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Supervised vs. unsupervised

Supervised:

e Requires huge datasets.

e Annotating is costly.

e Extensive training.

e Driving a car off a cliff.

e Learns tasks, not skills.

e Some well-specified tasks have been largely solved.
e Limit to how much data we can obtain.

e |gnores physical world.



Supervised vs. unsupervised

How do children learn?

e A lot of evolutionary knowledge.

e Vision, hearing, touch etc. in place.
e Extensive observation.

e Build a model of the world.

e Model vs. physical world.

e Surprise, curiosity guide learning.

e Continuous refinement of model.

e Limited reinforcement learning.

e All initial learning is unsupervised.



Supervised vs. unsupervised

Unsupervised:

e In practice, very little labelled data available.

e Need to create model of world, confront it with reality.
e Attend to data.

e Manipulate world.

e Learn from little external reward.

e Learn from very few examples.

e Exploit physical structure of world to obtain links.

e Learn skills rather than tasks.



Importance of unsupervised learning

What if importance of various kinds of learning is like a cake?

Pure reinforcement learning = cherry.

Supervised learning = icing.

Unsupervised /self-supervised /predictive learning = génoise.

Perhaps we are still missing a sizeable pie crust? =
meta-learning.

Source: LeCun, Y., The Next Step Towards Artificial Intelligence



Generative models

Models:

e Discriminative: P(Y|X = x)
e Generative. Joint probability distribution: X x Y, P(X,Y)

e No hard demarcation line.
Standard generative models in deep learning:

e Autoencoders.
e Variational autoencoders (VAEs).

e Generative adversarial networks (GANs).



Generative Adversarial Nets

Approach model training from game-theoretic point of view
[Goodfellow et al., 2014]:

e Two networks: Generator and Discriminator.

Generator: from latent variable z generate into data space.

Discriminator: distinguish between real and generated data.

Generator tries to "fool” the Discriminator.

Discriminator strives to "look through” the Discriminator.

This can be represented by a minimax two-player game.



Generative Adversarial Nets

More concretely:

e We aim to learn Generator's distribution pg over data x.
e Define prior p,(2).

e Represent mapping to data space G(z;6).

e G is a neural network parametrized by 6.

e Define second neural network D(x; 64) which outputs single
scalar.

e D(x) represents a probability that x came from the data
rather than p,.

Source: [Goodfellow et al., 2014]



Generative Adversarial Nets

Training:
e Train D to maximize probability of assigning correct label to

real data and samples from G.

e Train G to maximize probability of D assigning incorrect label
to samples from G.

e D and G play:
o m(zjn max V(D,G)=
B g0 108(D(0))] + Eqp ) l08(L = D(G(2))]
e log(1 — D(G(z))) may saturate early in training.
e Can train G to maximize log(D(G(z))) instead.

Source: [Goodfellow et al., 2014]



Generative Adversarial Nets
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Source: [Goodfellow et al., 2014]
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Generative Adversarial Nets

Source: [Goodfellow et al., 2014]
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Generative Adversarial Nets

Source: [Goodfellow et al., 2014]




Generative Adversarial Nets

Source: [Goodfellow et al., 2014]
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Deep Convolutional GAN

Architecture guidelines for Deep Convolutional GANs (DCGAN):

e Replace any pooling layers with strided convolutions
(Discriminator) and fractional-strided convolutions
(Generator).

e Use batchnorm in both the generator and the discriminator.
e Remove fully connected hidden layers for deeper architectures.

e Use RelU activation in generator for all layers except for the
output, which uses Tanh.

e Use LeakyReLU activation in the discriminator for all layers.

