
Advances in Generative Adversarial Networks

GANs

Maciej Żelaszczyk

June 5, 2019

PhD Student in Computer Science

Division of Artificial Intelligence and Computational Methods

Faculty of Mathematics and Information Science

m.zelaszczyk@mini.pw.edu.pl

1

m.zelaszczyk@mini.pw.edu.pl

Supervised vs. unsupervised

Supervised:

• Requires huge datasets.

• Annotating is costly.

• Extensive training.

• Driving a car off a cliff.

• Learns tasks, not skills.

• Some well-specified tasks have been largely solved.

• Limit to how much data we can obtain.

• Ignores physical world.

2

Supervised vs. unsupervised

How do children learn?

• A lot of evolutionary knowledge.

• Vision, hearing, touch etc. in place.

• Extensive observation.

• Build a model of the world.

• Model vs. physical world.

• Surprise, curiosity guide learning.

• Continuous refinement of model.

• Limited reinforcement learning.

• All initial learning is unsupervised.

3

Supervised vs. unsupervised

Unsupervised:

• In practice, very little labelled data available.

• Need to create model of world, confront it with reality.

• Attend to data.

• Manipulate world.

• Learn from little external reward.

• Learn from very few examples.

• Exploit physical structure of world to obtain links.

• Learn skills rather than tasks.

4

Importance of unsupervised learning

What if importance of various kinds of learning is like a cake?

• Pure reinforcement learning = cherry.

• Supervised learning = icing.

• Unsupervised/self-supervised/predictive learning = génoise.

• Perhaps we are still missing a sizeable pie crust? =

meta-learning.

Source: LeCun, Y., The Next Step Towards Artificial Intelligence

5

Generative models

Models:

• Discriminative: P(Y |X = x)

• Generative. Joint probability distribution: X × Y ,P(X ,Y)

• No hard demarcation line.

Standard generative models in deep learning:

• Autoencoders.

• Variational autoencoders (VAEs).

• Generative adversarial networks (GANs).

6

Generative Adversarial Nets

Approach model training from game-theoretic point of view

[Goodfellow et al., 2014]:

• Two networks: Generator and Discriminator.

• Generator: from latent variable z generate into data space.

• Discriminator: distinguish between real and generated data.

• Generator tries to ”fool” the Discriminator.

• Discriminator strives to ”look through” the Discriminator.

• This can be represented by a minimax two-player game.

7

Generative Adversarial Nets

More concretely:

• We aim to learn Generator’s distribution pg over data x.

• Define prior pz(z).

• Represent mapping to data space G (z; θg).

• G is a neural network parametrized by θg .

• Define second neural network D(x; θd) which outputs single

scalar.

• D(x) represents a probability that x came from the data

rather than pg .

Source: [Goodfellow et al., 2014]

8

Generative Adversarial Nets

Training:

• Train D to maximize probability of assigning correct label to

real data and samples from G .

• Train G to maximize probability of D assigning incorrect label

to samples from G .

• D and G play:

• min
G

max
D

V (D,G) =

Ex∼pdata(x) [log(D(x))] + Ez∼pz(z) [log(1− D(G (z)))].

• log(1− D(G (z))) may saturate early in training.

• Can train G to maximize log(D(G (z))) instead.

Source: [Goodfellow et al., 2014]

9

Generative Adversarial Nets

Source: [Goodfellow et al., 2014]

10

Generative Adversarial Nets

Source: [Goodfellow et al., 2014]

11

Generative Adversarial Nets

Source: [Goodfellow et al., 2014]

12

Generative Adversarial Nets

Source: [Goodfellow et al., 2014]

13

Generative Adversarial Nets

Source: [Goodfellow et al., 2014]

14

Mode collapse

15

Deep Convolutional GAN

Architecture guidelines for Deep Convolutional GANs (DCGAN):

• Replace any pooling layers with strided convolutions

(Discriminator) and fractional-strided convolutions

(Generator).

• Use batchnorm in both the generator and the discriminator.

• Remove fully connected hidden layers for deeper architectures.

