Learning binary image representations and the path towards 3D

Warsaw University of Technology Tooploox

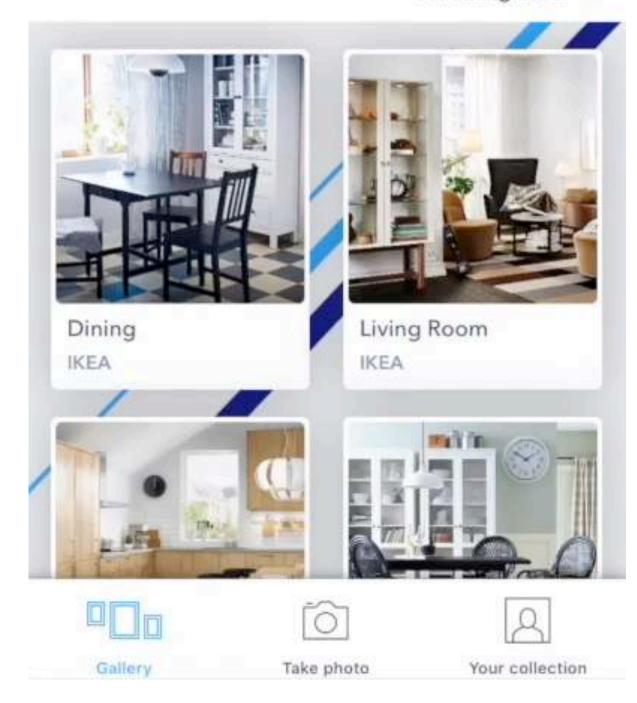
Tomasz Trzciński

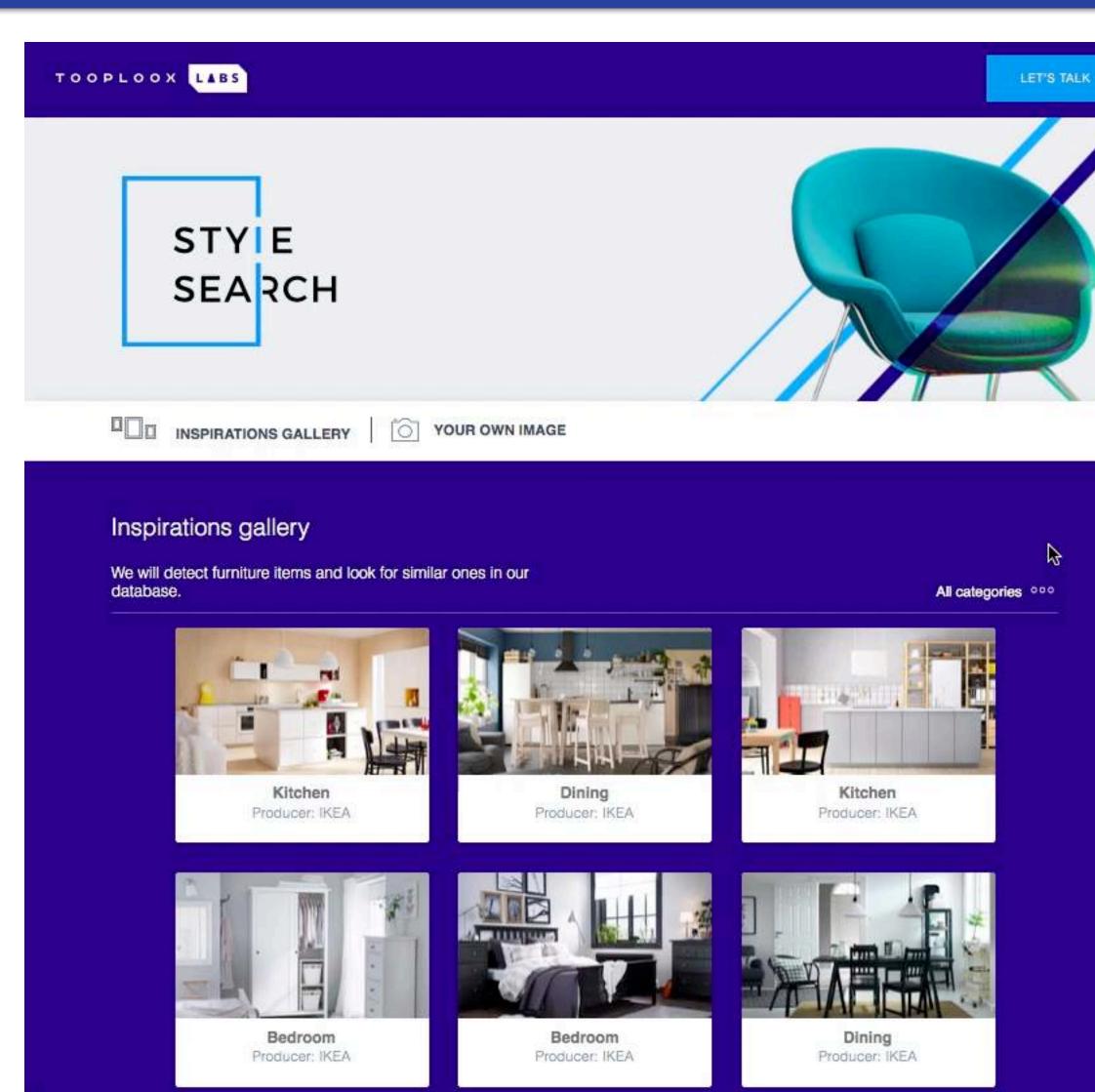
Applications of image representations

Style search

GALLERY GETTINSPIRED, IT'S EASY Style Search detects furniture items and looks for couches, chairs, tables, clocks and beds.

