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Brief history of neural networks

• 1950-60s: initial models of perceptron.

• ”Language is a summer research project.”

• 1969: ”Perceptrons: an introduction to computational

geometry”, Minsky and Papert.

• First AI winter. Symbolic AI.

• 1986: Backpropagation rediscovered, Rumelhart, Hinton and

Williams.
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Brief history of neural networks

• 1991-1994: Hard to train large nets, Hochreiter and

Schmidhuber, Bengio.

• Second AI winter. SVMs.

• Ongoing work on RNNs [Hochreiter and Schmidhuber, 1997],

CNNs, LeCun 1998, deep nets, Hinton 2006.

• 2012: AlexNet wins ImageNet Large Scale Visual Recognition

Challenge, Krizhevsky, Sutskever, Hinton.

• Explosion of deep learning.

• Risk of AI winter (???)
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State of deep learning

• Enormous success.

• Mostly relies on CNNs and LSTM variants.

• RL is poster boy.

• Various architecture extensions.

• Architectures geared toward dataset or task.

• Computationally expensive.

• In industry, strong reliance on simpler methods.

• Supervised learning.
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Supervised vs. unsupervised

Supervised:

• Requires huge datasets.

• Annotating is costly.

• Extensive training.

• Driving a car off a cliff.

• Learns tasks, not skills.

• Some well-specified tasks have been largely solved.

• Limit to how much data we can obtain.

• Ignores physical world.
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Supervised vs. unsupervised

How do children learn?

• A lot of evolutionary knowledge.

• Vision, hearing, touch etc. in place.

• Extensive observation.

• Build a model of the world.

• Model vs. physical world.

• Surprise, curiosity guide learning.

• Continuous refinement of model.

• Limited reinforcement learning.

• All initial learning is unsupervised.
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Supervised vs. unsupervised

Unsupervised:

• In practice, very little lablled data available.

• Need to create model of world, confront it with reality.

• Attend to data.

• Manipulate world.

• Learn from little external reward.

• Learn from very few examples.

• Exploit physical structure of world to obtain links.

• Learn skills rather than tasks.
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Importance of unsupervised learning

What if importance of various kinds of learning is like a cake?

• Pure reinforcement learning = cherry.

• Supervised learning = icing.

• Unsupervised/self-supervised/predictive learning = génoise.

• Perhaps we are still missing a sizeable pie crust? =

meta-learning.

Source: LeCun, Y., The Next Step Towards Artificial Intelligence
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Desired architecture

What would we like our architecture to have?

• Unsupervised/weakly-supervised.

• Model of observed data.

• Potential to learn from observation only.

• Exploit structure of physical world.

• Attention.

• Potential to be integrated within a meta-learning framework.
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Desired architecture

What would we like our architecture to have?

• Unsupervised/weakly-supervised.

• Model of observed data.

10



Generative models

Models:

• Discriminative: P(Y |X = x)

• Generative. Joint probability distribution: X × Y ,P(X ,Y )

• No hard demarcation line.

Standard generative models in deep learning:

• Autoencoders.

• Variational autoencoders (VAEs).

• Generative adversarial networks (GANs).
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Autoencoders

Main idea behind autoencoders:

• One network to encode input.

• Second network to decode output.

• Bottleneck in between.

• Latent representation.
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Autoencoders

Source: Zucconi, A., An Introduction to Neural Networks and Autoencoders
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Autoencoders

Source: [Noh et al., 2015]
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Variational Autoencoders

Introduced in [Kingma and Welling, 2014]:

• Latent variable matches unit Gaussian.

• Loss = generation loss + KL divergence.

Source: Frans, K., Variational Autoencoders Explained
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Generative Adversarial Nets

Approach model training from game-theoretic point of view

[Goodfellow et al., 2014]:

• Two networks: Generator and Discriminator.

• Generator: from latent variable z generate into data space.

• Discriminator: distinguish between real and generated data.

• Generator tries to ”fool” the Discriminator.

• Discriminator strives to ”look through” the Discriminator.