Source: [Radford et al., 2016]
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Deep Convolutional GAN

Project and reshape

Source: [Radford et al., 2016]
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Source: [Radford et al., 2016]
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Deep Convolutional GAN
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Source: [Radford et al., 2016]
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Deep Convolutional GAN

man man woman

with glasses without glasses without glasses woman with glasses

Source: [Radford et al., 2016]
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Deep Convolutional GAN

Jl Results of doing the same
arithmetic In pixel space

Source: [Radford et al., 2016]
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Bidirectional GAN

features data
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Source: [Donahue et al., 2017]
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Bidirectional GAN

Source: [Donahue et al., 2017]
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Conditional Generative Adversarial Nets

Classic GAN training can be reformulated to incorporate additional

knowledge:

e D and G play:
o m(gn max V(D,G) =

IEx~pd,.,,f;,,(x) [|Og(D(X‘C))] + IEerpz(z) [lOg(l - D(G(Z|C)))]
e Training G to maximize log(D(G(z|c))) still works.

Source: [Mirza and Osindero, 2014]

25



Conditional Generative Adversarial Nets

iscriminator D(xly)
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Source: [Mirza and Osindero, 2014] 26




Conditional Generative Adversarial Nets
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Information Maximizing Generative Adversarial Nets

In traditional GANs, G is not restricted. Representations can be
disentangled but there is no such guarantee. Possible to use more

structure without sacrificing unsupervised training:

e Many domains naturally decompose into a set of semantically
meaningful factors of variation.

e MNIST example: allocate a discrete random variable to
represent the digit (0-9), choose to have two additional
continuous variables representing the digits angle and
thickness of the digits stroke.

e Decompose the input noise vector into two parts: (i) z, which
is treated as source of incompressible noise; (ii) latent code c,
the salient structured semantic features of the data
distribution.

28
Source: [Chen et al., 2016]



Information Maximizing Generative Adversarial Nets

Possible to introduce additional constraints:

e Generator becomes G(z,c).

e |n standard GAN, the generator is free to ignore the additional
latent codes by finding a solution satisfying Pg(z|c) = Pg(x)

e To cope with trivial codes, introduce information-theoretic
regularization: there should be high mutual information
between latent codes c and generator distribution G(z,c).

e /(c; G(z,c)) should be high.

e In information theory, mutual information between X and Y,
I(X;Y), measures the amount of information learned from
knowledge of random variable Y about the other random
variable X.

e /[(X;Y)=H(X)—H(X|Y)=H(Y)— H(Y|X).

29
Source: [Chen et al., 2016]



Information Maximizing Generative Adversarial Nets

Information-regularized minimax game:
. m(;n max Vi(D, G) = V(D, G) — M(c; G(z,c)).
e In practice, /(c; G(z,c)) is hard to maximize directly.

e Variational Information Maximization.
e Define a variational lower bound.
e [/(G, Q) =Ecup(c)x~G(z,c) [l0g(Q(c|x))] + H(c) =
Euvc(ee) [Eempian) |08(Q(E 1X)]| + H(e) < I(c: 6(z,0))
° rglg max Vinfoan(D, G, Q) = V(D, G) — AL,(G, Q).

Source: [Chen et al., 2016]
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Information Maximizing Generative Adversarial Nets

Implementation:

e Parametrize the auxiliary distribution @ as a neural network.

e @ and D share all convolutional layers and there is one final
fully connected layer to output parameters for the conditional
distribution Q(c|x).

e InfoGAN only adds a negligible computation cost to GAN.

e [;(G, Q) "always" converges faster than normal GAN
objectives.

e InfoGAN essentially comes for "free” with GAN.

Source: [Chen et al., 2016]
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Information Maximizing Generative Adversarial Nets

Implementation:

e For categorical latent code ¢;, softmax nonlinearity to
represent Q(c;i|x).

e For continuous latent code ¢;, more options depending on the
true posterior P(cj|x). Treating Q(cj|x) as a factored
Gaussian seems sufficient.

e For categorical latent code A = 1 sufficient.

e For continuous latent code smaller values of .

