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Supervised vs. unsupervised

Supervised:

• Requires huge datasets.

• Annotating is costly.

• Extensive training.

• Driving a car off a cliff.

• Learns tasks, not skills.

• Some well-specified tasks have been largely solved.

• Limit to how much data we can obtain.

• Ignores physical world.
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Supervised vs. unsupervised

How do children learn?

• A lot of evolutionary knowledge.

• Vision, hearing, touch etc. in place.

• Extensive observation.

• Build a model of the world.

• Model vs. physical world.

• Surprise, curiosity guide learning.

• Continuous refinement of model.

• Limited reinforcement learning.

• All initial learning is unsupervised.

3



Supervised vs. unsupervised

Unsupervised:

• In practice, very little labelled data available.

• Need to create model of world, confront it with reality.

• Attend to data.

• Manipulate world.

• Learn from little external reward.

• Learn from very few examples.

• Exploit physical structure of world to obtain links.

• Learn skills rather than tasks.
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Importance of unsupervised learning

What if importance of various kinds of learning is like a cake?

• Pure reinforcement learning = cherry.

• Supervised learning = icing.

• Unsupervised/self-supervised/predictive learning = génoise.

• Perhaps we are still missing a sizeable pie crust? =

meta-learning.

Source: LeCun, Y., The Next Step Towards Artificial Intelligence
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Generative models

Models:

• Discriminative: P(Y |X = x)

• Generative. Joint probability distribution: X × Y ,P(X ,Y )

• No hard demarcation line.

Standard generative models in deep learning:

• Autoencoders.

• Variational autoencoders (VAEs).

• Generative adversarial networks (GANs).
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Generative Adversarial Nets

Approach model training from game-theoretic point of view

[Goodfellow et al., 2014]:

• Two networks: Generator and Discriminator.

• Generator: from latent variable z generate into data space.

• Discriminator: distinguish between real and generated data.

• Generator tries to ”fool” the Discriminator.

• Discriminator strives to ”look through” the Discriminator.

• This can be represented by a minimax two-player game.
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Generative Adversarial Nets

More concretely:

• We aim to learn Generator’s distribution pg over data x.

• Define prior pz(z).

• Represent mapping to data space G (z; θg ).

• G is a neural network parametrized by θg .

• Define second neural network D(x; θd) which outputs single

scalar.

• D(x) represents a probability that x came from the data

rather than pg .

Source: [Goodfellow et al., 2014]
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Generative Adversarial Nets

Training:

• Train D to maximize probability of assigning correct label to

real data and samples from G .

• Train G to maximize probability of D assigning incorrect label

to samples from G .

• D and G play:

• min
G

max
D

V (D,G ) =

Ex∼pdata(x) [log(D(x))] + Ez∼pz(z) [log(1− D(G (z)))].

• log(1− D(G (z))) may saturate early in training.

• Can train G to maximize log(D(G (z))) instead.

Source: [Goodfellow et al., 2014]
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Generative Adversarial Nets

Source: [Goodfellow et al., 2014]
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Generative Adversarial Nets

Source: [Goodfellow et al., 2014]
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Generative Adversarial Nets

Source: [Goodfellow et al., 2014]
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Generative Adversarial Nets

Source: [Goodfellow et al., 2014]
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Generative Adversarial Nets

Source: [Goodfellow et al., 2014]
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Mode collapse
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Deep Convolutional GAN

Architecture guidelines for Deep Convolutional GANs (DCGAN):

• Replace any pooling layers with strided convolutions

(Discriminator) and fractional-strided convolutions

(Generator).

• Use batchnorm in both the generator and the discriminator.

• Remove fully connected hidden layers for deeper architectures.

• Use ReLU activation in generator for all layers except for the

output, which uses Tanh.

• Use LeakyReLU activation in the discriminator for all layers.

Source: [Radford et al., 2016]
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Deep Convolutional GAN

Source: [Radford et al., 2016]
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Deep Convolutional GAN

Source: [Radford et al., 2016]
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Deep Convolutional GAN

Source: [Radford et al., 2016]
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Deep Convolutional GAN

Source: [Radford et al., 2016]
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Deep Convolutional GAN

Source: [Radford et al., 2016]
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Deep Convolutional GAN

Source: [Radford et al., 2016]
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Bidirectional GAN

Source: [Donahue et al., 2017]

23



Bidirectional GAN

Source: [Donahue et al., 2017]
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Conditional Generative Adversarial Nets

Classic GAN training can be reformulated to incorporate additional

knowledge:

• D and G play:

• min
G

max
D

V (D,G ) =

Ex∼pdata(x) [log(D(x|c))] + Ez∼pz(z) [log(1− D(G (z|c)))].

• Training G to maximize log(D(G (z|c))) still works.

Source: [Mirza and Osindero, 2014]
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Conditional Generative Adversarial Nets

Source: [Mirza and Osindero, 2014] 26



Conditional Generative Adversarial Nets

Source: [Mirza and Osindero, 2014]
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Information Maximizing Generative Adversarial Nets

In traditional GANs, G is not restricted. Representations can be

disentangled but there is no such guarantee. Possible to use more

structure without sacrificing unsupervised training:

• Many domains naturally decompose into a set of semantically

meaningful factors of variation.

• MNIST example: allocate a discrete random variable to

represent the digit (0-9), choose to have two additional

continuous variables representing the digits angle and

thickness of the digits stroke.