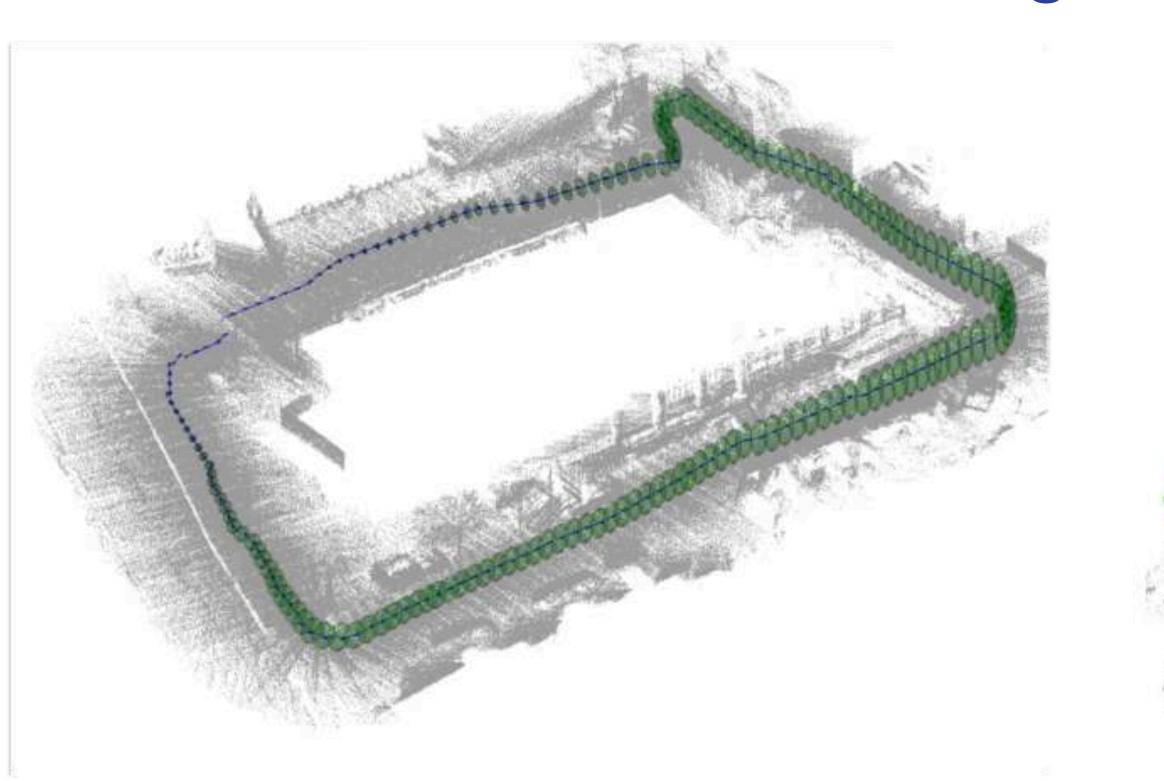
All categories $\,\,\smallsetminus\,\,$

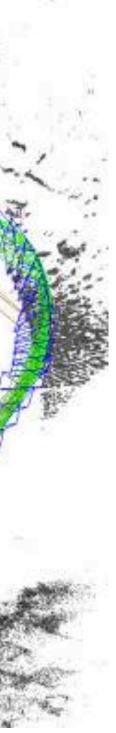


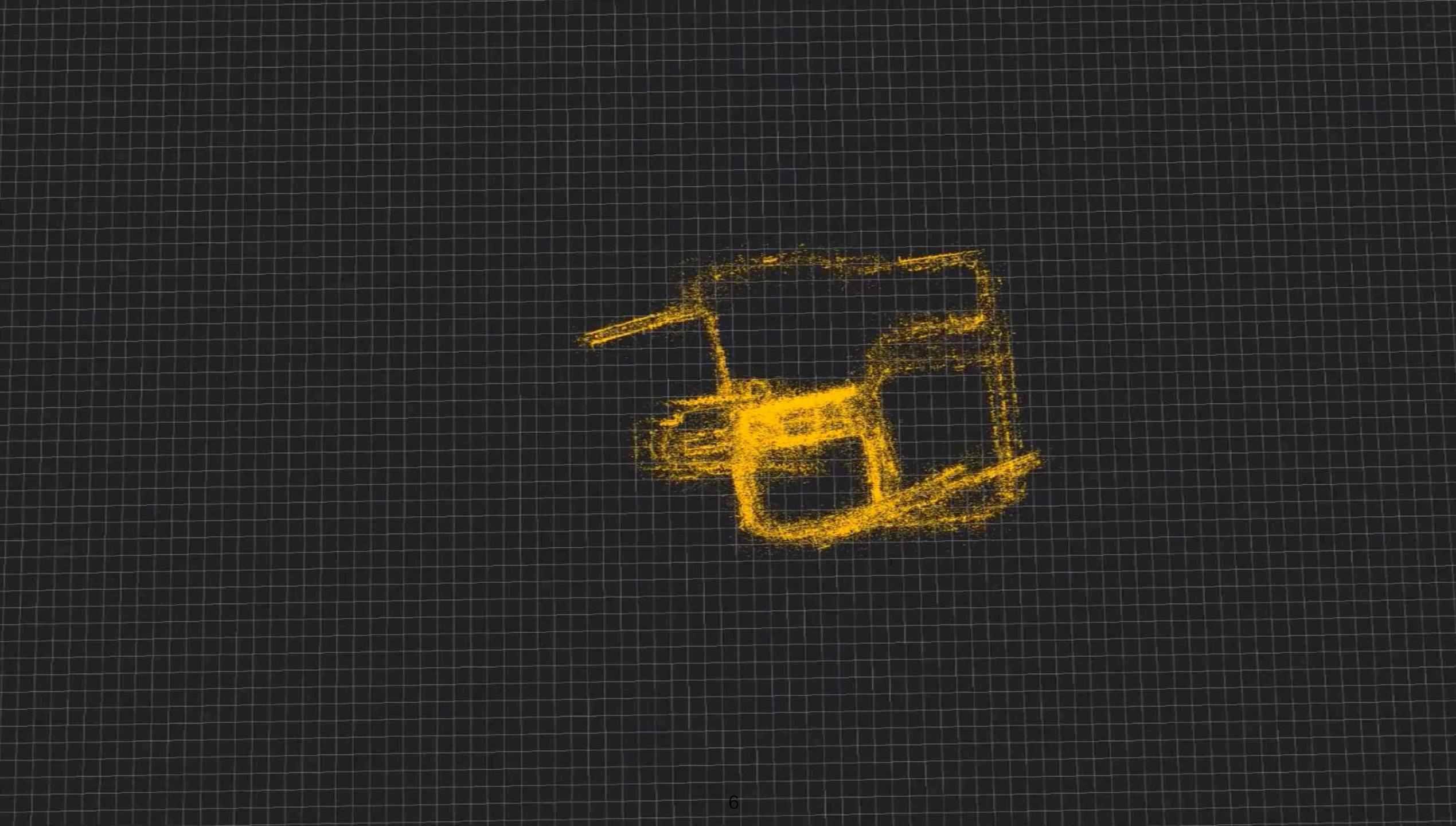


Visual SLAM

Simultaneous Localization and Mapping **Mapping** = creating the map of the environment **Localization** = calculating the position of a camera







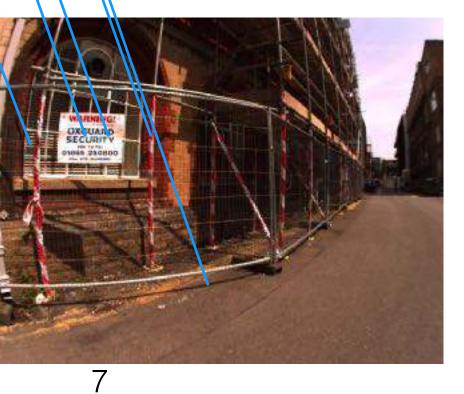
Re-localisation

When SLAM fails... re-localization based on visual search



Database

Query



mage representations

Hand-crafted image representations

Image representation = a set of feature descriptors

- **Multi-dimensional vector**
- Goal: invariance to illumination and viewpoint changes Main application: finding correspondences between images

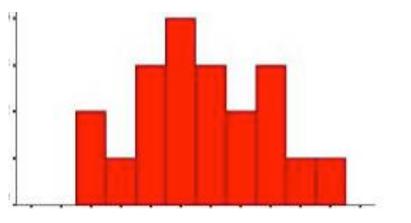
Hand-crafted image representations

Image representation = a set of feature descriptors

- **Multi-dimensional vector**
- Goal: invariance to illumination and viewpoint changes Main application: finding correspondences between images

How do we compute feature descriptors?

- **Detection** of salient image regions
- **Description** based on image patch properties



descriptor = $[10.14 58.23 \dots 23.08]$

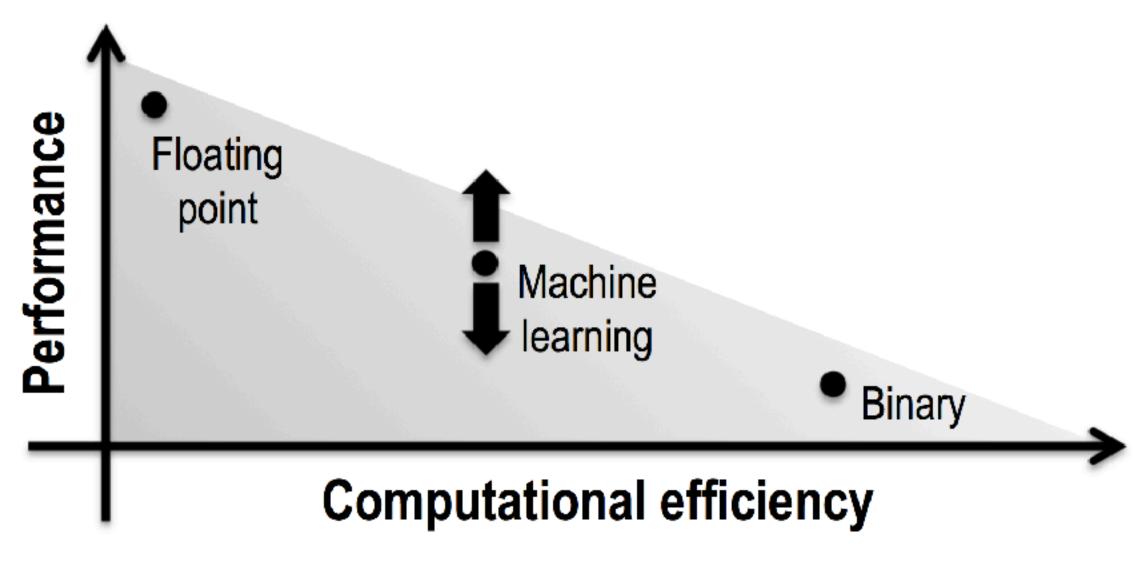
Binary image representations

Why **binary**?

- data compression
- efficient image retrieval
- image hashing

query retrieved

State of the art



Floating-point descriptors: SIFT [Lowe, IJCV'04], SURF [Bay, ECCV'06]

expensive computational and matching costs

Binary descriptors: BRIEF [Calonder, TPAMI'12], ORB [Rublee, ICCV'11], FREAK [Alahi, CVPR'12]

fast, but worse performance than the floating-point competitors Machine-learnt descriptors: [Simonyan, ECCV'12], DeepDesc [Simo-Serra, ICCV'15], DBD-MQ [Duan, CVPR'17]

state-of-the-art results with possibility to adjust for diverse data types (medical, natural, IR)

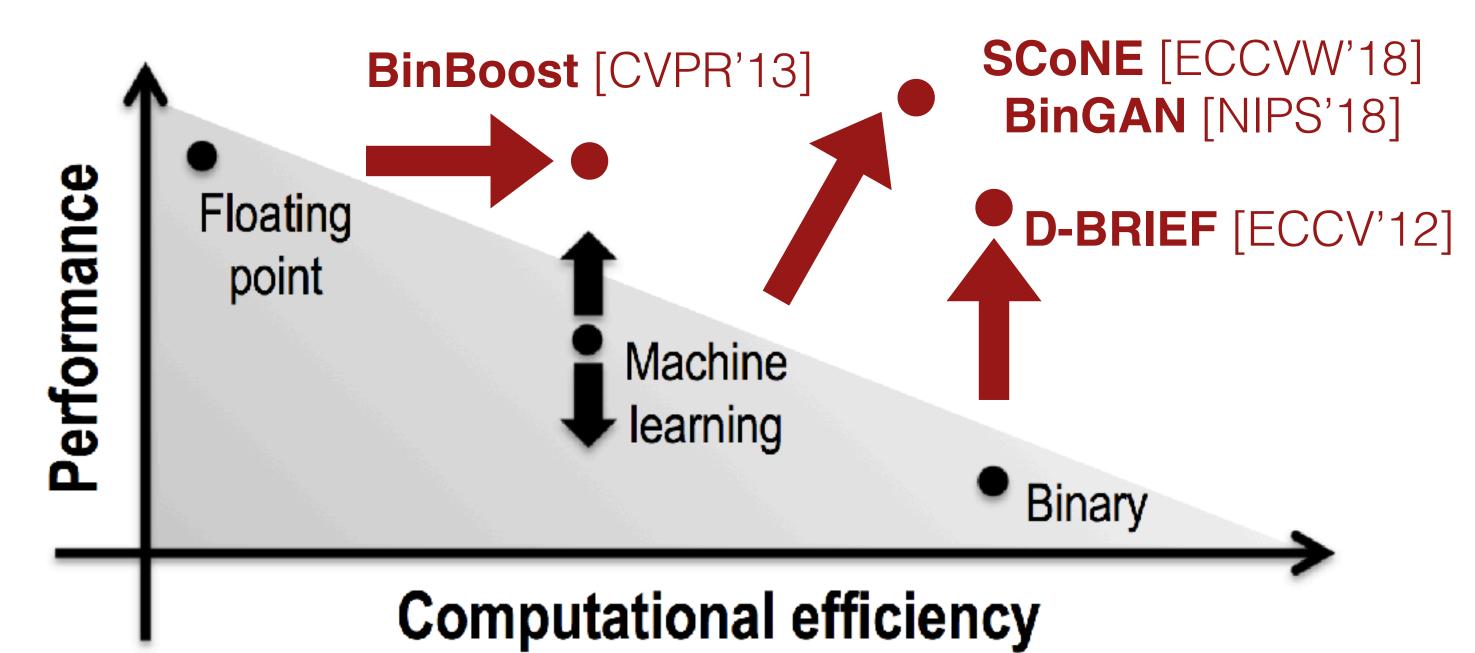
Proposed methods

Bridging the performance gap

Between the state-of-the-art floating-point and binary descriptors by increasing the computational efficiency

Improving the performance

Using machine learning approaches - boosting, convolutional neural networks, Siamese architecture, Generative Adversarial Networks and others



Supervised

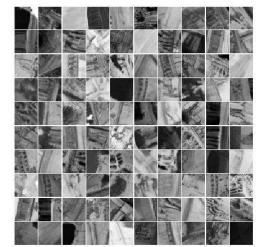
D-Brief: Efficient Discriminative Projections for Binary Descriptors [Trzcinski et al., ECCV'12]

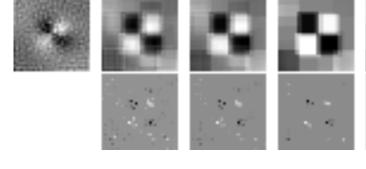
BinBoost: Boosting Binary Keypoint Descriptors [Trzcinski et al., CVPR'13, also: NIPS'12, TPAMI'15]

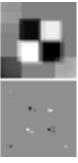
SConE: Siamese Constellation Embedding Descriptor for Image Matching [Trzcinski et al., ECCV'18 Workshop]

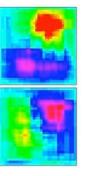
Unsupervised BinGAN: Learning Compact Binary Descriptors with a GAN [Zieba et al. NIPS'18]

3dAAE: Adversarial Autoencoders for Compact Representations of 3D Point Clouds [Zamorski et al. CoRR19]







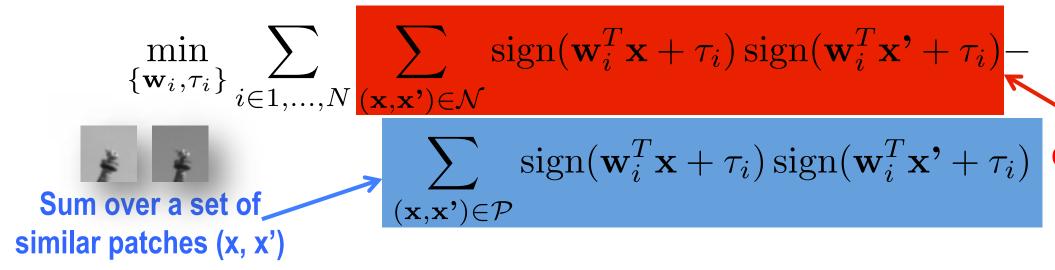


Objective

Computing binary descriptor

 $\forall_{i \in 1,...,N} \quad b_i = \operatorname{sign}(\mathbf{w}_i^T \mathbf{x} + \tau_i)$ projection image patch

Training objective



Computational cost

Applying general projections: complex and computationally expensive

Binary dimension = projection applied to image patch intensities and threshold [~] threshold $\sum \operatorname{sign}(\mathbf{w}_i^T \mathbf{x} + \tau_i) \operatorname{sign}(\mathbf{w}_i^T \mathbf{x'} + \tau_i) \text{ dissimilar patches (x, x')}$

Efficiency & Sparsity

Reducing the computational cost

 $\forall_{i \in 1....N}$

Sparsity

Limited number of elements leads to an **increased efficiency**.

