a presentation of dataset

$$D = \{d_t\}_{t=1}^T = \{(\mathbf{x_t}, y_t)\}_{t=1}^T$$

- For classification, $\mathbf{x_t}$ is the input data, y_t is the label.
- Data is presented to the network as follows:

$$(\mathbf{x_1},\mathsf{null})\,,(\mathbf{x_2},y_1)\,,\ldots,(\mathbf{x_T},y_{\mathcal{T}-1})$$

• At time t the correct label for the previous sample y_{t-1} is provided along with a new query \mathbf{x}_t .

• At time t the network is asked to output label y_t for query $\mathbf{x_t}$.

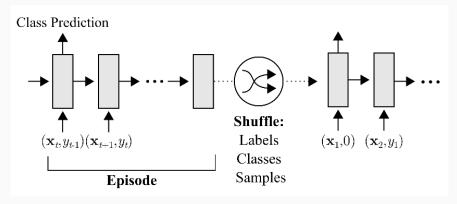
- ullet At time t the network is asked to output label y_t for query $\mathbf{x_t}$.
- Labels shuffled from dataset to dataset.

- At time t the network is asked to output label y_t for query $\mathbf{x_t}$.
- Labels shuffled from dataset to dataset.
- Network has to store representations in memory until class labels are presented, bind them and store for later use.

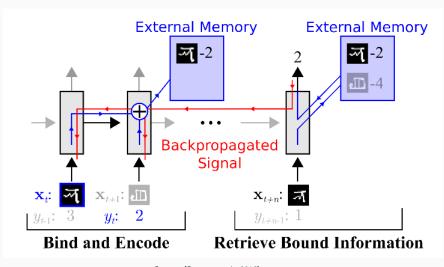
- At time t the network is asked to output label y_t for query $\mathbf{x_t}$.
- Labels shuffled from dataset to dataset.
- Network has to store representations in memory until class labels are presented, bind them and store for later use.
- Ideal performance: guess for first-seen class, use of memory to perfectly classify this class going forward.

- At time t the network is asked to output label y_t for query $\mathbf{x_t}$.
- Labels shuffled from dataset to dataset.
- Network has to store representations in memory until class labels are presented, bind them and store for later use.
- Ideal performance: guess for first-seen class, use of memory to perfectly classify this class going forward.
- System models the predictive distribution $p(y_t|\mathbf{x_t}, D_{1:t-1}; \theta)$.

- At time t the network is asked to output label y_t for query $\mathbf{x_t}$.
- Labels shuffled from dataset to dataset.
- Network has to store representations in memory until class labels are presented, bind them and store for later use.
- Ideal performance: guess for first-seen class, use of memory to perfectly classify this class going forward.
- System models the predictive distribution $p(y_t|\mathbf{x_t}, D_{1:t-1}; \theta)$.
- There is exploitable structure: a meta-learning model would learn to bind input to appropriate class regardless of particular input data or label.



Source: [Santoro et al., 2016]



Source: [Santoro et al., 2016]

Omniglot dataset:

• Image classification dataset.

Omniglot dataset:

- Image classification dataset.
- 1,623 classes.

Omniglot dataset:

- Image classification dataset.
- 1,623 classes.
- Few examples per class.

Omniglot dataset:

- Image classification dataset.
- 1,623 classes.
- Few examples per class.
- "Transpose of MNIST."

Omniglot dataset:

- Image classification dataset.
- 1,623 classes.
- Few examples per class.
- "Transpose of MNIST."

Ţ	Ш	I	자	E
75	世	याट	\Box	Ħ

ナ	6	h	ф	0
M	H	W	Λ	2

ര	0	ഖ	ഛ	W
S	ഭ	ല	ഉ	9

Source: [Lake et al., 2015]

Experimental setup

ullet DNC/NTM parametrized by heta.

- DNC/NTM parametrized by θ .
- \bullet Choose parameters θ^* to minimize expected cost $\mathcal L$ across samples from the Omniglot dataset.

