# Zastosowanie sieci CNN uczonych na zaszumionych danych do klasyfikacji zdjęć

#### Architecture – VGG16

**Original network** had 3 FC layers at the end: 2 of those had 4096 neurons and the third last layer had as much layers as the number of categories.

**My net** has 4 FC layers at the end: 3 of those have 512 neurons and the last has 10 as the number of cities in the dataset.



## Architecture

## Modified:

- Fully connected layers: 512, 512, 512, 10
- Batch size: 4

## **Original:**

- Fully connected layers: 4096, 4096, 10
- Batch size: 64



## Architecture change



Original VGG16 was extended by adding regularization to enable longer training without overfitting. Regularization was introduced in the form of dropout after the fully connected layers with 4096 neurons. The magnitude of dropout was set to 0.5 which means at each iteration 50% of neurons were randomly dropped.

#### Training – procedure used previously



There are two main blocks of layers within CGG16 network: **feature extraction layers** which are responsible for extracting feature meaningful for the problem at hand and **problem solving layers** which are aimed at solving the problem.

Till now the training procedure used weights in **feature extraction layers** as the were (trained on ImageNet dataset containing 1k common objects) without changing them and only modified the **problem solving layers**. Training all weights was unsuccessful till now.

#### Training – procedure change



The current approach first trains the problem solving layers up to its maximum potential and once the validation error plateaus trains all layers (both feature extraction layers and problem solving layers) at a decreased learning rate. Providing a good solution as a starting point of the fine tuning process proves successful and the network is able to achieve a much higher results.

This was not correct: I froze all layers except for the last 3 ones (according to the original net design), but since I added regularization layers the last 3 layers were: SoftMax(10), Dropout(0.5) and Fully Connected(4096). This is not the entire problem solving group of layers.

## Training – Comparison

## **Old approach:**



Feature extraction layers + 2 layers: FROZEN Problem Solving Layers: TRAINABLE Learning rate: 0.0001

## New approach:



Feature extraction layers + 2 layers: FROZEN Problem Solving Layers: TRAINABLE Learning rate: 0.0001



ADJUSTED slide.



Feature extraction layers + 2 layers: TRAINABLE Problem Solving Layers: TRAINABLE Learning rate: 0.00001

## Different ways of fine tuning comparison

## First approach (originating in code error)





Feature extraction layers + 2 layers: FROZEN Problem Solving Layers: TRAINABLE Learning rate: 0.0001

## Second approach (aligned with theory)



Feature extraction layers: FROZEN Problem Solving Layers: TRAINABLE Learning rate: 0.0001





Feature extraction layers + 2 layers: TRAINABLE Problem Solving Layers: TRAINABLE Learning rate: 0.00001

| 3x3 conv, 64 | 3x3 conv, 64 | pool2 | 3x3 conv. 128 | + | 3x3 conv, 128 | pool/2 | + | 3x3 conv, 256 | + | 3x3 conv, 256 | -   | 3x3 conv, 256 | 2/Jood | 3x3 conv. 512 | T | 3x3 conv, 512 | - | 3x3 conv, 512 | pool2 | 3x3 conv, 512 | + | 3x3 conv. 512 | - | 3x3 conv, 512 | pool/2 | fc 4096 | • | Dropout 0.5 | - | fc 4096 | - | Dropout 0.5 |  |
|--------------|--------------|-------|---------------|---|---------------|--------|---|---------------|---|---------------|-----|---------------|--------|---------------|---|---------------|---|---------------|-------|---------------|---|---------------|---|---------------|--------|---------|---|-------------|---|---------|---|-------------|--|
| ize:224      |              | J     | ize112        |   |               | J      | C | ize:56        |   | _             | 1 ( |               | )      | ize:28        | 9 |               |   |               | )     | izer14        |   |               |   |               | )      | dzer7   |   |             |   |         | ) |             |  |

Feature extraction layers: TRAINABLE Problem Solving Layers: TRAINABLE Learning rate: 0.00001

## Different ways of fine tuning comparison – results comparison



## Second approach (aligned with theory)



| Experiment 1: | Experiment 2: | Experiment 3: | Experiment 1: | Experiment 2: |
|---------------|---------------|---------------|---------------|---------------|
| Random:       | Random:       | Random:       | Random:       | Random:       |
| Accuracy      | Accuracy      | Accuracy      | Accuracy      | Accuracy      |
| mean 0.609867 | mean 0.610033 | mean 0.609433 | mean 0.516567 | mean 0.514300 |
| std 0.007698  | std 0.005390  | std 0.005622  | std 0.006959  | std 0.007438  |
| Test:         | Test:         | Test:         | Test:         | Test:         |
| 0.87          | 0.87          | 0.87          | 0.77          | 0.77          |

The results show that the error in the code lead to a much better result.