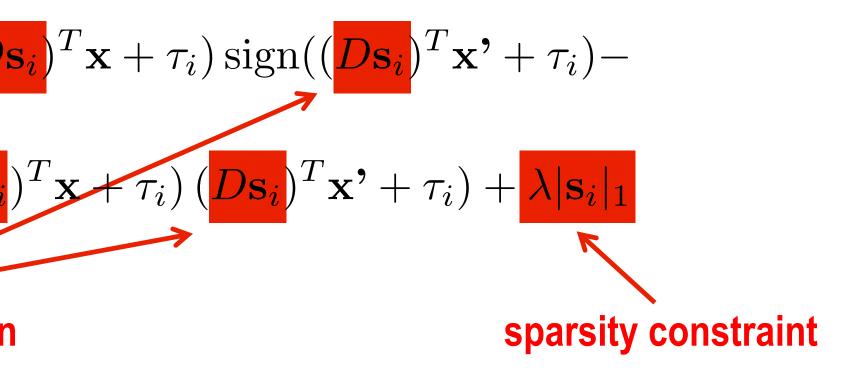
$$\min_{\{\mathbf{s}_{i},\tau_{i}\}} \sum_{i \in 1,...,N} \sum_{(\mathbf{x},\mathbf{x}') \in \mathcal{N}} \operatorname{sign}((D\mathbf{s}_{i}))$$
$$\sum_{(\mathbf{x},\mathbf{x}') \in \mathcal{P}} \operatorname{sign}((D\mathbf{s}_{i}))$$

linear combination

Direct minimization is difficult as it involves a non-differentiable sign function. 17

Projections trained to be a linear combination of a few elements from a dictionary:

$$\mathbf{w} \quad \mathbf{w}_i = D\mathbf{s}_i$$



Training

Related objective

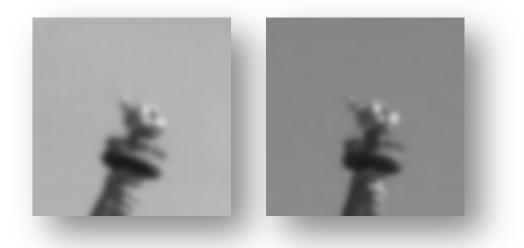
Following [Strecha, TPAMI'12], we drop the sign function and minimize:

$$\min_{\{\mathbf{s}_i\}} \sum_{i} \frac{\sum_{(\mathbf{x},\mathbf{x'})\in\mathcal{P}} ((D\mathbf{s}_i)^T (\mathbf{x} - \mathbf{x'}))^2}{\sum_{(\mathbf{x},\mathbf{x'})\in\mathcal{N}} ((D\mathbf{s}_i)^T (\mathbf{x} - \mathbf{x'}))^2} + \lambda |\mathbf{s}_i|_1$$

The optimal thresholds found through a **one-dimensional** search.

Training datasets

Liberty, Notre Dame, Yosemite [*Brown, PAMI'12*] datasets consist of pairs of:

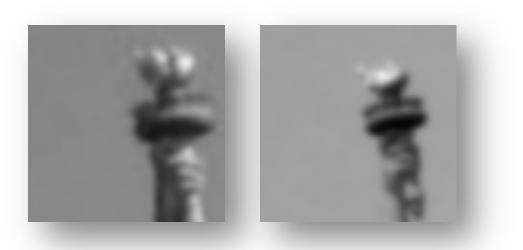


similar (positive) patches

Training sets incorporate various transformations, e.g.:

intensity change

different (negative) patches



affine transformation

Dictionaries

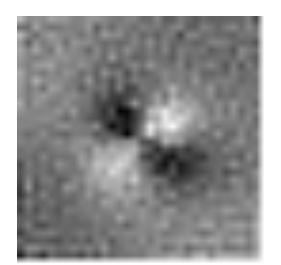
Fast response elements

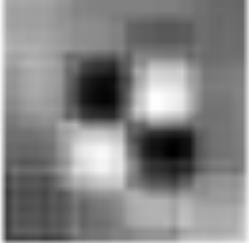
The dictionary elements are designed for the responses to be **computed fast**.

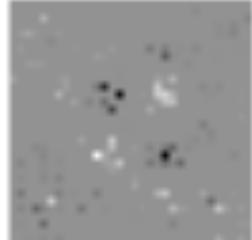
Dictionaries used

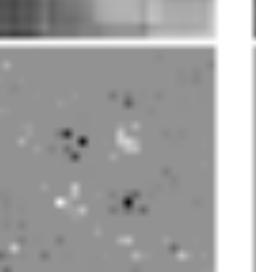
 $\mathbf{w}_i^T \mathbf{x} = (D\mathbf{s}_i)^T \mathbf{x} = \sum \mathbf{s}_{ij} D_j^T \mathbf{x}$ *j* such that $\mathbf{s}_{ij} \neq 0$