- DNC/NTM parametrized by θ .
- Choose parameters θ^* to minimize expected cost $\mathcal L$ across samples from the Omniglot dataset.
- ullet For classification, $oldsymbol{x_t}$ is the raw pixel input, y_t is the label.

- DNC/NTM parametrized by θ .
- Choose parameters θ^* to minimize expected cost $\mathcal L$ across samples from the Omniglot dataset.
- For classification, $\mathbf{x_t}$ is the raw pixel input, y_t is the label.
- Data is presented to the network as follows:

$$\left(\mathbf{x_1},\mathsf{null}\right),\left(\mathbf{x_2},y_1\right),\ldots,\left(\mathbf{x_T},y_{T-1}\right)$$

- DNC/NTM parametrized by θ .
- Choose parameters θ^* to minimize expected cost $\mathcal L$ across samples from the Omniglot dataset.
- \bullet For classification, $\mathbf{x_t}$ is the raw pixel input, y_t is the label.
- Data is presented to the network as follows:

$$(x_1, null), (x_2, y_1), \dots, (x_T, y_{T-1})$$

ullet Network output is a softmax layer producing ullet with elements:

$$p_t(i) = \frac{\exp(\mathbf{W}^{op}(i)\mathbf{o_t})}{\sum_{j} \exp(\mathbf{W}^{op}(j)\mathbf{o_t})}$$

- DNC/NTM parametrized by θ .
- Choose parameters θ^* to minimize expected cost $\mathcal L$ across samples from the Omniglot dataset.
- \bullet For classification, $\mathbf{x_t}$ is the raw pixel input, y_t is the label.
- Data is presented to the network as follows:

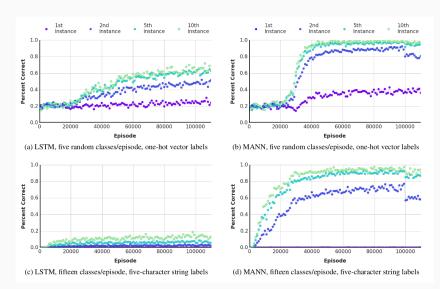
$$(x_1, null), (x_2, y_1), \dots, (x_T, y_{T-1})$$

ullet Network output is a softmax layer producing ullet with elements:

$$p_t(i) = \frac{\exp(\mathbf{W}^{op}(i)\mathbf{o_t})}{\sum_{j} \exp(\mathbf{W}^{op}(j)\mathbf{o_t})}$$

• For one-hot labels, episode loss is

$$\mathcal{L}\left(\theta\right) = -\sum_{t} \mathbf{y_t^T} \log \mathbf{p_t}$$

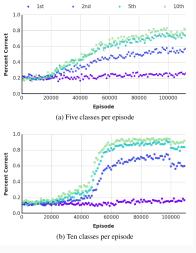


19

	INSTANCE (% CORRECT)								
MODEL	1 ST	2^{ND}	3^{RD}	4^{TH}	5 TH	10^{TH}			
	24.5		= 0.4	- 4.0	0.4.4	00.4			
Human	1				81.4				
FEEDFORWARD					22.8				
LSTM	24.4	49.5	55.3	61.0	63.6	62.5			
MANN	36.4	82.8	91.0	92.6	94.9	98.1			

Source: [Santoro et al., 2016]

• Persistent memory interference.



Source: [Santoro et al., 2016]

Model	Controller	# of Classes	INSTANCE (% CORRECT)					
			1 ST	2 ND	3 RD	4 TH	5 TH	10 TH
KNN (RAW PIXELS)	_	5	4.0	36.7	41.9	45.7	48.1	57.0
KNN (DEEP FEATURES)	_	5	4.0	51.9	61.0	66.3	69.3	77.5
FEEDFORWARD	_	5	0.0	0.2	0.0	0.2	0.0	0.0
LSTM	_	5	0.0	9.0	14.2	16.9	21.8	25.5
MANN	FEEDFORWARD	5	0.0	8.0	16.2	25.2	30.9	46.8
MANN	LSTM	5	0.0	69.5	80.4	87.9	88.4	93.1
KNN (RAW PIXELS)	_	15	0.5	18.7	23.3	26.5	29.1	37.0
KNN (DEEP FEATURES)	_	15	0.4	32.7	41.2	47.1	50.6	60.0
FEEDFORWARD	_	15	0.0	0.1	0.0	0.0	0.0	0.0
LSTM	_	15	0.0	2.2	2.9	4.3	5.6	12.7
MANN (LRUA)	FEEDFORWARD	15	0.1	12.8	22.3	28.8	32.2	43.4
MANN (LRUA)	LSTM	15	0.1	62.6	79.3	86.6	88.7	95.3
MANN (NTM)	LSTM	15	0.0	35.4	61.2	71.7	77.7	88.4