# Food dataset

## Food dataset - creation

List of top 10 foods:

- <u>https://visual.ly/community/infographic/food/top-10-americas-favorite-foods</u>
- https://food.ndtv.com/food-drinks/10-american-foods-777850
- <u>http://islandgrownschools.weebly.com/uploads/1/0/7/8/10785576/top\_ten\_foods\_consumed\_in\_america.pdf</u>

Selected list of top 10 food is a mixture of the above sources to manage various restriction of training (popularity of hashtag on Instagram) and test (existence in food-101 data set) data availability. This list focuses more on America because the bias of Instagram.

- 1. Apple pie
- 2. Burger
- 3. Donuts
- 4. French Fries
- 5. Hot Dog
- 6. Macaroni and cheese
- 7. Pancake
- 8. Pizza
- 9. Spaghetti
- 10. Steak

#### Food dataset - creation

## Data set split:

- Instagram Data 800k images downloaded from Instagram containing one of the hashtags from the list of top 10 food. This data is divided into:
  - Training data 770k images from 10 categories (equal number of images from each category)
  - Random testing data 30k images from 10 categories (equal number of images from each category)
- Independent test data 3k images from 10 categories (equal number of images from each category). This data comes from Kaggle and it was verified to contain one of the top 10 food.

#### **Experiment hypothesis:**

Once trained on noisy web data (not sure if class truly appears) we assume that the net will be able to categorize previously not seen NOT NOISY data with high accuracy. We want to validate the hypothesis by comparing results achieved for randomly selected datasets from Instagram that did not take part in the training procedure with independent test data where we know that the class appears.

## Food dataset – is it characteristic?



## Food dataset – noisy data reminder

## Webly data

There are various reasons why data associated with a particular hashtag might be incorrect:

- Label does not correspond to reality
- There are more than one class on the image
- The image is of low quality

Below there are examples of the following categories: apple pie, burger and pancake.





## Food dataset – VGG16

## **Problem solving training:**

## Fine tuning:



| Problem | solving | training: |
|---------|---------|-----------|
|         |         |           |

| Random: |          |  |  |  |  |  |  |
|---------|----------|--|--|--|--|--|--|
|         | Accuracy |  |  |  |  |  |  |
| mean    | 0.448800 |  |  |  |  |  |  |
| std     | 0.007996 |  |  |  |  |  |  |
| Test:   |          |  |  |  |  |  |  |
| 0.688   |          |  |  |  |  |  |  |

Experiment 1:

| Experiment 2                                                   | <u>2:</u>         | Experiment 3:                         |                                      |  |  |  |
|----------------------------------------------------------------|-------------------|---------------------------------------|--------------------------------------|--|--|--|
| Random:<br>Accura<br>mean 0.4570<br>std 0.0060<br>Test:<br>0.7 | acy<br>300<br>509 | Rando<br>mean<br>std<br>Test:<br>0.69 | m:<br>Accuracy<br>0.45490<br>0.00573 |  |  |  |

Accuracy 0.454900

0.005737

|              | Random:       | Random:       | Random:       |
|--------------|---------------|---------------|---------------|
| Fine tuning: | Accuracy      | Accuracy      | Accuracy      |
|              | mean 0.609867 | mean 0.610033 | mean 0.609433 |
|              | std 0.007698  | std 0.005390  | std 0.005622  |
|              | Test:         | Test:         | Test:         |
|              | 0.87          | 0.87          | 0.87          |

#### Results – in-depth analysis

## Fine tuning:

| Test:             |         |               |
|-------------------|---------|---------------|
| 0.87              |         |               |
| Test by vategory: |         |               |
| Acci              | uracy   |               |
| Categ             | -       |               |
| burger            | 0.64    |               |
| applepie          | 0.75    |               |
| donuts            | 0.84    |               |
| hotdog            | 0.86    |               |
| steak             | 0.87    |               |
| macandcheese      | 0.89    |               |
| pancake           | 0.90    |               |
| pizza             | 0.94    |               |
| spaghetti         | 0.98    |               |
| frenchfries       | 0.98    |               |
| Confusion matrix, | without | normalization |