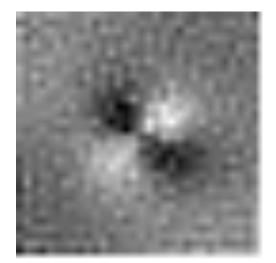
Sample approximations

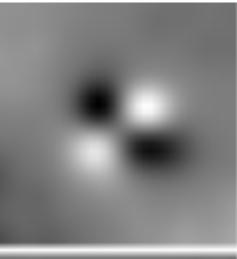


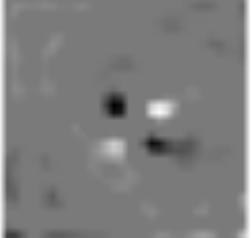


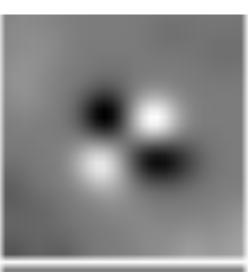


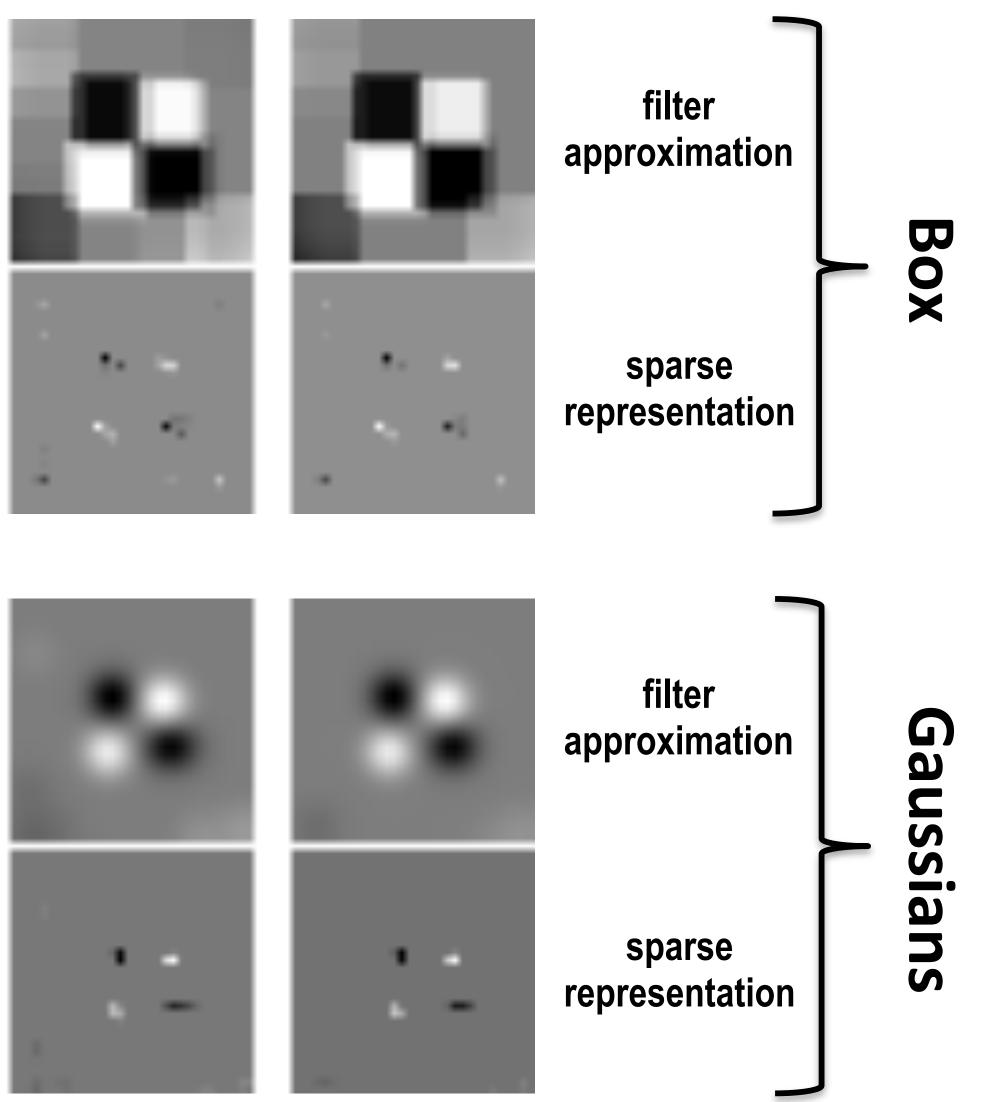




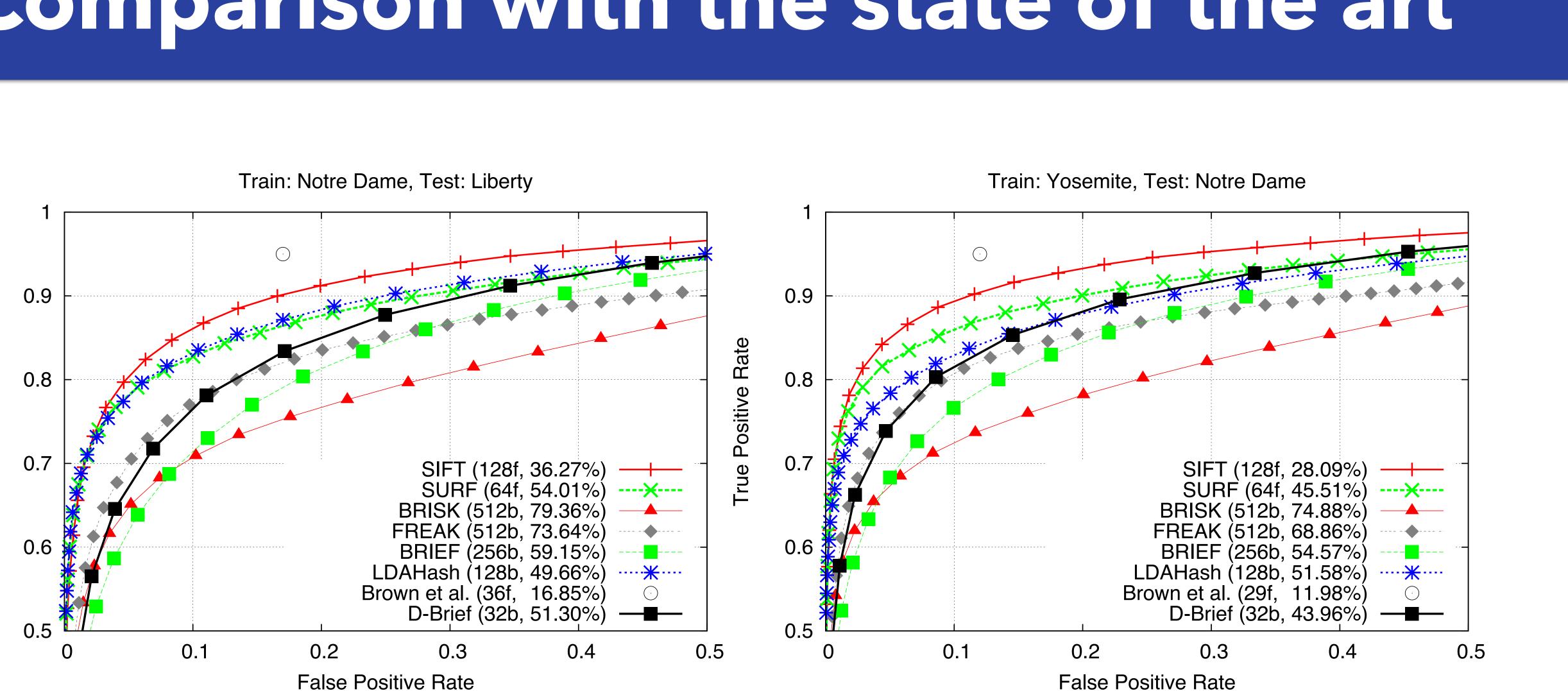








Comparison with the state of the art



True Positive Rate

22

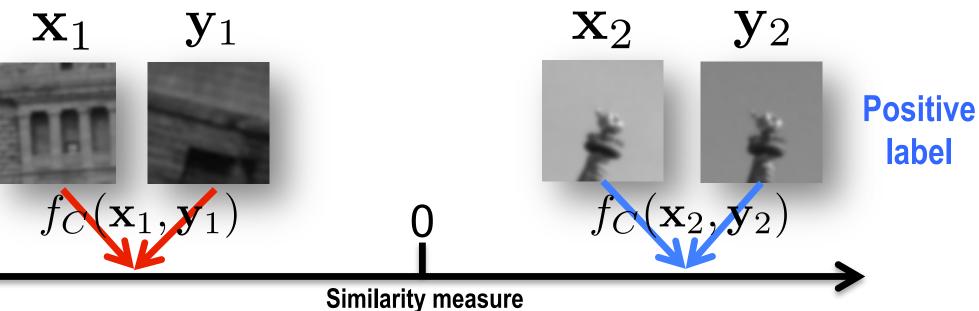
Learning with non-linearities

Room for improvement

D-Brief better than intensity-based descriptors, but...

Feature descriptor learning as a metric learning problem

Negative label

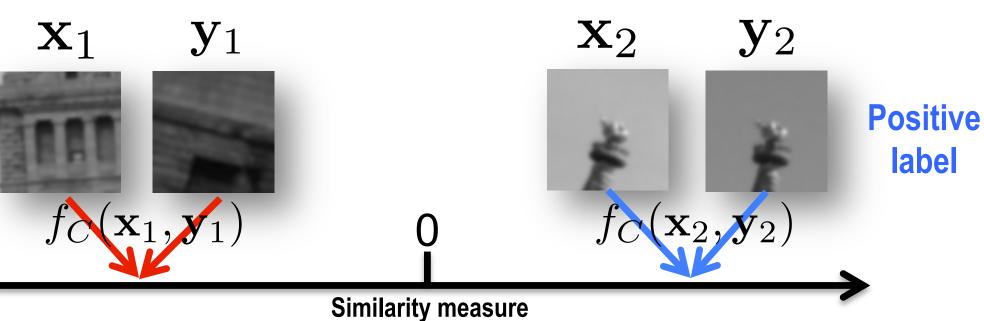


Learning with non-linearities

Room for improvement

D-Brief better than intensity-based descriptors, but...

Feature descriptor learning as a metric learning problem



Boosting

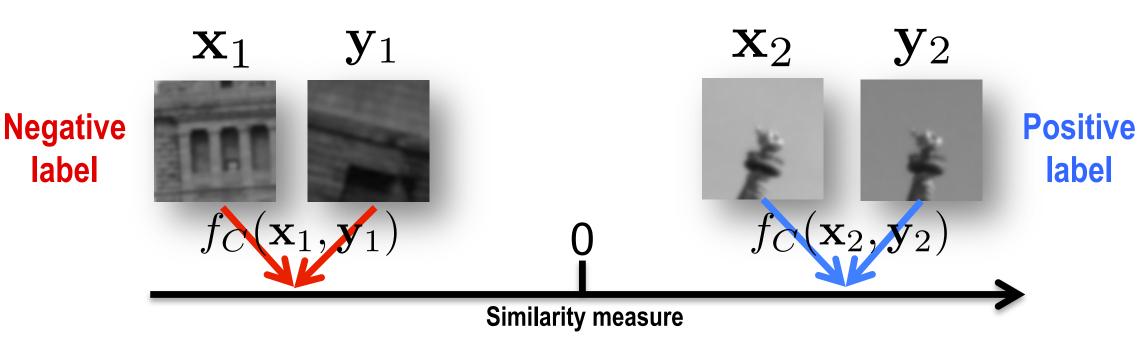
Greedy supervised learning method that trains an ensemble of weak learners

Learning with non-linearities

Room for improvement

D-Brief better than intensity-based descriptors, but...

Feature descriptor learning as a metric learning problem



Boosting

Greedy supervised learning method that trains an ensemble of weak learners

Novel framework

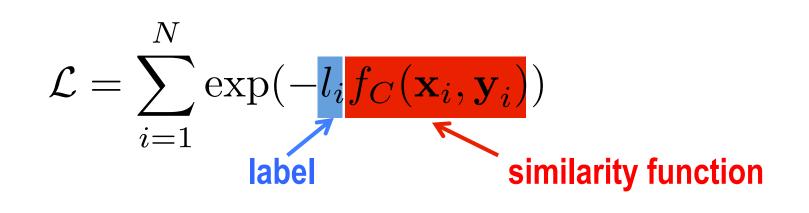
- Learning binary descriptors with **non-linear filters**
- **Encompasses** many **state-of-the-art descriptor** formulations

Problem formulation

Exponential loss

Patch **x** —> descriptor $C(\mathbf{x}) = [C_1(\mathbf{x}), ..., C_D(\mathbf{x})]$

Similarity function $f(C(\mathbf{x}), C(\mathbf{y})) = f_C(\mathbf{x}, \mathbf{y})$ defined over image patch pairs and labels:



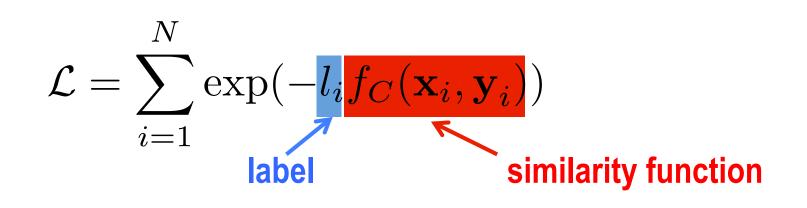
Problem formulation

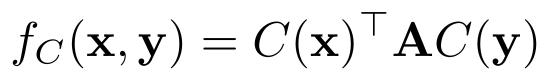
Exponential loss

Patch $\mathbf{x} \longrightarrow \text{descriptor} C(\mathbf{x}) = [C_1(\mathbf{x}), ..., C_D(\mathbf{x})]$

Similarity function

Similarity function $f(C(\mathbf{x}), C(\mathbf{y})) = f_C(\mathbf{x}, \mathbf{y})$ defined over image patch pairs and labels:





Problem formulation

Exponential loss

Patch $\mathbf{x} \longrightarrow \text{descriptor} C(\mathbf{x}) = [C_1(\mathbf{x}), ..., C_D(\mathbf{x})]$

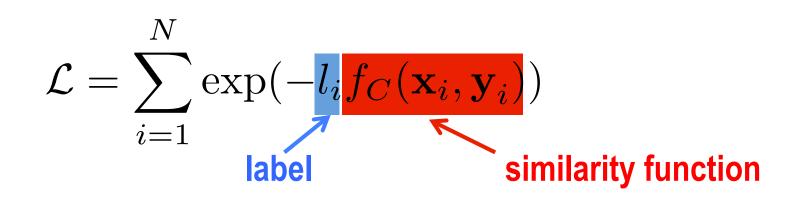
Similarity function

 $f_C(\mathbf{x}, \mathbf{y}) =$

Boosted Similarity Sensitive Coding (SCC) [Shakhnarovich, MIT'06] Similarity function: weighted sum of thresholded learners' responses:

 $f_{SSC}(\mathbf{x},\mathbf{y}) =$

Similarity function $f(C(\mathbf{x}), C(\mathbf{y})) = f_C(\mathbf{x}, \mathbf{y})$ defined over image patch pairs and labels:



$$C(\mathbf{x})^{\top} \mathbf{A} C(\mathbf{y})$$

$$\sum_{d=1}^{D} \alpha_d h_d(\mathbf{x}) h_d(\mathbf{y})$$

Redundancy of Boosted SCC

Mitigated by modelling also the **correlation** between weak learners $\{h_d(.)\}$

