Advances in Generative Adversarial Networks

GANs

Maciej Zelaszczyk
June 5, 2019

PhD Student in Computer Science
Division of Artificial Intelligence and Computational Methods
Faculty of Mathematics and Information Science

m.zelaszczyk@mini.pw.edu.pl

\Varsaw University
of Technology

m.zelaszczyk@mini.pw.edu.pl

Supervised vs. unsupervised

Supervised:

e Requires huge datasets.

e Annotating is costly.

e Extensive training.

e Driving a car off a cliff.

e Learns tasks, not skills.

e Some well-specified tasks have been largely solved.
e Limit to how much data we can obtain.

e |gnores physical world.

Supervised vs. unsupervised

How do children learn?

e A lot of evolutionary knowledge.

e Vision, hearing, touch etc. in place.
e Extensive observation.

e Build a model of the world.

e Model vs. physical world.

e Surprise, curiosity guide learning.

e Continuous refinement of model.

e Limited reinforcement learning.

e All initial learning is unsupervised.

Supervised vs. unsupervised

Unsupervised:

e In practice, very little labelled data available.

e Need to create model of world, confront it with reality.
e Attend to data.

e Manipulate world.

e Learn from little external reward.

e Learn from very few examples.

e Exploit physical structure of world to obtain links.

e Learn skills rather than tasks.

Importance of unsupervised learning

What if importance of various kinds of learning is like a cake?

Pure reinforcement learning = cherry.

Supervised learning = icing.

Unsupervised /self-supervised /predictive learning = génoise.

Perhaps we are still missing a sizeable pie crust? =
meta-learning.

Source: LeCun, Y., The Next Step Towards Artificial Intelligence

Generative models

Models:

e Discriminative: P(Y|X = x)
e Generative. Joint probability distribution: X x Y, P(X,Y)

e No hard demarcation line.
Standard generative models in deep learning:

e Autoencoders.
e Variational autoencoders (VAEs).

e Generative adversarial networks (GANs).

Generative Adversarial Nets

Approach model training from game-theoretic point of view
[Goodfellow et al., 2014]:

e Two networks: Generator and Discriminator.

Generator: from latent variable z generate into data space.

Discriminator: distinguish between real and generated data.

Generator tries to "fool” the Discriminator.

Discriminator strives to "look through” the Discriminator.

This can be represented by a minimax two-player game.

Generative Adversarial Nets

More concretely:

e We aim to learn Generator's distribution pg over data x.
e Define prior p,(2).

e Represent mapping to data space G(z;6).

e G is a neural network parametrized by 6.

e Define second neural network D(x; 64) which outputs single
scalar.

e D(x) represents a probability that x came from the data
rather than p,.

Source: [Goodfellow et al., 2014]

Generative Adversarial Nets

Training:
e Train D to maximize probability of assigning correct label to

real data and samples from G.

e Train G to maximize probability of D assigning incorrect label
to samples from G.

e D and G play:
o m(zjn max V(D,G)=
B g0 108(D(0))] + Eqp) l08(L = D(G(2))]
e log(1 — D(G(z))) may saturate early in training.
e Can train G to maximize log(D(G(z))) instead.

Source: [Goodfellow et al., 2014]

Generative Adversarial Nets

NN

Source: [Goodfellow et al., 2014]

10

Generative Adversarial Nets

Source: [Goodfellow et al., 2014]

12

Generative Adversarial Nets

Source: [Goodfellow et al., 2014]

Generative Adversarial Nets

Source: [Goodfellow et al., 2014]

Mode collapse

HINnnvnvivin
KIVARNR RN Nivara
HiVARIVAVIVARNVANANA
RAVAVAVAVARSRREANNYS
Hrinnvnnnm

VL
EIVANAVAVIIR RRiNAYa
VAVERARAVINANEVAVAYA
pivavAvavAvivavivans
N annnnn 15

Deep Convolutional GAN

Architecture guidelines for Deep Convolutional GANs (DCGAN):

e Replace any pooling layers with strided convolutions
(Discriminator) and fractional-strided convolutions
(Generator).

e Use batchnorm in both the generator and the discriminator.
e Remove fully connected hidden layers for deeper architectures.

e Use RelU activation in generator for all layers except for the
output, which uses Tanh.

e Use LeakyReLU activation in the discriminator for all layers.