**Experiment 1:** 

**Experiment 2**:

#### Test: Test: 0.87 0.87 Test by vategory: Test by vategory: Accuracy Categ Categ burger burger 0.65 applepie applepie 0.77 hotdog hotdog 0.83 steak steak 0.84 donuts donuts 0.89 macandcheese 0.90 pancake pancake 0.93 pizza pizza 0.94 frenchfries frenchfries 0.98 spaghetti spaghetti 0.98 Confusion matrix, without normalization

0.74 0.84 0.85 0.86 macandcheese 0.90 0.93 0.95 0.98

0.65

Accuracy

**Experiment 3**:

0.99 Confusion matrix, without normalization













## Food dataset – ResNet

#### Fine tuning:



ResNet was able to achieve the same level of accuracy in a shorter time span. It did not require a 2 stage training process (problem solving layers training, fine tuning). This result was achieved training all neurons since the beginning at a learning rate of 0.00001 (the same as for fine tuning in VGG16).

#### Results – in-depth analysis

Random:

#### **Experiment 1:**

#### **Experiment 2**:

#### **Experiment 3**:

Accuracy

0.66

0.76

0.85

0.85

## Fine tuning:

Accuracy mean 0.604800 std 0.007096 Test: 0.88 Test by vategory: Accuracy Categ 0.69 burger applepie 0.74 hotdog 0.86 0.88 steak donuts 0.88 macandcheese 0.89 0.92 pancake pizza 0.96 frenchfries 0.97 spaghetti 0.98

| Rando | m:    |          |         |      |
|-------|-------|----------|---------|------|
|       | Acci  | uracy    |         |      |
| mean  | 0.6   | 05133    |         |      |
| std   | 0.0   | 07962    |         |      |
| Test: |       |          |         |      |
| 0.86  |       |          |         |      |
| Test  | by va | ategory: |         |      |
|       |       | Acci     | uracy   |      |
| Categ |       |          |         |      |
| burge | r     |          | 0.63    |      |
| apple | pie   |          | 0.72    |      |
| steak | :     |          | 0.81    |      |
| hotdo | g     |          | 0.83    |      |
| donut | s     |          | 0.86    |      |
| macan | dche  | ese      | 0.90    |      |
| panca | ke    |          | 0.93    |      |
| pizza | 1     |          | 0.95    |      |
| frenc | hfri  | es       | 0.98    |      |
| spagh | etti  |          | 0.98    |      |
| Confu | sion  | matrix,  | without | norm |

applepie

burger

donuts

hotdog - 1

pancake - 31

spaghetti

steak

pizza 5 2

frenchfries

macandcheese

label

Predicted

4

6 259 0

7 7

17 3 3 0

3

12 11 4

-5 0 1

Confusion matrix, without normalization

0

8 2 4

0 4

3

3 73 6 294 20

0 1 4

691155000

6 2

4

4 1

4

6 0

True label

7 1 3 0 0

2 1 3 0 0 0

5001111

6

- 4

3 0 13

5 3 18

284 0 3

4 11

278 2 0 6

0.88 donuts macandcheese 0.89 pancake 0.91 pizza 0.95 spaghetti 0.97 frenchfries 0.98

Accuracy

mean 0.605867 0.006317

Test by vategory:

Random:

std

Test:

0.87

Categ

burger

hotdog

steak

- 250

- 200

- 150

100

- 50

0

applepie

Confusion matrix, without normalization





# Instacities dataset

## Food dataset - creation

## Data set split:

- Instagram Data 800k images downloaded from Instagram containing one of the hashtags from the list of 10 cities. This data is divided into:
  - Training data 770k images from 10 categories (equal number of images from each category)
  - Random testing data 30k images from 10 categories (equal number of images from each category)
- Independent test data this data comes from official Instagram accounts of the cities in training set. The list of
  accounts is presented below. Each account has a various number of images. We have constructed 2 test sets from
  those images one of random 300 images per category and the other with images that we believe are
  characteristic for the city (like "Big Ben" for London).
  - @chicago
  - @cityofmelbourne
  - @london
  - @losangeles\_city
  - @nycgov
  - @onlyinsf
  - @seetorontonow
  - @sydney
  - @visit\_singapore

## Food dataset – is it characteristic?





## Instacities dataset – VGG16

The process for training VGG16 net for Instacities dataset was a bit more complex. Eventually I used a setup with 5 stages but it could probably be reduced to 4 or less.

| Stage   | Trainable layers | Learning Rate |
|---------|------------------|---------------|
| Stage 1 | Last 3           | 1e-4          |
| Stage 2 | Last 3           | 1e-5          |
| Stage 3 | Last 3           | 1e-6          |
| Stage 4 | All              | 1e-5          |
| Stage 5 | All              | 1e-6          |

The majority of knowledge extraction and the biggest improvement can be seen in stages 1 and 4 which initiate learning some of the layers.