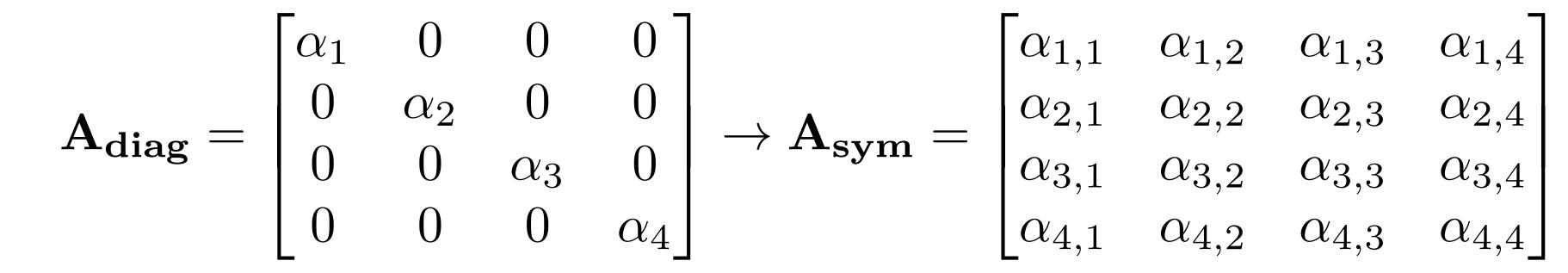
$$f_{FP}(\mathbf{x}, \mathbf{y}) = \sum_{k,k'} \alpha_{k,k'} h_k(\mathbf{x}) h_{k'}(\mathbf{y}) = \mathbf{h}(\mathbf{x})^T \mathbf{A} \mathbf{h}(\mathbf{y})$$
symmetric

FPB00st

Redundancy of Boosted SCC

Mitigated by modelling also the **correlation** between weak learners $\{h_d(.)\}$

$$f_{FP}(\mathbf{x}, \mathbf{y}) = \sum_{k,k'} \alpha_{k,k'} h_k(\mathbf{x}) h_{k'}(\mathbf{y}) = \mathbf{h}(\mathbf{x})^T \mathbf{A} \mathbf{h}(\mathbf{y})$$
symmetric



$$\forall_{i,j} \, \alpha_{i,j} = \alpha_{j,i}$$

FPBoost

Redundancy of Boosted SCC

Mitigated by modelling also the **correlation** between weak learners $\{h_d(.)\}$

$$f_{FP}(\mathbf{x}, \mathbf{y}) = \sum_{k,k'} \alpha_{k,k'} h_k(\mathbf{x}) h_{k'}(\mathbf{y}) = \mathbf{h}(\mathbf{x})^T \mathbf{A} \mathbf{h}(\mathbf{y})$$
symmetric

Factorization

With **A** constrained to be **symmetric**:

 $\mathbf{A} = \mathbf{B}\mathbf{W}\mathbf{B}^T$

$$=\sum_{k=1}^{K} w_k \mathbf{b}_k \mathbf{b}_k^T$$

FPBoost

Redundancy of Boosted SCC

Mitigated by modelling also the **correlation** between weak learners $\{h_d(.)\}$

$$f_{FP}(\mathbf{x}, \mathbf{y}) = \sum_{k,k'} \alpha_{k,k'} h_k(\mathbf{x}) h_{k'}(\mathbf{y}) = \mathbf{h}(\mathbf{x})^T \mathbf{A} \mathbf{h}(\mathbf{y})$$
symmetric

Factorization

With **A** constrained to be **symmetric**:

FPBoost descriptor:

$$\mathbf{A} = \mathbf{B}\mathbf{W}\mathbf{B}^T = \sum_{k=1}^K w_k \mathbf{b}_k \mathbf{b}_k^T$$
$$C(\mathbf{x}) = \mathbf{B}^T \mathbf{h}(\mathbf{x}) = \left[\sum_{k=1}^K b_{1,k} h_k(\mathbf{x}), \dots, \sum_{k=1}^K b_{D,k} h_k(\mathbf{x})\right]$$

33

FPBoost

Redundancy of Boosted SCC

Mitigated by modelling also the **correlation** between weak learners $\{h_d(.)\}$

$$f_{FP}(\mathbf{x}, \mathbf{y}) = \sum_{k,k'} \alpha_{k,k'} h_k(\mathbf{x}) h_{k'}(\mathbf{y}) = \mathbf{h}(\mathbf{x})^T \mathbf{A} \mathbf{h}(\mathbf{y})$$
symmetric

Factorization

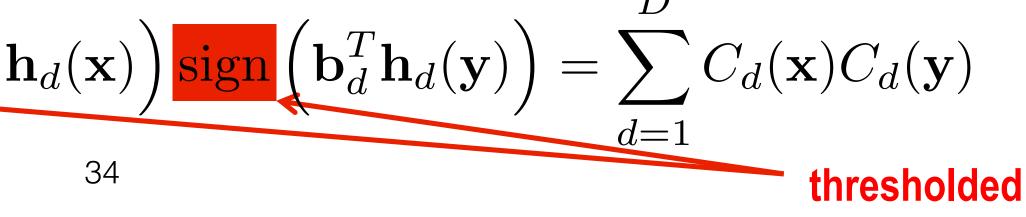
With **A** constrained to be **symmetric**:

FPBoost descriptor:

$$\mathbf{A} = \mathbf{B}\mathbf{W}\mathbf{B}^{T} = \sum_{k=1}^{K} w_{k}\mathbf{b}_{k}\mathbf{b}_{k}^{T}$$
$$C(\mathbf{x}) = \mathbf{B}^{T}\mathbf{h}(\mathbf{x}) = \left[\sum_{k=1}^{K} b_{1,k}h_{k}(\mathbf{x}), \dots, \sum_{k=1}^{K} b_{D,k}h_{k}(\mathbf{x})\right]$$

BinBoost descriptor:

$$f_B(\mathbf{x}, \mathbf{y}) = \sum_{d=1}^{D} \operatorname{sign}\left(\mathbf{b}_d^T\right)$$



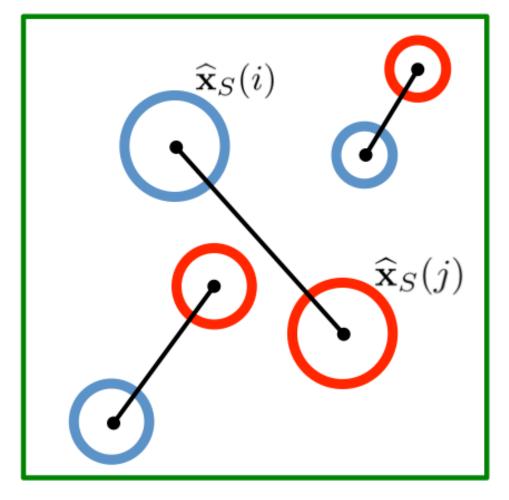
Weak learners

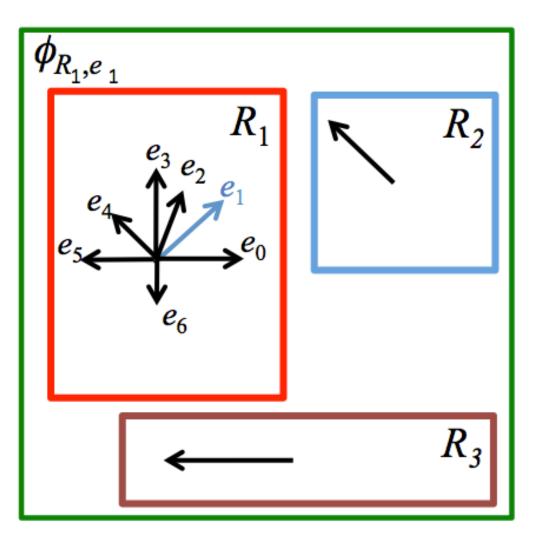
Intensity-based learners Inspired by BRIEF, BRISK or FREAK

response = $\widehat{\mathbf{x}}_{S}(i) > \widehat{\mathbf{x}}_{S}(j)$

Gradient-based learners Inspired by SIFT

gradients for orientation e_d region R_d response =gradients for all orientations region R_d





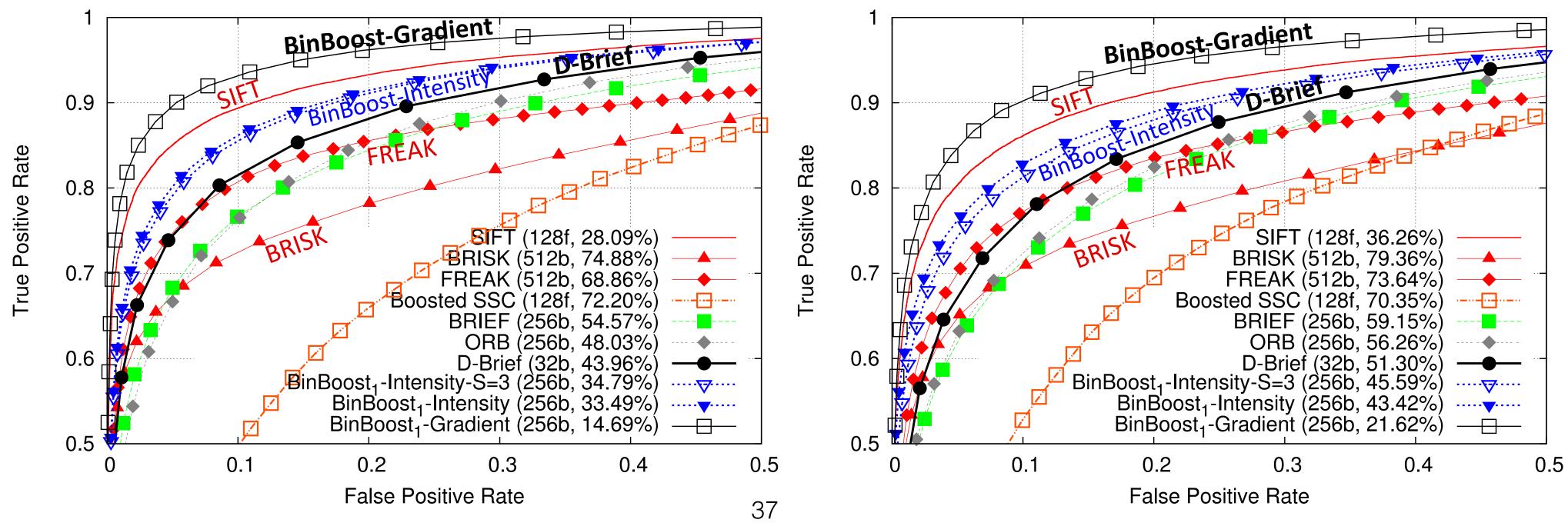
Gradient-based weak learners

Weak learners comparison

Intensity-based weak learners

Boosting improves the pooling configuration of other binary descriptors **Gradient-based weak learners**