Source: [Radford et al., 2016]

16

Deep Convolutional GAN

Project and reshape

Source: [Radford et al., 2016]

17

2
<
O
®
£
2
L
=
o
>
£
o
9
=%
)
Q
a

Source: [Radford et al., 2016]

18

2
<
O
®
£
2
e
=
o
>
£
o
9
=%
)
3]
a

: [Radford et al., 2016]

Source

19

Deep Convolutional GAN

e B
Tl
-
smiling neutral neutral smiling man
woman woman man

Source: [Radford et al., 2016]

20

Deep Convolutional GAN

man man woman

with glasses without glasses without glasses woman with glasses

Source: [Radford et al., 2016]

21

Deep Convolutional GAN

Jl Results of doing the same
arithmetic In pixel space

Source: [Radford et al., 2016]

22

Bidirectional GAN

features data

[I >(G(2),z j—)@
; I >(x, E(x) I

Source: [Donahue et al., 2017]

23

Bidirectional GAN

Source: [Donahue et al., 2017]

24

Conditional Generative Adversarial Nets

Classic GAN training can be reformulated to incorporate additional

knowledge:

e D and G play:
o m(gn max V(D,G) =

IEx~pd,.,,f;,,(x) [|Og(D(X‘C))] + IEerpz(z) [lOg(l - D(G(Z|C)))]
e Training G to maximize log(D(G(z|c))) still works.

Source: [Mirza and Osindero, 2014]

25

Conditional Generative Adversarial Nets

iscriminator D(xly)

00000
\
00000 00000

(@QQO@C@QO@)

Source: [Mirza and Osindero, 2014] 26

Conditional Generative Adversarial Nets

Y 4 4

F
>
R
>
x
I
P
-
4..
b 3
%
N
] =
W

P99 79%7999¢7 1%

Source: [Mirza and Osindero, 2014]

2
3

27299

Information Maximizing Generative Adversarial Nets

In traditional GANs, G is not restricted. Representations can be
disentangled but there is no such guarantee. Possible to use more

structure without sacrificing unsupervised training:

e Many domains naturally decompose into a set of semantically
meaningful factors of variation.

e MNIST example: allocate a discrete random variable to
represent the digit (0-9), choose to have two additional
continuous variables representing the digits angle and
thickness of the digits stroke.

e Decompose the input noise vector into two parts: (i) z, which
is treated as source of incompressible noise; (ii) latent code c,
the salient structured semantic features of the data
distribution.

28
Source: [Chen et al., 2016]

Information Maximizing Generative Adversarial Nets

Possible to introduce additional constraints:

e Generator becomes G(z,c).

e |n standard GAN, the generator is free to ignore the additional
latent codes by finding a solution satisfying Pg(z|c) = Pg(x)

e To cope with trivial codes, introduce information-theoretic
regularization: there should be high mutual information
between latent codes c and generator distribution G(z,c).

e /(c; G(z,c)) should be high.

e In information theory, mutual information between X and Y,
I(X;Y), measures the amount of information learned from
knowledge of random variable Y about the other random
variable X.

e /[(X;Y)=H(X)—H(X|Y)=H(Y)— H(Y|X).

29
Source: [Chen et al., 2016]

Information Maximizing Generative Adversarial Nets

Information-regularized minimax game:
. m(;n max Vi(D, G) = V(D, G) — M(c; G(z,c)).
e In practice, /(c; G(z,c)) is hard to maximize directly.

e Variational Information Maximization.
e Define a variational lower bound.
e [/(G, Q) =Ecup(c)x~G(z,c) [l0g(Q(c|x))] + H(c) =
Euvc(ee) [Eempian) |08(Q(E 1X)]| + H(e) < I(c: 6(z,0))
° rglg max Vinfoan(D, G, Q) = V(D, G) — AL,(G, Q).