#### Results – in-depth analysis – all test cases

Random:

#### **Experiment 1:**

#### Fine tuning:

| Nanuolii.        |        |
|------------------|--------|
| Accuracy         |        |
| mean 0.303167    |        |
| std 0.007492     |        |
| Test:            |        |
| 0.45             |        |
| Test by vategory | ·:     |
| Ac               | curacv |
| Categ            | ,      |
| toronto          | 0.26   |
| losangeles       | 0.28   |
| newvork          | 0.20   |
| melhounne        | 0.00   |
| meibourne        | 0.39   |
| sanfrancisco     | 0.42   |
| london           | 0.46   |
| singapore        | 0.47   |
| sydney           | 0.50   |
| chicago          | 0 62   |



#### **Experiment 2:**

#### Random:

|       | Accurac  | У        |
|-------|----------|----------|
| mean  | 0.30050  | 0        |
| std   | 0.00671  | 7        |
| Test: |          |          |
| 0.45  |          |          |
| Test  | by vateg | ory:     |
|       |          | Accuracy |
| Categ |          |          |
| toron | to       | 0.26     |
| losan | geles    | 0.28     |
| melbo | urne     | 0.34     |
| newyo | rk       | 0.35     |
| sanfr | ancisco  | 0.40     |
| londo | n        | 0.47     |
| singa | pore     | 0.51     |
| sydne | y        | 0.52     |
| chica | go       | 0.60     |
|       |          |          |



#### **Experiment 3:**

| Random:          |          |
|------------------|----------|
| Accuracy         |          |
| mean 0.300767    |          |
| std 0.008439     |          |
| Test:            |          |
| 0.46             |          |
| Test by vategory | <b>:</b> |
| Ac               | curacy   |
| Categ            |          |
| toronto          | 0.28     |
| losangeles       | 0.31     |
| melbourne        | 0.32     |
| newyork          | 0.35     |
| sanfrancisco     | 0.42     |
| london           | 0.46     |
| singapore        | 0.53     |
| sydney           | 0.53     |
| chicago          | 0.65     |
|                  |          |