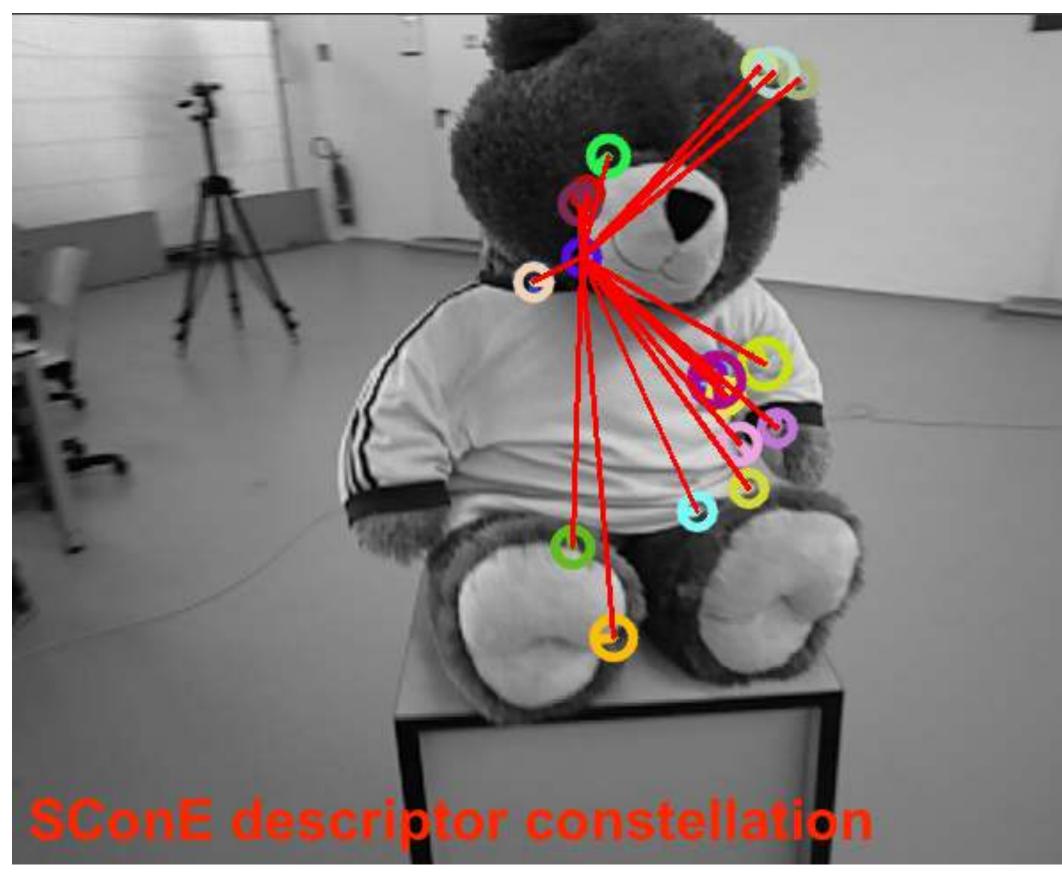
BinBoost-Gradient remains the best boosted descriptor of our framework