• Use ReLU activation in generator for all layers except for the

output, which uses Tanh.

• Use LeakyReLU activation in the discriminator for all layers.

Source: [Radford et al., 2016]

16

Deep Convolutional GAN

Source: [Radford et al., 2016]

17

Deep Convolutional GAN

Source: [Radford et al., 2016]

18

Deep Convolutional GAN

Source: [Radford et al., 2016]

19

Deep Convolutional GAN

Source: [Radford et al., 2016]

20

Deep Convolutional GAN

Source: [Radford et al., 2016]

21

Deep Convolutional GAN

Source: [Radford et al., 2016]

22

Bidirectional GAN

Source: [Donahue et al., 2017]

23

Bidirectional GAN

Source: [Donahue et al., 2017]

24

Conditional Generative Adversarial Nets

Classic GAN training can be reformulated to incorporate additional

knowledge:

• D and G play:

• min
G

max
D

V (D,G) =

Ex∼pdata(x) [log(D(x|c))] + Ez∼pz(z) [log(1− D(G (z|c)))].

• Training G to maximize log(D(G (z|c))) still works.

Source: [Mirza and Osindero, 2014]

25

Conditional Generative Adversarial Nets

Source: [Mirza and Osindero, 2014] 26

Conditional Generative Adversarial Nets

Source: [Mirza and Osindero, 2014]

27

Information Maximizing Generative Adversarial Nets

In traditional GANs, G is not restricted. Representations can be

disentangled but there is no such guarantee. Possible to use more

structure without sacrificing unsupervised training:

• Many domains naturally decompose into a set of semantically

meaningful factors of variation.

• MNIST example: allocate a discrete random variable to

represent the digit (0-9), choose to have two additional

continuous variables representing the digits angle and

thickness of the digits stroke.

• Decompose the input noise vector into two parts: (i) z, which

is treated as source of incompressible noise; (ii) latent code c,

the salient structured semantic features of the data

distribution.

Source: [Chen et al., 2016]
28

Information Maximizing Generative Adversarial Nets

Possible to introduce additional constraints:

• Generator becomes G (z, c).

• In standard GAN, the generator is free to ignore the additional

latent codes by finding a solution satisfying PG (z|c) = PG (x)

• To cope with trivial codes, introduce information-theoretic

regularization: there should be high mutual information

between latent codes c and generator distribution G (z, c).

• I (c;G (z, c)) should be high.

• In information theory, mutual information between X and Y ,

I (X ;Y), measures the amount of information learned from

knowledge of random variable Y about the other random

variable X .

• I (X ;Y) = H(X)− H(X |Y) = H(Y)− H(Y |X).

Source: [Chen et al., 2016]
29

Information Maximizing Generative Adversarial Nets

Information-regularized minimax game:

• min
G

max
D

VI (D,G) = V (D,G)− λI (c;G (z, c)).

• In practice, I (c;G (z, c)) is hard to maximize directly.

• Variational Information Maximization.

• Define a variational lower bound.

• LI (G ,Q) = Ec∼P(c),x∼G(z,c) [log(Q(c|x))] + H(c) =

Ex∼G(z,c)

[
Ec′∼P(c|x)

[
log(Q(c

′ |x))
]]

+ H(c) ≤ I (c;G (z, c))

• min
G ,Q

max
D

VInfoGAN(D,G ,Q) = V (D,G)− λLI (G ,Q).

Source: [Chen et al., 2016]

30

Information Maximizing Generative Adversarial Nets

Implementation:

• Parametrize the auxiliary distribution Q as a neural network.

• Q and D share all convolutional layers and there is one final

fully connected layer to output parameters for the conditional

distribution Q(c|x).

• InfoGAN only adds a negligible computation cost to GAN.

• LI (G ,Q) ”always” converges faster than normal GAN

objectives.

• InfoGAN essentially comes for ”free” with GAN.

Source: [Chen et al., 2016]

31

Information Maximizing Generative Adversarial Nets

Implementation:

• For categorical latent code ci , softmax nonlinearity to

represent Q(ci |x).