## Results – in-depth analysis – 300 from test

|                                                | <u>Experime</u>                                                                                       | nt 1:                                                        | Experi                                                                                                | <u>ment 2:</u>                                               | Experi                                                                                                | <u>ment 3:</u>                                               |  |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|
| LO x Randomly Test Random:<br>0.42 (+/-0.0073) |                                                                                                       | Test Random:<br>0.42 (+/-0.0079)                             |                                                                                                       | Test Random:<br>0.43 (+/-0.009                               | 2)                                                                                                    |                                                              |  |
| selected 300                                   | Test Random by<br>chicago                                                                             | category MEAN:<br>0.62                                       | Test Random by<br>chicago                                                                             | category MEAN:<br>0.61                                       | Test Random by<br>chicago                                                                             | category MEAN:<br>0.65                                       |  |
| from test                                      | <pre>london losangeles melbourne</pre>                                                                | 0.46<br>0.28<br>0.39                                         | london<br>losangeles<br>melbourne                                                                     | 0.47<br>0.28<br>0.34                                         | london<br>losangeles                                                                                  | 0.46<br>0.30                                                 |  |
| <u>images:</u>                                 | newyork<br>sanfrancisco<br>singapore                                                                  | 0.38<br>0.41<br>0.47                                         | newyork<br>sanfrancisco                                                                               | 0.35<br>0.41                                                 | newyork<br>sanfrancisco                                                                               | 0.35<br>0.43                                                 |  |
|                                                | sydney<br>toronto<br>dtype: tloat64                                                                   | 0.50<br>0.25                                                 | singapore<br>sydney<br>toronto                                                                        | 0.52<br>0.26                                                 | sydney<br>toronto                                                                                     | 0.55<br>0.53<br>0.28                                         |  |
|                                                | Test Random by<br>chicago                                                                             | category STD:<br>0.0276                                      | Test Random by<br>chicago                                                                             | category STD:                                                | Test Random by<br>chicago                                                                             | category STD:                                                |  |
|                                                | losangeles<br>melbourne                                                                               | 0.0219<br>0.0237                                             | london<br>losangeles<br>melbourne                                                                     | 0.0280<br>0.0228<br>0.0219                                   | london<br>losangeles<br>melbourne                                                                     | 0.0292<br>0.0246<br>0.0241                                   |  |
|                                                | newyork<br>sanfrancisco<br>singapore                                                                  | 0.0144<br>0.0269<br>0.0242                                   | newyork<br>sanfrancisco<br>singanore                                                                  | 0.0146<br>0.0273<br>0.0238                                   | newyork<br>sanfrancisco<br>singanore                                                                  | 0.0151<br>0.0253<br>0.0253                                   |  |
|                                                | sydney<br>toronto                                                                                     | 0.0266<br>0.0238                                             | sydney<br>toronto                                                                                     | 0.0285<br>0.0217                                             | sydney<br>toronto                                                                                     | 0.0280                                                       |  |
| Selected 300                                   | Test Selected:<br>0.71                                                                                |                                                              | dtype: float64<br>Test Selected:<br>0.69                                                              |                                                              | dtype: float64<br>Test Selected:<br>0.7                                                               |                                                              |  |
| from test                                      | m test Selected by vategory:<br>Accuracy                                                              |                                                              | Test Selected by vategory:<br>Accuracy                                                                |                                                              | Test Selected by vategory:<br>Accuracy                                                                |                                                              |  |
| <u>images:</u>                                 | Categ<br>chicago<br>london<br>sydney<br>losangeles<br>melbourne<br>sanfrancisco<br>toronto<br>newyork | 0.58<br>0.59<br>0.69<br>0.72<br>0.78<br>0.80<br>0.84<br>0.86 | Categ<br>london<br>chicago<br>losangeles<br>sydney<br>melbourne<br>newyork<br>sanfrancisco<br>toronto | 0.57<br>0.58<br>0.63<br>0.70<br>0.73<br>0.77<br>0.79<br>0.80 | Categ<br>chicago<br>london<br>losangeles<br>melbourne<br>sydney<br>newyork<br>toronto<br>sanfrancisco | 0.58<br>0.58<br>0.65<br>0.69<br>0.71<br>0.77<br>0.81<br>0.83 |  |
|                                                | <ul> <li>singapore</li> </ul>                                                                         | 0.00                                                         | singapore                                                                                             | 0.87                                                         | singapore                                                                                             | 0.89                                                         |  |