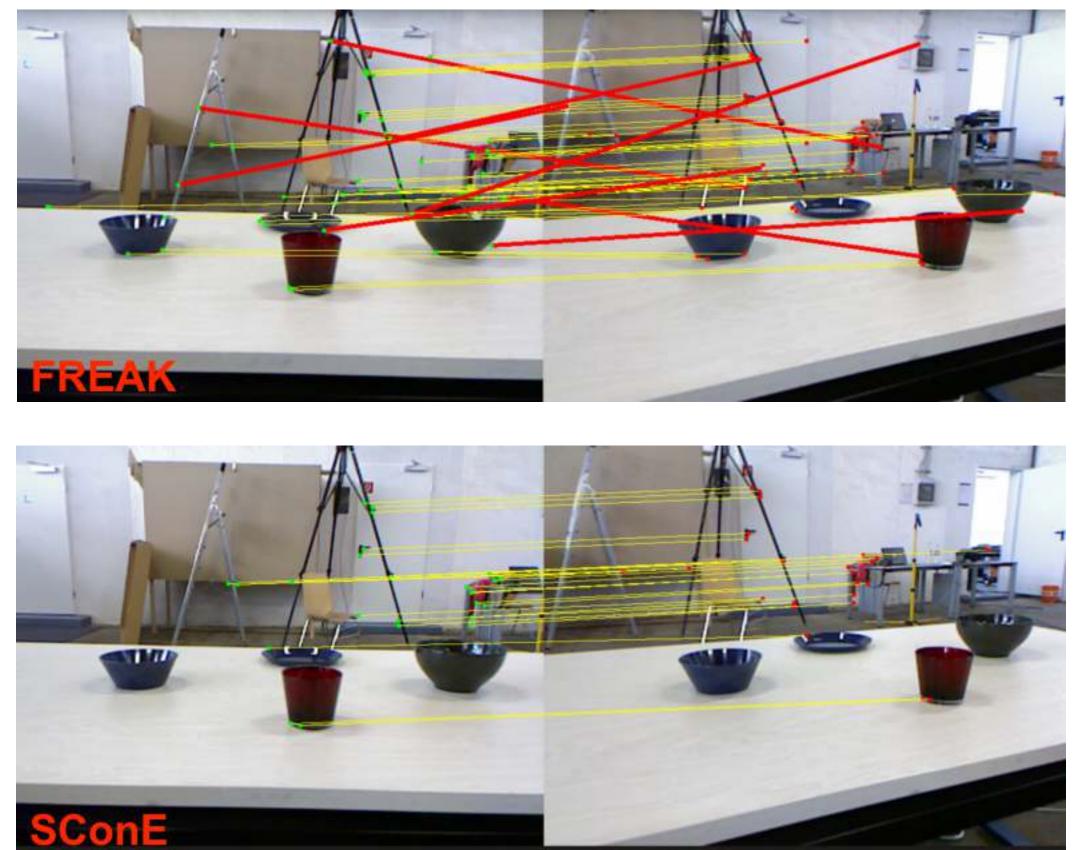


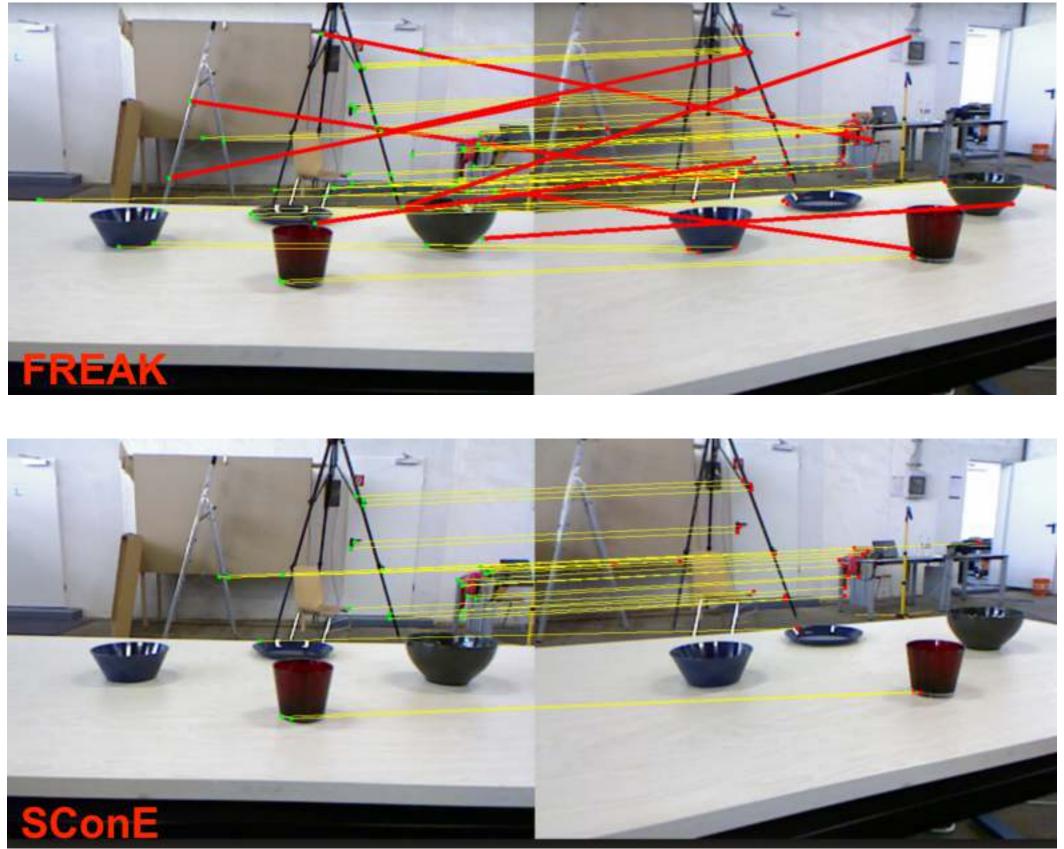
Train: Yosemite, Test: Notre Dame

Train: Notre Dame, Test: Liberty

Siamese Constellation Embedding



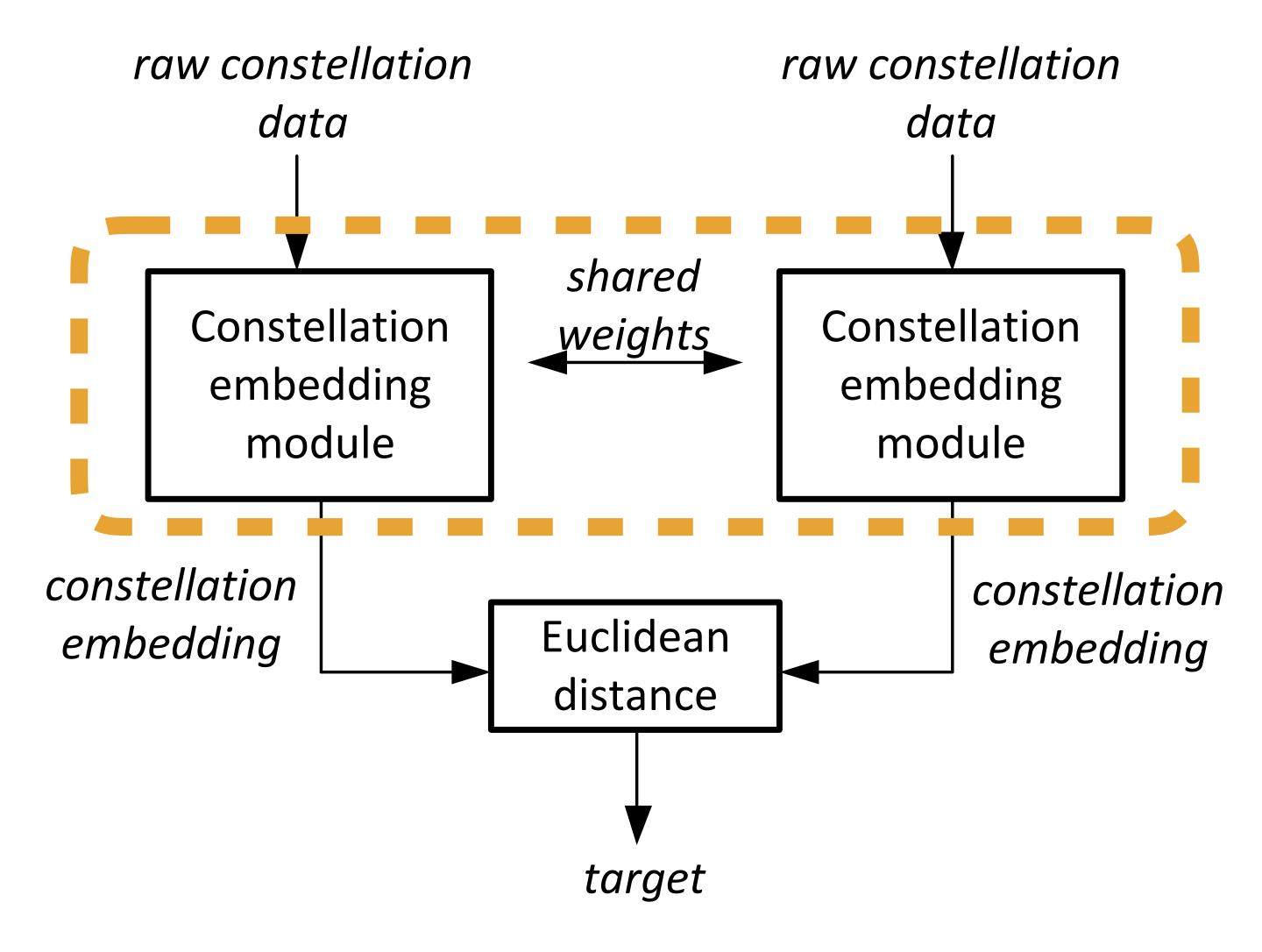




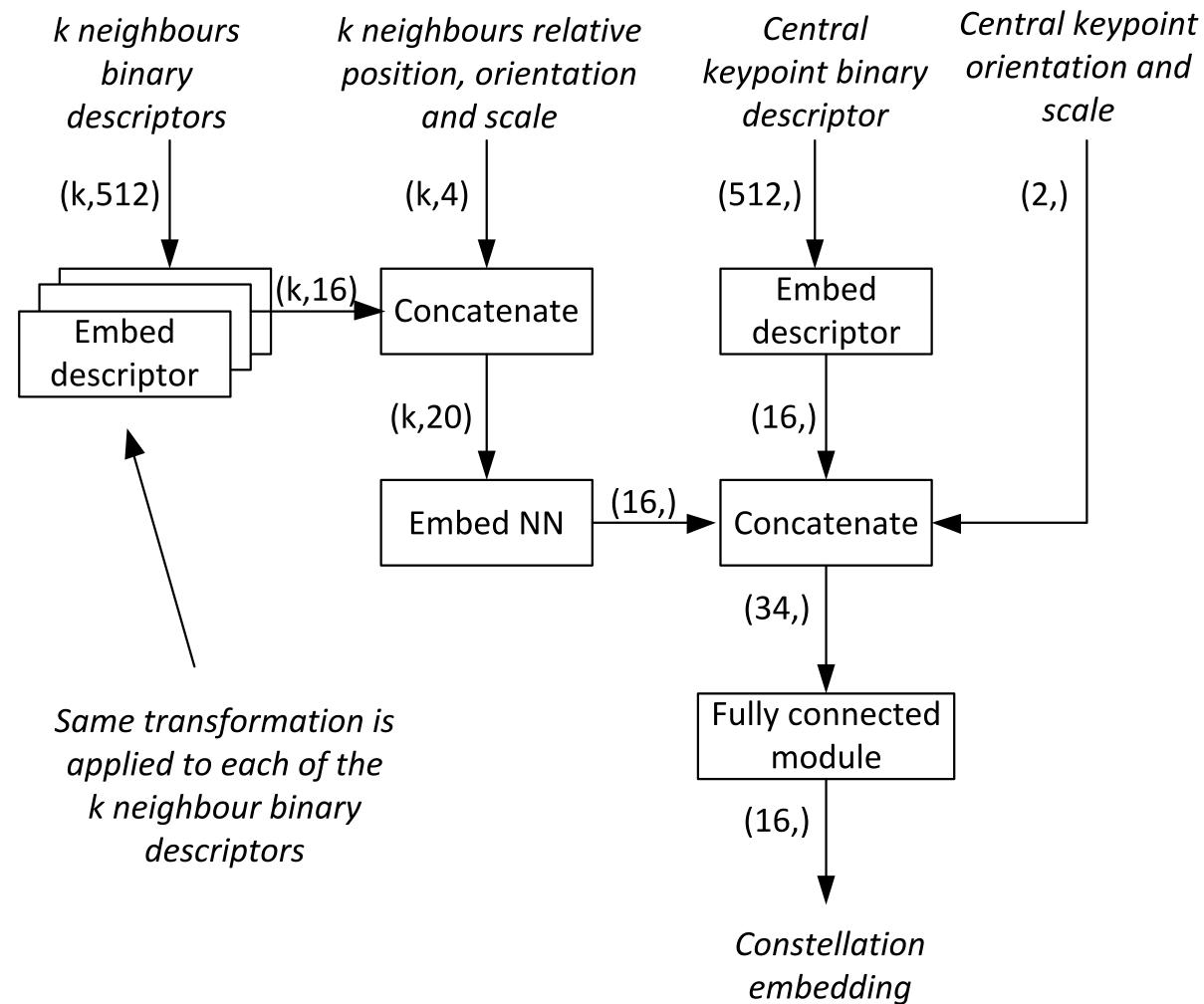
SCONE Siamese Constellation Embedding

ECCV 2018 Submission ID 1735

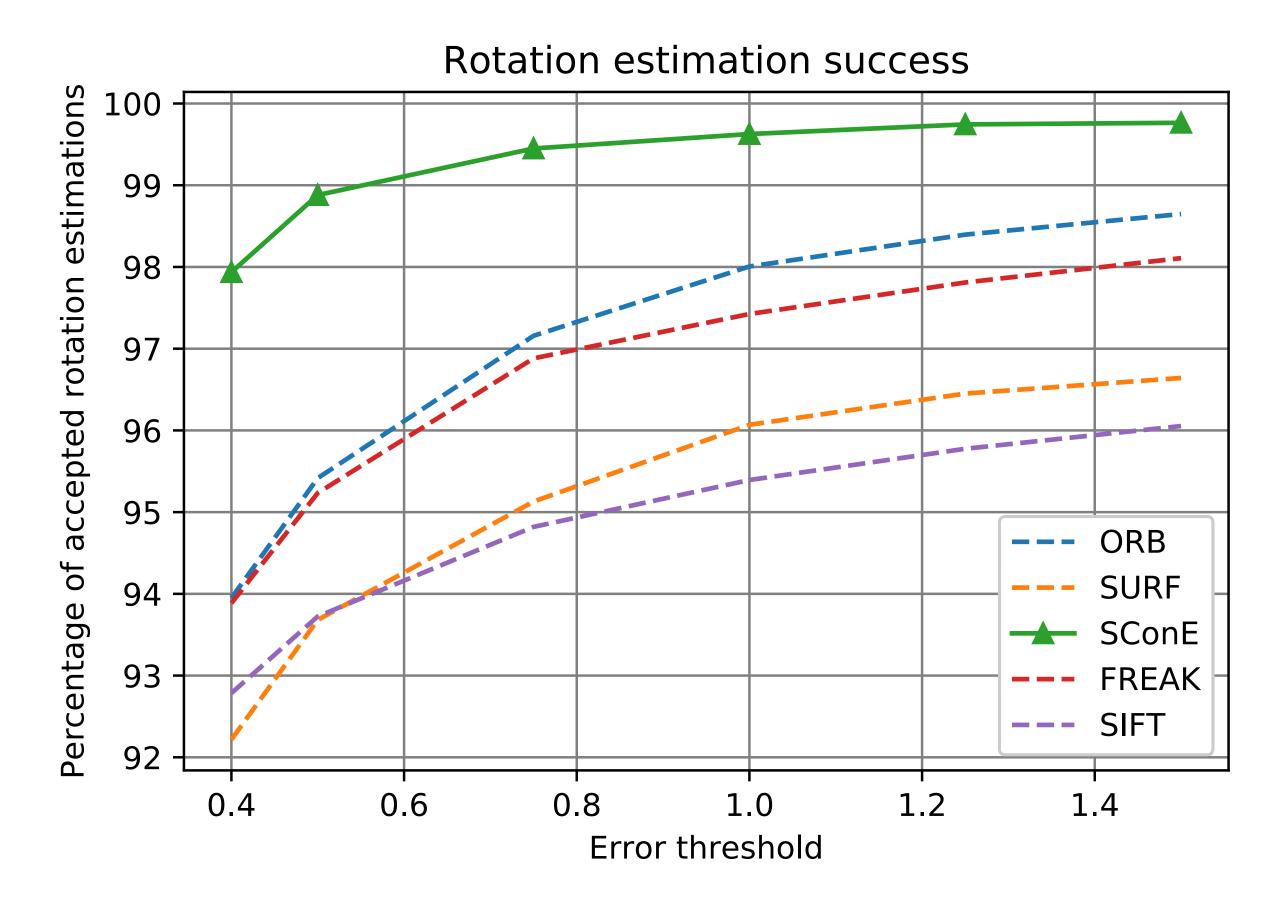