Source: [Santoro et al., 2016]

• It is possible to learn from very few instances.

- It is possible to learn from very few instances.
- Meta-learning can extract relevant task structure.

- It is possible to learn from very few instances.
- Meta-learning can extract relevant task structure.
- DNC/NTMs learn quicker than LSTMs.

- It is possible to learn from very few instances.
- Meta-learning can extract relevant task structure.
- DNC/NTMs learn quicker than LSTMs.
- Another type of problem where DNCs are advantageous.

- It is possible to learn from very few instances.
- Meta-learning can extract relevant task structure.
- DNC/NTMs learn quicker than LSTMs.
- Another type of problem where DNCs are advantageous.
- Weakly inspired by how humans approach such a task.

- It is possible to learn from very few instances.
- Meta-learning can extract relevant task structure.
- DNC/NTMs learn quicker than LSTMs.
- Another type of problem where DNCs are advantageous.
- Weakly inspired by how humans approach such a task.
- Very narrow problem.

- It is possible to learn from very few instances.
- Meta-learning can extract relevant task structure.
- DNC/NTMs learn quicker than LSTMs.
- Another type of problem where DNCs are advantageous.
- Weakly inspired by how humans approach such a task.
- Very narrow problem.
- Structured input, temporal offset.

- It is possible to learn from very few instances.
- Meta-learning can extract relevant task structure.
- DNC/NTMs learn quicker than LSTMs.
- Another type of problem where DNCs are advantageous.
- Weakly inspired by how humans approach such a task.
- Very narrow problem.
- Structured input, temporal offset.
- Memory interference.

- It is possible to learn from very few instances.
- Meta-learning can extract relevant task structure.
- DNC/NTMs learn quicker than LSTMs.
- Another type of problem where DNCs are advantageous.
- Weakly inspired by how humans approach such a task.
- Very narrow problem.
- Structured input, temporal offset.
- Memory interference.
- Specific architecture.

• Meta-learning to find a suitable memory-addressing procedure.

- Meta-learning to find a suitable memory-addressing procedure.
- Learning across tasks, not different samples from one task.

- Meta-learning to find a suitable memory-addressing procedure.
- Learning across tasks, not different samples from one task.
- Active learning.

- Meta-learning to find a suitable memory-addressing procedure.
- Learning across tasks, not different samples from one task.
- Active learning.
- Attention mechanisms.

Graves, A., Wayne, G., et al. (2016).

Hybrid computing using a neural network with dynamic external memory.

Nature, 538:471-476.

Hochreiter, S. and Schmidhuber, J. (1997).

Long short-term memory.

Neural Computation, 9(8):1735-1780.

Hochreiter, S., Younger, A. S., and Conwell, P. R. (2001). Learning to learn using gradient descent.

In Dorffner, G., Bischof, H., and Hornik, K., editors, *Artificial Neural Networks - ICANN 2001, International Conference Vienna, Austria, August 21-25, 2001 Proceedings*, pages 87–94.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015).

Human-level concept learning through probabilistic program induction.

Science, 350:1332-1338.

Santoro, A., Bartunov, S., et al. (2016).

One-shot learning with memory-augmented neural networks.

arXiv.

Schmidhuber, J., Zhao, J., and Wiering, M. (1997).

Shifting inductive bias with success-story algo-rithm, adaptive levin search, and incremental self-improvement.

Machine Learning, 28(1):105–130.