#### Results – in-depth analysis – 300 from test

chicago

london

losangeles

melbourne

sanfrancisco

singapore

sydney

toronto

miami

newyork - 110



#### **Experiment 1:**



SELECTED Confusion matrix, without normalization 

71 16

1 3

0 0

True labe

22 29 2 12 0 7 4 0

5 27 0

1 11

32 63 19

## RANDOM Confusion matrix, without normalization

**Experiment 2:** 

| Predicted label | chicago -                                                                                                          | 187                                                                               | 10                                                     | 42                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                           | 24                                                             | 11                                                      | 11                                                | 4                                                              | 21                                                      |
|-----------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|
|                 | london -                                                                                                           | 2                                                                                 | 141                                                    | 13                                                    | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                           | 70                                                             | 26                                                      | 20                                                | 18                                                             | 30                                                      |
|                 | losangeles -                                                                                                       | 3                                                                                 | 11                                                     | 85                                                    | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                           | 8                                                              | 26                                                      | 17                                                | 20                                                             | 18                                                      |
|                 | melbourne -                                                                                                        | 8                                                                                 | 40                                                     | 29                                                    | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                           | 24                                                             | 31                                                      | 34                                                | 48                                                             | 47                                                      |
|                 | miami -                                                                                                            | 9                                                                                 | 12                                                     | 25                                                    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                           | 8                                                              | 15                                                      | 21                                                | 18                                                             | 20                                                      |
|                 | newyork -                                                                                                          | 64                                                                                | 30                                                     | 38                                                    | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                           | 102                                                            | 28                                                      | 6                                                 | 8                                                              | 43                                                      |
|                 | sanfrancisco -                                                                                                     | 4                                                                                 | 4                                                      | 13                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                           | 16                                                             | 118                                                     | 10                                                | 13                                                             | 4                                                       |
|                 | singapore -                                                                                                        | 8                                                                                 | 22                                                     | 22                                                    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                           | 24                                                             | 14                                                      | 159                                               | 19                                                             | 19                                                      |
|                 | sydney -                                                                                                           | 8                                                                                 | 12                                                     | 23                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                           | 8                                                              | 21                                                      | 9                                                 | 143                                                            | 18                                                      |
|                 | toronto -                                                                                                          | 7                                                                                 | 18                                                     | 10                                                    | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                           | 16                                                             | 10                                                      | 13                                                | 9                                                              | 80                                                      |
|                 | 81                                                                                                                 | (a. 10                                                                            | 10530                                                  | aet nellos                                            | SULL C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HO. PE                                                                      | Antran                                                         | cis gno                                                 | apor si                                           | dur P                                                          | 01.                                                     |
|                 |                                                                                                                    |                                                                                   |                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Irue                                                                        | label                                                          |                                                         |                                                   |                                                                |                                                         |