Source: [Chen et al., 2016]
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Information Maximizing Generative Adversarial Nets
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(b) Presence or absence of glasses

(a) Azimuth (pose)

(d) Emotion

(c) Hair style
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Loss functions

RMSprop optimizer

—— Discriminator Loss - Real
—— Discriminator Loss - Fake
—— Generator Loss

Loss

0 1000 2000 3000 4000 5000
Epochs

Source: Jayathilaka, M. Understanding and optimizing GANs (Going back to first principles)
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Loss functions

SGD optimizer

—— Discriminator Loss - Real
—— Discriminator Loss - Fake
—— Generator Loss

0 1000 2000 3000 4000 5000
Epochs

Source: Jayathilaka, M. Understanding and optimizing GANs (Going back to first principles)
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Loss functions

Adam optimizer

—— Discriminator Real Image Loss
—— Discriminator Fake Image Loss
41 — Generate Image Loss

Loss
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Source: Jayathilaka, M. Understanding and optimizing GANs (Going back to first principles)
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Jensen-Shannon Divergence

In the original GAN, the objective for the discriminator can be
reforulated as follows:

e C(G)= max V(G, D) = —log(4) + 2JSD(pdatal| pg)-

e JSD is the Jensen-Shannon Divergence.

e The global minimum of C(G) is
C* = —log(4) + 2JSD(pdatall Pg)-

e The only solution is pg = pgata-

e There is a serious problem with JSD.

Source: [Goodfellow et al., 2014]
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Jensen-Shannon Divergence

Even for very simple distributions, # — 0 does not guarantee
JSD(P@,P()) — 0:

P(X.2)
41
Source: Midnight math stories, Nuts and Bolts of WGANs, Kantorovich-Rubistein Duality, Earth Movers Distance



Jensen-Shannon Divergence

There might not be enough gradient to facilitate learning.
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Source: [Arjovsky et al., 2017]
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Jensen-Shannon Divergence

In other words:

for small change in parameters

distribution should not change
drastically

> O

Source: Midnight math stories, Nuts and Bolts of WGANs, Kantorovich-Rubistein Duality, Earth Movers Distance
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Wasserstein Generative Adversarial Networks

Basic idea, use a different metric to define distance between
probabilities:

e Earth-Mover (EM) distance or Wasserstein-1.

W(P,,P,) = _inf  Epoyos [Ix —
s WELP) = _inf Bl lIx =l
e [[(P,[P;) denotes the set of all joint distributions y(x, y)

whose marginals are respectively P, and P,.

Intuitively, v(x, y) indicates how much mass must be
transported from x to y in order to transform the distributions
P, into the distribution P;. The EM distance then is the cost
of the optimal transport plan.

Source: [Arjovsky et al., 2017]
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Wasserstein Generative Adversarial Networks

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values a = 0.00005, ¢ = 0.01, m = 64, neritic = 5.

Require: : «, the learning rate. ¢, the clipping parameter. m, the batch size.
Neritic, the number of iterations of the critic per generator iteration.
Require: : wy, initial critic parameters. fy, initial generator’s parameters.
1: while # has not converged do
2 for t = 0,.... neritic do
3: Sample {2(®}™  ~ P, a batch from the real data.
4
5

Sample {z(1}™, ~ p(2) a batch of prior samples.

Guw Var I:% E:’,Zl fu'{-f“}) - % Z?;l fu'(gﬁi{z(”))]

6: w < w+ o - RMSProp(w, g.,)

T w + clip(w, —¢,¢)

8: end for

9: Sample {z( 1J}”‘ ~ p(z) a batch of prior samples.

10: g < vé‘ m Zm' fu' g&{z ))
11: 0+—60—a- RMSPmp(ﬁ'_ye}

12: end while

Source: [Arjovsky et al., 2017] 45



tein Generative Adversarial Networks

— MLP_512

Wasserstein estimate
Wasserstein estimate
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Generator iterations Generator iterations

Source: [Arjovsky et al., 2017]
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Wasserstein Generative Adversarial Networks

Source: [Arjovsky et al., 2017]
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Source: [Brock et al., 2018]
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Source: [Brock et al.,
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BigGAN

Source: [Brock et al., 2018]
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