• Decompose the input noise vector into two parts: (i) z, which

is treated as source of incompressible noise; (ii) latent code c,

the salient structured semantic features of the data

distribution.

Source: [Chen et al., 2016]
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Information Maximizing Generative Adversarial Nets

Possible to introduce additional constraints:

• Generator becomes G (z, c).

• In standard GAN, the generator is free to ignore the additional

latent codes by finding a solution satisfying PG (z|c) = PG (x)

• To cope with trivial codes, introduce information-theoretic

regularization: there should be high mutual information

between latent codes c and generator distribution G (z, c).

• I (c;G (z, c)) should be high.

• In information theory, mutual information between X and Y ,

I (X ;Y ), measures the amount of information learned from

knowledge of random variable Y about the other random

variable X .

• I (X ;Y ) = H(X )− H(X |Y ) = H(Y )− H(Y |X ).

Source: [Chen et al., 2016]
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Information Maximizing Generative Adversarial Nets

Information-regularized minimax game:

• min
G

max
D

VI (D,G ) = V (D,G )− λI (c;G (z, c)).

• In practice, I (c;G (z, c)) is hard to maximize directly.

• Variational Information Maximization.

• Define a variational lower bound.

• LI (G ,Q) = Ec∼P(c),x∼G(z,c) [log(Q(c|x))] + H(c) =

Ex∼G(z,c)

[
Ec′∼P(c|x)

[
log(Q(c

′ |x))
]]

+ H(c) ≤ I (c;G (z, c))

• min
G ,Q

max
D

VInfoGAN(D,G ,Q) = V (D,G )− λLI (G ,Q).

Source: [Chen et al., 2016]
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Information Maximizing Generative Adversarial Nets

Implementation:

• Parametrize the auxiliary distribution Q as a neural network.

• Q and D share all convolutional layers and there is one final

fully connected layer to output parameters for the conditional

distribution Q(c|x).

• InfoGAN only adds a negligible computation cost to GAN.

• LI (G ,Q) ”always” converges faster than normal GAN

objectives.

• InfoGAN essentially comes for ”free” with GAN.

Source: [Chen et al., 2016]
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Information Maximizing Generative Adversarial Nets

Implementation:

• For categorical latent code ci , softmax nonlinearity to

represent Q(ci |x).

• For continuous latent code cj , more options depending on the

true posterior P(cj |x). Treating Q(cj |x) as a factored

Gaussian seems sufficient.

• For categorical latent code λ = 1 sufficient.

• For continuous latent code smaller values of λ.

Source: [Chen et al., 2016]
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Information Maximizing Generative Adversarial Nets

Source: [Chen et al., 2016]
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Information Maximizing Generative Adversarial Nets

Source: [Chen et al., 2016]
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Information Maximizing Generative Adversarial Nets

Source: [Chen et al., 2016]
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Information Maximizing Generative Adversarial Nets

Source: [Chen et al., 2016]
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Loss functions

Source: Jayathilaka, M. Understanding and optimizing GANs (Going back to first principles)
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Loss functions

Source: Jayathilaka, M. Understanding and optimizing GANs (Going back to first principles)
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Loss functions

Source: Jayathilaka, M. Understanding and optimizing GANs (Going back to first principles)
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Jensen-Shannon Divergence

In the original GAN, the objective for the discriminator can be

reforulated as follows:

• C (G ) = max
D

V (G ,D) = −log(4) + 2JSD(pdata‖pg ).

• JSD is the Jensen-Shannon Divergence.

• The global minimum of C (G ) is

C ∗ = −log(4) + 2JSD(pdata‖pg ).

• The only solution is pg = pdata.

• There is a serious problem with JSD.

Source: [Goodfellow et al., 2014]
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Jensen-Shannon Divergence

Even for very simple distributions, θ → 0 does not guarantee

JSD(Pθ,P0)→ 0:

Source: Midnight math stories, Nuts and Bolts of WGANs, Kantorovich-Rubistein Duality, Earth Movers Distance
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Jensen-Shannon Divergence

There might not be enough gradient to facilitate learning.

Source: [Arjovsky et al., 2017]
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Jensen-Shannon Divergence

In other words:

Source: Midnight math stories, Nuts and Bolts of WGANs, Kantorovich-Rubistein Duality, Earth Movers Distance 43



Wasserstein Generative Adversarial Networks

Basic idea, use a different metric to define distance between

probabilities:

• Earth-Mover (EM) distance or Wasserstein-1.

• W (Pr ,Pg ) = inf
γ∈

∏
(Pr ,Pg )

E(x ,y)∼γ [‖x − y‖]

•
∏

(Pr ,Pg ) denotes the set of all joint distributions γ(x , y)

whose marginals are respectively Pr and Pg .

• Intuitively, γ(x , y) indicates how much mass must be

transported from x to y in order to transform the distributions

Pr into the distribution Pg . The EM distance then is the cost

of the optimal transport plan.

Source: [Arjovsky et al., 2017]
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Wasserstein Generative Adversarial Networks

Source: [Arjovsky et al., 2017]
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Wasserstein Generative Adversarial Networks

Source: [Arjovsky et al., 2017]
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Wasserstein Generative Adversarial Networks

Source: [Arjovsky et al., 2017]
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BigGAN

Source: [Brock et al., 2018]
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BigGAN

Source: [Brock et al., 2018]
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BigGAN

Source: [Brock et al., 2018]
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