|                 |                                                                                                                    | SEL                                                                               | ECTE                                                   | D Con                                                 | fusio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n mat                                                                       | label<br>trix, w                                               | vithou                                                  | it nor                                            | maliza                                                         | ation                                                   |
|                 | chicago                                                                                                            | SELI<br>- 307                                                                     | CTEI                                                   | D Con                                                 | ifusio<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n mat<br>0                                                                  | label<br>trix, w<br>0                                          | vithou<br>0                                             | t nor                                             | maliza<br>1                                                    | ation<br>0                                              |
|                 | chicago<br>Iondon                                                                                                  | SELI<br>307<br>0                                                                  | 0<br>300                                               | D Con<br>1<br>0                                       | ifusio<br>3<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n mat<br>0<br>0                                                             | label<br>trix, w<br>0<br>0                                     | vithou<br>0<br>0                                        | o<br>0                                            | maliza<br>1<br>0                                               | o<br>0<br>0                                             |
|                 | chicago<br>Iondon<br>Iosangeles                                                                                    | SELI<br>307<br>0<br>5                                                             | 0<br>300<br>21                                         | D Con<br>1<br>0<br>182                                | ifusion<br>3<br>0<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n mat<br>0<br>0<br>0                                                        | label<br>trix, w<br>0<br>0<br>1                                | vithou<br>0<br>0<br>41                                  | 0<br>0<br>2                                       | maliza<br>1<br>0<br>29                                         | o<br>0<br>1                                             |
| e               | chicago<br>london<br>losangeles<br>melbourne                                                                       | SELI<br>- 307<br>- 0<br>- 5<br>- 18                                               | 0<br>300<br>21<br>29                                   | D Con<br>1<br>0<br>182<br>16                          | fusion<br>3<br>0<br>15<br>203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n mat<br>0<br>0<br>0                                                        | label<br>trix, w<br>0<br>0<br>1<br>2                           | vithou<br>0<br>41<br>2                                  | 0<br>0<br>2<br>1                                  | maliza<br>1<br>0<br>29<br>18                                   | ation<br>0<br>1<br>12                                   |
| ed label        | chicago<br>Iondon<br>Iosangeles<br>melbourne<br>miami                                                              | SELI<br>307<br>0<br>5<br>18<br>42                                                 | 0<br>300<br>21<br>29<br>61                             | D Con<br>1<br>0<br>182<br>16<br>56                    | 15<br>203<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n mat<br>0<br>0<br>0<br>0                                                   | label<br>trix, w<br>0<br>1<br>2<br>4                           | vithou<br>0<br>0<br>41<br>2<br>9                        | 0<br>0<br>2<br>1<br>29                            | malizz<br>1<br>0<br>29<br>18<br>49                             | 0<br>0<br>1<br>12<br>15                                 |
| Predicted label | chicago<br>Iondon<br>Iosangeles<br>melbourne<br>miami<br>newyork                                                   | SEL<br>307<br>0<br>5<br>18<br>42<br>116                                           | 0<br>300<br>21<br>29<br>61<br>59                       | D Con<br>1<br>0<br>182<br>16<br>56<br>8               | 15<br>203<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 rue<br>0<br>0<br>0<br>0<br>0<br>0                                         | label<br>trix, w<br>0<br>1<br>2<br>4<br>59                     | vithou<br>0<br>41<br>2<br>9<br>15                       | 0<br>0<br>2<br>1<br>29<br>1                       | maliza<br>1<br>0<br>29<br>18<br>49<br>4                        | 0<br>0<br>1<br>12<br>15<br>18                           |
| Predicted label | chicago<br>london<br>losangeles<br>melbourne<br>miami<br>newyork<br>sanfrancisco                                   | SELI<br>307<br>5<br>18<br>42<br>116<br>1                                          | 0<br>300<br>21<br>29<br>61<br>59<br>8                  | 1<br>0<br>182<br>16<br>56<br>8<br>5                   | 15<br>203<br>13<br>20<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 rue<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | label<br>trix, w<br>0<br>1<br>2<br>4<br>59<br>5                | vithou<br>0<br>41<br>2<br>9<br>15<br>276                | 0<br>0<br>2<br>1<br>29<br>1<br>0                  | maliza<br>1<br>0<br>29<br>18<br>49<br>4<br>6                   | ation<br>0<br>1<br>12<br>15<br>18<br>1                  |
| Predicted label | chicago<br>london<br>losangeles<br>melbourne<br>miami<br>newyork<br>sanfrancisco<br>singapore                      | SELI<br>- 307<br>- 0<br>- 5<br>- 18<br>- 42<br>- 116<br>- 1<br>- 8                | CTEI<br>0<br>300<br>21<br>29<br>61<br>59<br>8<br>30    | D Con<br>1<br>0<br>182<br>16<br>56<br>8<br>5<br>15    | ifusion<br>3<br>0<br>15<br>203<br>13<br>20<br>2<br>2<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n mat<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | label<br>trix, w<br>0<br>0<br>1<br>2<br>4<br>59<br>5<br>1      | vithou<br>0<br>41<br>2<br>9<br>15<br>276<br>4           | t norr<br>0<br>2<br>1<br>29<br>1<br>0<br>224      | maliza<br>1<br>0<br>29<br>18<br>49<br>4<br>6<br>15             | ation<br>0<br>1<br>12<br>15<br>18<br>1<br>3             |
| Predicted label | chicago<br>london<br>losangeles<br>melbourne<br>miami<br>newyork<br>sanfrancisco<br>singapore<br>sydney            | SELL<br>307<br>- 0<br>- 5<br>- 18<br>- 42<br>- 116<br>- 1<br>- 8<br>- 0           | 0<br>300<br>21<br>29<br>61<br>59<br>8<br>30<br>1       | Con<br>1<br>182<br>16<br>56<br>8<br>5<br>15<br>0      | Is<br>15<br>203<br>13<br>20<br>2<br>4<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n mat<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | label<br>trix, w<br>0<br>1<br>2<br>4<br>59<br>5<br>1<br>0      | vithou<br>0<br>41<br>2<br>9<br>15<br>276<br>4<br>0      | t norr<br>0<br>2<br>1<br>29<br>1<br>0<br>224<br>0 | maliza<br>1<br>29<br>18<br>49<br>4<br>6<br>15<br>303           | ation<br>0<br>1<br>12<br>15<br>18<br>1<br>3<br>2        |
| Predicted label | chicago<br>london<br>losangeles<br>melbourne<br>miami<br>newyork<br>sanfrancisco<br>singapore<br>sydney<br>toronto | SELU<br>- 307<br>- 0<br>- 5<br>- 18<br>- 42<br>- 116<br>- 1<br>- 8<br>- 0<br>- 32 | 0<br>300<br>21<br>29<br>61<br>59<br>8<br>30<br>1<br>16 | Con<br>1<br>182<br>16<br>56<br>8<br>5<br>15<br>0<br>7 | In the second se | n mat<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | label<br>trix, w<br>0<br>1<br>2<br>4<br>59<br>5<br>1<br>0<br>5 | vithou<br>0<br>41<br>2<br>9<br>15<br>276<br>4<br>0<br>2 | 1 1 0 0 0 2 1 1 0 0 0 0 1 1 0 0 0 0 0 0           | maliza<br>1<br>0<br>29<br>18<br>49<br>4<br>6<br>15<br>303<br>6 | ation<br>0<br>1<br>12<br>15<br>18<br>1<br>3<br>2<br>212 |