Source: [Chen et al., 2016]

30

Information Maximizing Generative Adversarial Nets

Implementation:

e Parametrize the auxiliary distribution @ as a neural network.

e @ and D share all convolutional layers and there is one final
fully connected layer to output parameters for the conditional
distribution Q(c|x).

e InfoGAN only adds a negligible computation cost to GAN.

e [;(G, Q) "always" converges faster than normal GAN
objectives.

e InfoGAN essentially comes for "free” with GAN.

Source: [Chen et al., 2016]

31

Information Maximizing Generative Adversarial Nets

Implementation:

e For categorical latent code ¢;, softmax nonlinearity to
represent Q(c;i|x).

e For continuous latent code ¢;, more options depending on the
true posterior P(cj|x). Treating Q(cj|x) as a factored
Gaussian seems sufficient.

e For categorical latent code A = 1 sufficient.

e For continuous latent code smaller values of .

Source: [Chen et al., 2016]

32

Information Maximizing Generative Adversarial Nets

ing ¢1 on regular GAN (No clear meaning

ing c; on InfoGAN (Digit type)

(d) Varying c3 from —2to 2 o

&
Z
<
Q
&

2to2o0n

arying co from

<
™

NeLDe PUODD
e LDE PUOGDD
eLDe DPLODD
SeDDe POODD ;
DS I POUODD N
MQLoLDS = : Wﬂwﬁ@d 3
MDD PUODD
NQUDES DEODD
SVLTHS DUODD ¢
SQIDeE PILODHD
TePVY Peese
oDy SPHee
TePDY PoOBe ¢
TCoPDY ; PUDHDG
THPDD - POOD
TP : PIODY 3
De DD : DPDOHDS
DeeDd PDODY
DD PDOMe
DSLH5D DO

(1]
e
5]
2
©
‘=
®
(1]
e
o
>
S
<
)
2
e
©
P
3]
e
5}
O
o0
=
o
£
X
s
c
2
-
©
€
E
i)
c

(7]
e}
Q
2
©
‘=
«
(2]
=
Q
>
©
<
Q
2
e
«
=
Q
c
(<))
&)
o0
=
N
£
ba
s
(=
2
e
«
€
=
=
c

W gf O e of
W g T gt
W g T e
W g T e ol
W T
W T
Wl
W T3
LT 3 Y
L 3 TS
Tl W o
= B &
= Tl £
= Hallr
« iy) £
« iy @ =
g ¥ ila)
— Eellw @
- el WX
Tl e @

(b) Width

al., 2016

e: [Chen et

Sourc

85

(7]
e}
Q
2
©
‘=
«
(2]
=
Q
>
©
<
Q
2
e
(v
=
Q
c
(<))
&)
o0
=
N
£
ba
s
(=
2
e
(v}
€
=
=
c

(b) Presence or absence of glasses

(a) Azimuth (pose)

(d) Emotion

(c) Hair style

36

e: [Chen et al., 2016]

Sourc

Loss functions

RMSprop optimizer

—— Discriminator Loss - Real
—— Discriminator Loss - Fake
—— Generator Loss

Loss

0 1000 2000 3000 4000 5000
Epochs

Source: Jayathilaka, M. Understanding and optimizing GANs (Going back to first principles)

37

Loss functions

SGD optimizer

—— Discriminator Loss - Real
—— Discriminator Loss - Fake
—— Generator Loss

0 1000 2000 3000 4000 5000
Epochs

Source: Jayathilaka, M. Understanding and optimizing GANs (Going back to first principles)

38

Loss functions

Adam optimizer

—— Discriminator Real Image Loss
—— Discriminator Fake Image Loss
41 — Generate Image Loss

Loss

1 e o Ty ‘
'r e LT T 2 TR R AR R

0 1000 2000 3000 4000 5000

Epochs

Source: Jayathilaka, M. Understanding and optimizing GANs (Going back to first principles)

39

Jensen-Shannon Divergence

In the original GAN, the objective for the discriminator can be
reforulated as follows:

e C(G)= max V(G, D) = —log(4) + 2JSD(pdatal| pg)-

e JSD is the Jensen-Shannon Divergence.

e The global minimum of C(G) is
C* = —log(4) + 2JSD(pdatall Pg)-

e The only solution is pg = pgata-

e There is a serious problem with JSD.