• For continuous latent code cj , more options depending on the

true posterior P(cj |x). Treating Q(cj |x) as a factored

Gaussian seems sufficient.

• For categorical latent code λ = 1 sufficient.

• For continuous latent code smaller values of λ.

Source: [Chen et al., 2016]

32

Information Maximizing Generative Adversarial Nets

Source: [Chen et al., 2016]
33

Information Maximizing Generative Adversarial Nets

Source: [Chen et al., 2016]

34

Information Maximizing Generative Adversarial Nets

Source: [Chen et al., 2016]

35

Information Maximizing Generative Adversarial Nets

Source: [Chen et al., 2016]
36

Loss functions

Source: Jayathilaka, M. Understanding and optimizing GANs (Going back to first principles)

37

Loss functions

Source: Jayathilaka, M. Understanding and optimizing GANs (Going back to first principles)

38

Loss functions

Source: Jayathilaka, M. Understanding and optimizing GANs (Going back to first principles)

39

Jensen-Shannon Divergence

In the original GAN, the objective for the discriminator can be

reforulated as follows:

• C (G) = max
D

V (G ,D) = −log(4) + 2JSD(pdata‖pg).

• JSD is the Jensen-Shannon Divergence.

• The global minimum of C (G) is

C ∗ = −log(4) + 2JSD(pdata‖pg).

• The only solution is pg = pdata.

• There is a serious problem with JSD.

Source: [Goodfellow et al., 2014]

40

Jensen-Shannon Divergence

Even for very simple distributions, θ → 0 does not guarantee

JSD(Pθ,P0)→ 0:

Source: Midnight math stories, Nuts and Bolts of WGANs, Kantorovich-Rubistein Duality, Earth Movers Distance

41

Jensen-Shannon Divergence

There might not be enough gradient to facilitate learning.

Source: [Arjovsky et al., 2017]

42

Jensen-Shannon Divergence

In other words:

Source: Midnight math stories, Nuts and Bolts of WGANs, Kantorovich-Rubistein Duality, Earth Movers Distance 43

Wasserstein Generative Adversarial Networks

Basic idea, use a different metric to define distance between

probabilities:

• Earth-Mover (EM) distance or Wasserstein-1.

• W (Pr ,Pg) = inf
γ∈

∏
(Pr ,Pg)

E(x ,y)∼γ [‖x − y‖]

•
∏

(Pr ,Pg) denotes the set of all joint distributions γ(x , y)

whose marginals are respectively Pr and Pg .

• Intuitively, γ(x , y) indicates how much mass must be

transported from x to y in order to transform the distributions

Pr into the distribution Pg . The EM distance then is the cost

of the optimal transport plan.

Source: [Arjovsky et al., 2017]

44

Wasserstein Generative Adversarial Networks

Source: [Arjovsky et al., 2017]
45

Wasserstein Generative Adversarial Networks

Source: [Arjovsky et al., 2017]

46

Wasserstein Generative Adversarial Networks

Source: [Arjovsky et al., 2017]

47

BigGAN

Source: [Brock et al., 2018]

48

BigGAN

Source: [Brock et al., 2018]

49

BigGAN

Source: [Brock et al., 2018]
50

Arjovsky, M., Chintala, S., and Bottou, L. (2017).

Wasserstein gan.

ICML.

Brock, A., Donahue, J., and Simonyan, K. (2018).

Large scale gan training for high fidelity natural image

synthesis.

arXiv.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever,

I., and Abbeel, P. (2016).

Infogan: Interpretable representation learning by

information maximizing generative adversarial nets.

NIPS.

Donahue, J., Krhenbhl, P., and Darrell, T. (2017).

Adversarial feature learning.

ICLR.

50

Goodfellow, I. J., Pouget-Abadie, J., et al. (2014).

Generative adversarial networks.

NIPS.

Mirza, M. and Osindero, S. (2014).

Conditional generative adversarial nets.

arXiv.

Radford, A., Metz, L., and Chintala, S. (2016).

Unsupervised representation learning with deep

convolutional generative adversarial networks.

ICLR.

50