True label

## **Experiment 3:**



## Selected 300 from test images:



## Instacities dataset – ResNet

## Fine tuning:



ResNet was able to achieve similar level of accuracy in a shorter time span. It did not require a 5 stage training process (problem solving layers training x3, fine tuning x2).

## Results – in-depth analysis

|                     | <b>Experiment</b>     | <u>: 1:</u> | <b>Experime</b>  | <u>nt 2:</u>     | <u>Experim</u>   | ent 3:        |  |
|---------------------|-----------------------|-------------|------------------|------------------|------------------|---------------|--|
| 10 x Randomly       | x Randomly            |             | Test Random:     |                  | Test Random:     |               |  |
|                     | 0.4 (+/-0.0242)       |             | 0.41 (+/-0.0241) |                  | 0.4 (+/-0.0236)  | atogony MEAN. |  |
| selected 300        | lest Random by catego | Dry MEAN:   | Test Random by C | ategory MEAN:    | chicogo          | a da          |  |
|                     | chicago 0.50          |             | london           | 0.50             | london           | 0.4/          |  |
| from test           | Iondon     0.40       |             | locangoloc       | 0.39             | locongoloc       | 0.35          |  |
|                     | Tosangeles 0.27       |             | rolbourno        | 0.50             | melhounne        | 0.25          |  |
| images:             | - merbourne 0.34      |             | neuvenk          | 0.34             | nouvonk          | 0.25          |  |
| 0                   | newyork 0.38          |             | confroncisco     | 0.39             | sanfnancisco     | 0.41          |  |
|                     | sannancisco 0.48      |             | sannancisco      | 0.44             | singapone        | 0.40          |  |
|                     | singapore 0.48        |             | sydnov           | 0.52             | sydnay           | A 58          |  |
|                     | toponto 0.34          |             | toronto          | 0.52             | toronto          | 0.36          |  |
|                     | dtype: tloat64        |             | dtype: tloat64   | 0.23             | dtype: tloat64   | 0.20          |  |
|                     | Test Bandom by catego | NDV STD:    | Test Bandom by c | ategory STD:     | Test Random by ( | ategory STD:  |  |
|                     | - chicago 0.027       | a           | chicago          | A A275           | chicago          | A A266        |  |
|                     | london 0.027          | 1           | london           | A A293           | london           | A A250        |  |
|                     |                       | 2           | locangeles       | A A222           | locangeles       | 0.0255        |  |
|                     | melhouppe 0.025       | 1           | malhourna        | 0.0222           | melhourne        | 0.0265        |  |
|                     | newyork 0.024         | 4           | newvork          | 0.0241<br>0.0131 | newvork          | 0.0126        |  |
|                     | sanfrancisco 0.017    | 14<br>16    | sanfrancisco     | 0.0151           | sanfrancisco     | 0.0284        |  |
|                     | singanore 0.02/       | 0<br>0      | singanore        | 0.0205           | singanore        | 0.0239        |  |
|                     | sydney 0.024          | -0<br>'9    | sydney           | 0.02/7<br>0.0265 | sydney           | 0.0255        |  |
|                     | toronto 0.021         | 5           | toronto          | 0.0205           | toronto          | 0.0226        |  |
|                     | dtype: float64        |             | dtype: float64   | 0.0210           | dtype: float64   |               |  |
|                     | Test Selected:        |             | Test Selected:   |                  | Test Selected:   |               |  |
| Calastad 200        | Accuracy 0.68         |             | Accuracy 0.68    |                  | Accuracy 0.67    | ,             |  |
| <u>Selected 300</u> | dtype: float64        |             | dtype: float64   | ,<br>,           | dtvpe: float64   |               |  |
| from toot           | Test Selected by cate | gory:       | Test Selected by | category:        | Test Selected by | category:     |  |
| from test           | Accurac               | V           | Ac               | curacy           | Ac               | curacy        |  |
| imagas              | Categ                 | ,<br>,      | Categ            |                  | Categ            |               |  |
| images:             | chicago 0.5           | 3           | london           | 0.54             | chicago          | 0.51          |  |
|                     | london 0.5            | 6           | chicago          | 0.57             | london           | 0.53          |  |
|                     | svdnev 0.7            | 0           | losangeles       | 0.67             | losangeles       | 0.65          |  |
|                     | losangeles 0.7        | 0           | newvork          | 0.69             | newyork          | 0.71          |  |
|                     | melbourne 0.7         | 3           | svdnev           | 0.70             | sydney           | 0.71          |  |
|                     | newyork 0.7           | '5          | melbourne        | 0.75             | melbourne        | 0.74          |  |
|                     | toronto 0.7           | '9          | toronto          | 0.78             | toronto          | 0.81          |  |
|                     | sanfrancisco 0.8      | 0           | sanfrancisco     | 0.81             | sanfrancisco     | 0.81          |  |
|                     | singapore 0.8         | 7           | singapore        | 0.88             | singapore        | 0.89          |  |

#### Results – in-depth analysis



## THE END!