Source: [Goodfellow et al., 2014]

40

Jensen-Shannon Divergence

Even for very simple distributions, # — 0 does not guarantee
JSD(P@,P()) — 0:

P(X.2)
41
Source: Midnight math stories, Nuts and Bolts of WGANs, Kantorovich-Rubistein Duality, Earth Movers Distance

Jensen-Shannon Divergence

There might not be enough gradient to facilitate learning.

07
0 o
. o
s o
. o
e o 06
08 % o
0 o
s, K
", i 05
0 o
. K
06 s o Bl
., S T 04
0 o
% o =
= 2
= * ' % 03
04 % o =
0 o
0 o
. o
. o 02
. S
0.2 . .
" " 01
. o
"
Ol
. o
0.0 o2 0.0
-1.0 —0.5 0.0 05 10 -1.0 —05 0.0 05 10
4

Source: [Arjovsky et al., 2017]

42

Jensen-Shannon Divergence

In other words:

for small change in parameters

distribution should not change
drastically

> O

Source: Midnight math stories, Nuts and Bolts of WGANs, Kantorovich-Rubistein Duality, Earth Movers Distance

43

Wasserstein Generative Adversarial Networks

Basic idea, use a different metric to define distance between
probabilities:

e Earth-Mover (EM) distance or Wasserstein-1.

W(P,,P,) = _inf Epoyos [Ix —
s WELP) = _inf Bl lIx =l
e [[(P,[P;) denotes the set of all joint distributions y(x, y)

whose marginals are respectively P, and P,.

Intuitively, v(x, y) indicates how much mass must be
transported from x to y in order to transform the distributions
P, into the distribution P;. The EM distance then is the cost
of the optimal transport plan.

Source: [Arjovsky et al., 2017]

44

Wasserstein Generative Adversarial Networks

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values a = 0.00005, ¢ = 0.01, m = 64, neritic = 5.

Require: : «, the learning rate. ¢, the clipping parameter. m, the batch size.
Neritic, the number of iterations of the critic per generator iteration.
Require: : wy, initial critic parameters. fy, initial generator’s parameters.
1: while # has not converged do
2 for t = 0,.... neritic do
3: Sample {2(®}™ ~ P, a batch from the real data.
4
5

Sample {z(1}™, ~ p(2) a batch of prior samples.

Guw Var I:% E:’,Zl fu'{-f“}) - % Z?;l fu'(gﬁi{z(”))]

6: w < w+ o - RMSProp(w, g.,)

T w + clip(w, —¢,¢)

8: end for

9: Sample {z(1J}”‘ ~ p(z) a batch of prior samples.

10: g < vé‘ m Zm' fu' g&{z))
11: 0+—60—a- RMSPmp(ﬁ'_ye}

12: end while

Source: [Arjovsky et al., 2017] 45

tein Generative Adversarial Networks

— MLP_512

Wasserstein estimate
Wasserstein estimate

0 100000 200000 300000 400000 500000 600COO 0 100000 200000 300000 400000 500000 600000
Generator iterations Generator iterations

Source: [Arjovsky et al., 2017]

46

Wasserstein Generative Adversarial Networks

Source: [Arjovsky et al., 2017]

47

Source: [Brock et al., 2018]

48

2018]

Source: [Brock et al.,

49

BigGAN

Source: [Brock et al., 2018]

El Arjovsky, M., Chintala, S., and Bottou, L. (2017).
Wasserstein gan.
ICML.

@ Brock, A., Donahue, J., and Simonyan, K. (2018).
Large scale gan training for high fidelity natural image
synthesis.
arXiv.

[4 Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever,
., and Abbeel, P. (2016).
Infogan: Interpretable representation learning by
information maximizing generative adversarial nets.
NIPS.

[1 Donahue, J., Krhenbhl, P., and Darrell, T. (2017).
Adversarial feature learning.
ICLR.

50

[8 Goodfellow, I. J., Pouget-Abadie, J., et al. (2014).
Generative adversarial networks.
NIPS.

[8 Mirza, M. and Osindero, S. (2014).
Conditional generative adversarial nets.
arXiv.

[Radford, A., Metz, L., and Chintala, S. (2016).
Unsupervised representation learning with deep

convolutional generative adversarial networks.
ICLR.

50