• This can be represented by a minimax two-player game.
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Generative Adversarial Nets

More concretely:

• We aim to learn Generator’s distribution pg over data x.

• Define prior pz(z).

• Represent mapping to data space G (z; θg ).

• G is a neural network parametrized by θg .

• Define second neural network D(x; θd) which outputs single

scalar.

• D(x) represents a probability that x came from the data

rather than pg .

Source: [Goodfellow et al., 2014]
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Generative Adversarial Nets

Training:

• Train D to maximize probability of assigning correct label to

real data and samples from G .

• Train G to maximize probability of D assigning incorrect label

to samples from G .

• D and G play:

• min
G

max
D

V (D,G ) =

Ex∼pdata(x) [log(D(x))] + Ez∼pz(z) [log(1− D(G (z)))].

• log(1− D(G (z))) may saturate early in training.

• Can train G to maximize log(D(G (z))) instead.

Source: [Goodfellow et al., 2014]
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Generative Adversarial Nets

Source: [Goodfellow et al., 2014]
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Generative Adversarial Nets

Source: [Goodfellow et al., 2014]
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Generative Adversarial Nets

Source: [Goodfellow et al., 2014]
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Generative Adversarial Nets

Source: [Goodfellow et al., 2014]
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Generative Adversarial Nets

Source: [Goodfellow et al., 2014]
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Generative Adversarial Nets

Source: [Radford et al., 2016]
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Generative Adversarial Nets

Source: [Radford et al., 2016]
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Generative Adversarial Nets

Source: [Brock et al., 2018]
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Generative Adversarial Nets

Source: [Brock et al., 2018]
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Generative Adversarial Nets

Source: [Brock et al., 2018]
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Desired architecture

What would we like our architecture to have?

• Unsupervised/weakly-supervised.

• Model of observed data.

• Potential to learn from observation only.

• Exploit structure of physical world.
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Multi-modal representation

Looking at data across modalities helps achieve some of our goals.

For instance, let us consider visual data with corresponding audio:

• Extensive video datasets available.

• Sound aligned with video - exploit structure of the physical

world.

• Data alignement obviates strong supervision.
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Audio-visual correspondence

What can be learnt by training audio and visual networks jointly to

establish whether audio and visual information match?

Source: [Arandjelovic and Zisserman, 2017]
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Audio-visual correspondence

Source: [Arandjelovic and Zisserman, 2017] 32



Audio-visual correspondence

Source: [Arandjelovic and Zisserman, 2017]
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Audio-visual correspondence

Source: [Arandjelovic and Zisserman, 2017]
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Audio-visual correspondence

Source: [Arandjelovic and Zisserman, 2017]

35



Cross-modal retrieval

So far, AVC only shows whether audio and visual data correspond.

The data are not aligned in any systematic way.

• We would want to align audio and visual features.

• This would allow to retrieve data from one modality based on

the other.

• Answer the question: ”What object in the frame is making

the sound?”
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Cross-modal retrieval

Source: [Arandjelovic and Zisserman, 2018] 37



Cross-modal retrieval

Source: [Arandjelovic and Zisserman, 2018]
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Cross-modal retrieval

Source: [Arandjelovic and Zisserman, 2018] 39



Cross-modal retrieval

Source: [Arandjelovic and Zisserman, 2018] 40



Cross-modal retrieval

Source: [Arandjelovic and Zisserman, 2018] 41



Cross-modal retrieval

Source: [Arandjelovic and Zisserman, 2018]
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Cross-modal retrieval

Source: [Arandjelovic and Zisserman, 2018]
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Cross-modal retrieval

Source: [Arandjelovic and Zisserman, 2018]

44



Idea

What if we can use AVC to generate visual/audio data?

• Use AVC setup on audio/visual pairs.

• Separate audio/visual encoders.

• Mix data from them into one representation.

• Use this representation to separate data via audio/visual

decoders.

• Multiple ways to train this.

• Ideally, we would like to train adversarially.
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Idea

Audio-visual network.
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Idea

Use audio-visual network to generate data.
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