SConE architecture

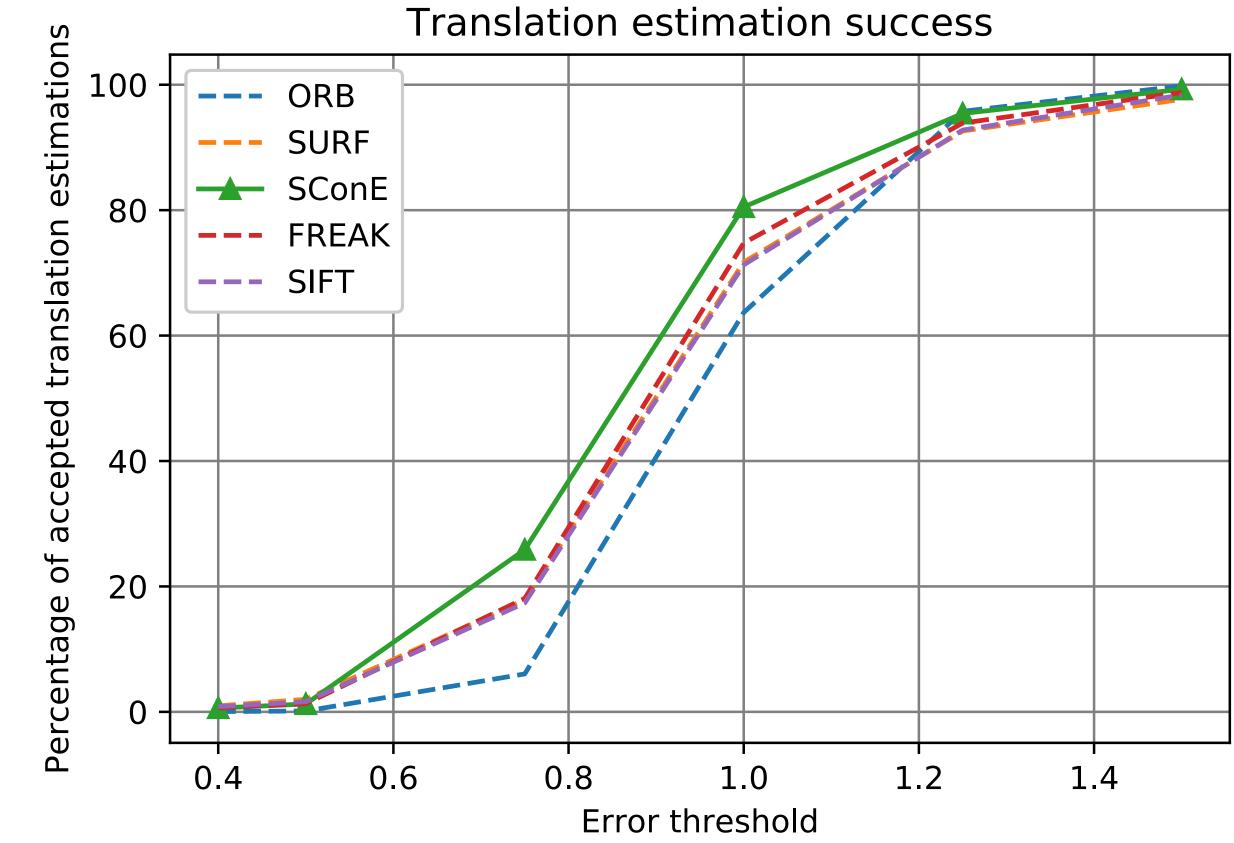


SConE architecture



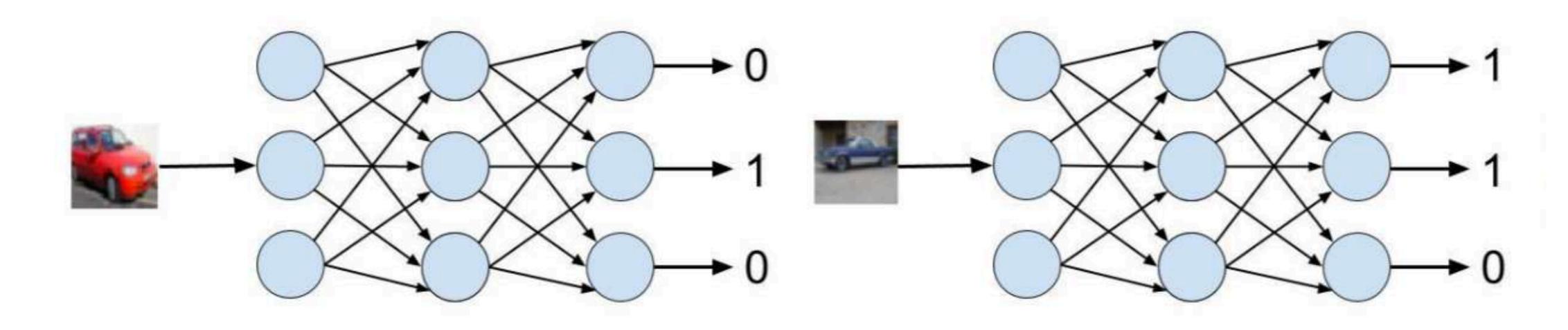
Results - TUM Dataset



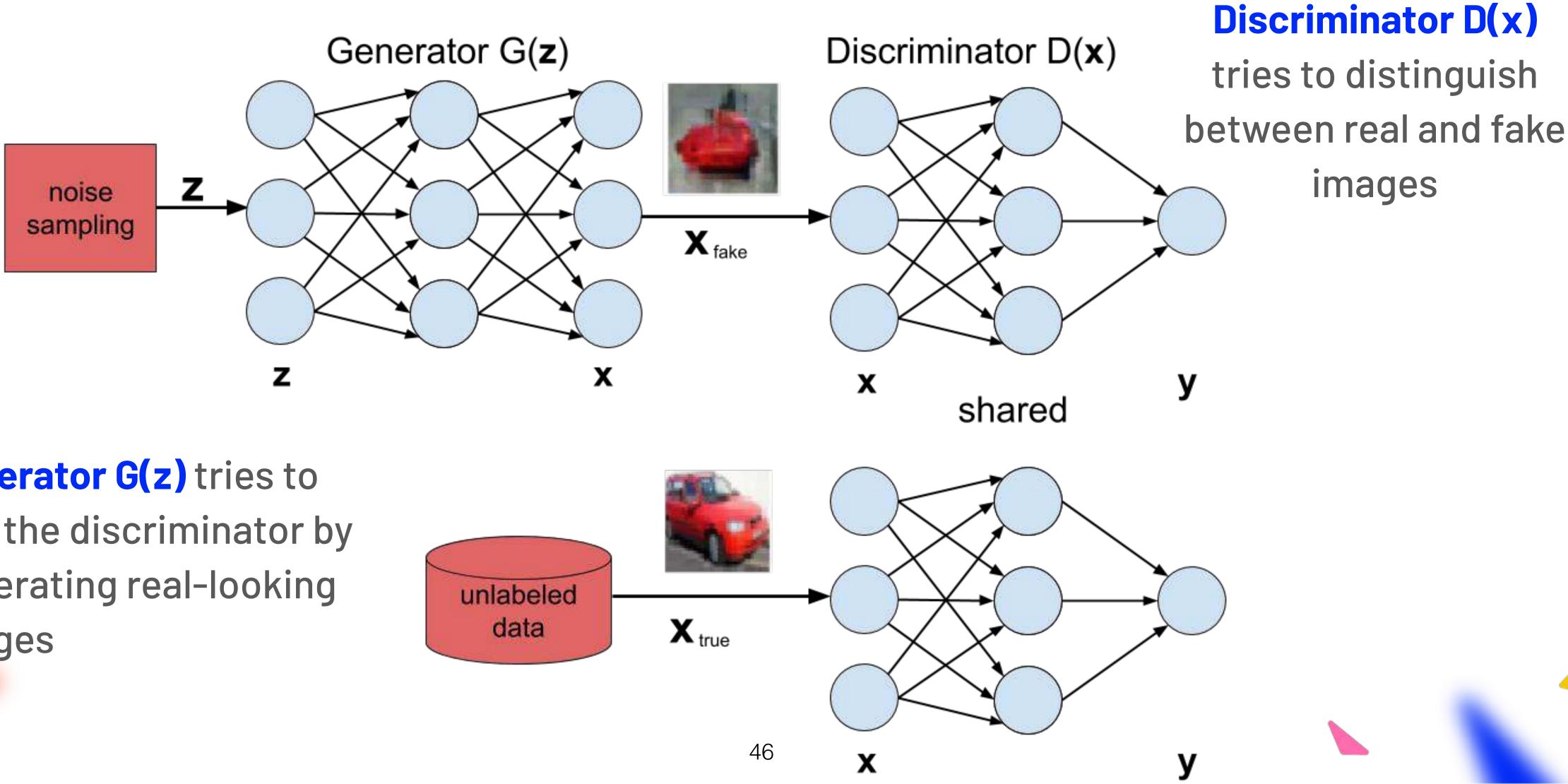


Unsupervised learning

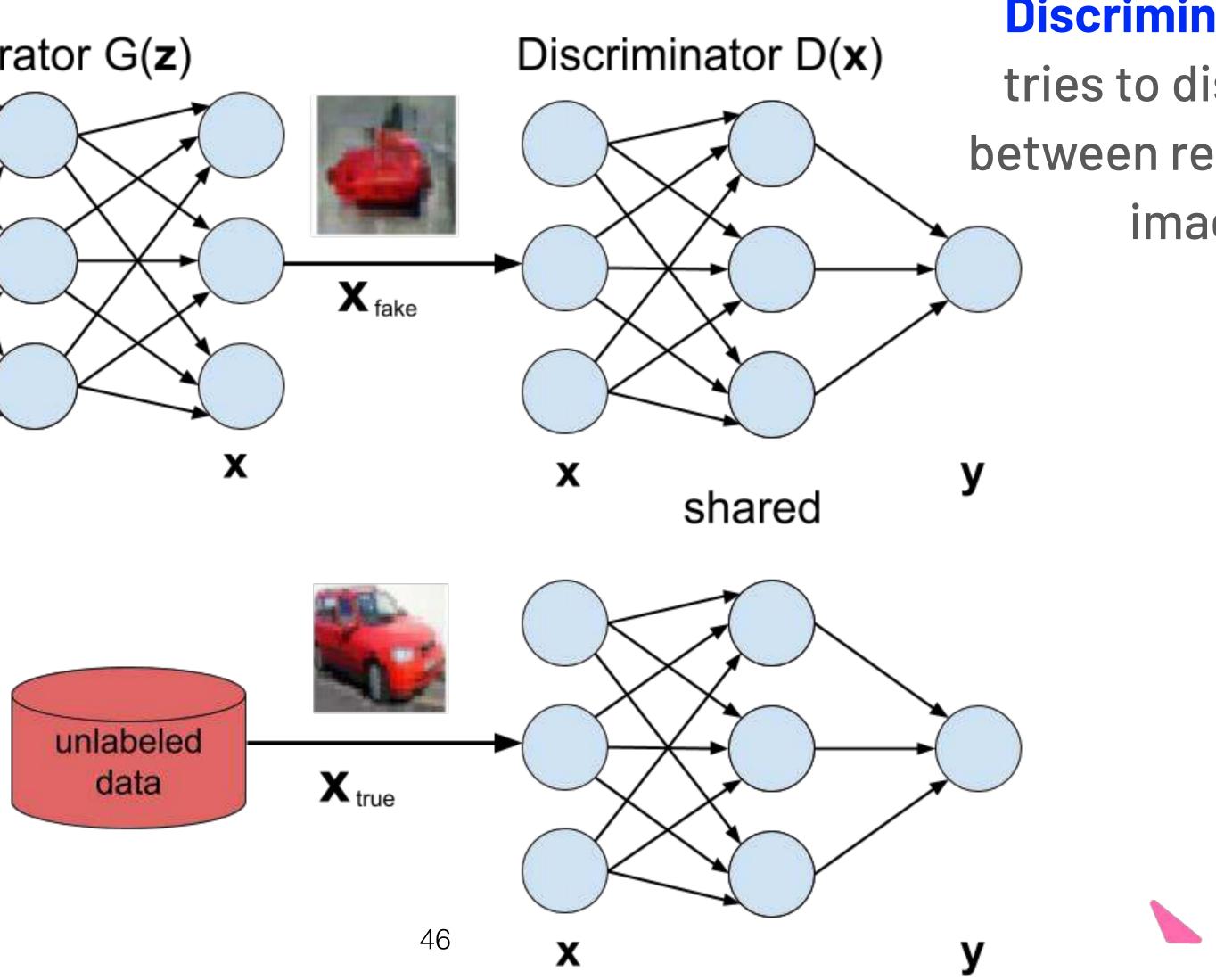
How can we learn descriptors without costly and imperfect data labeling?



Generative Adversarial Networks

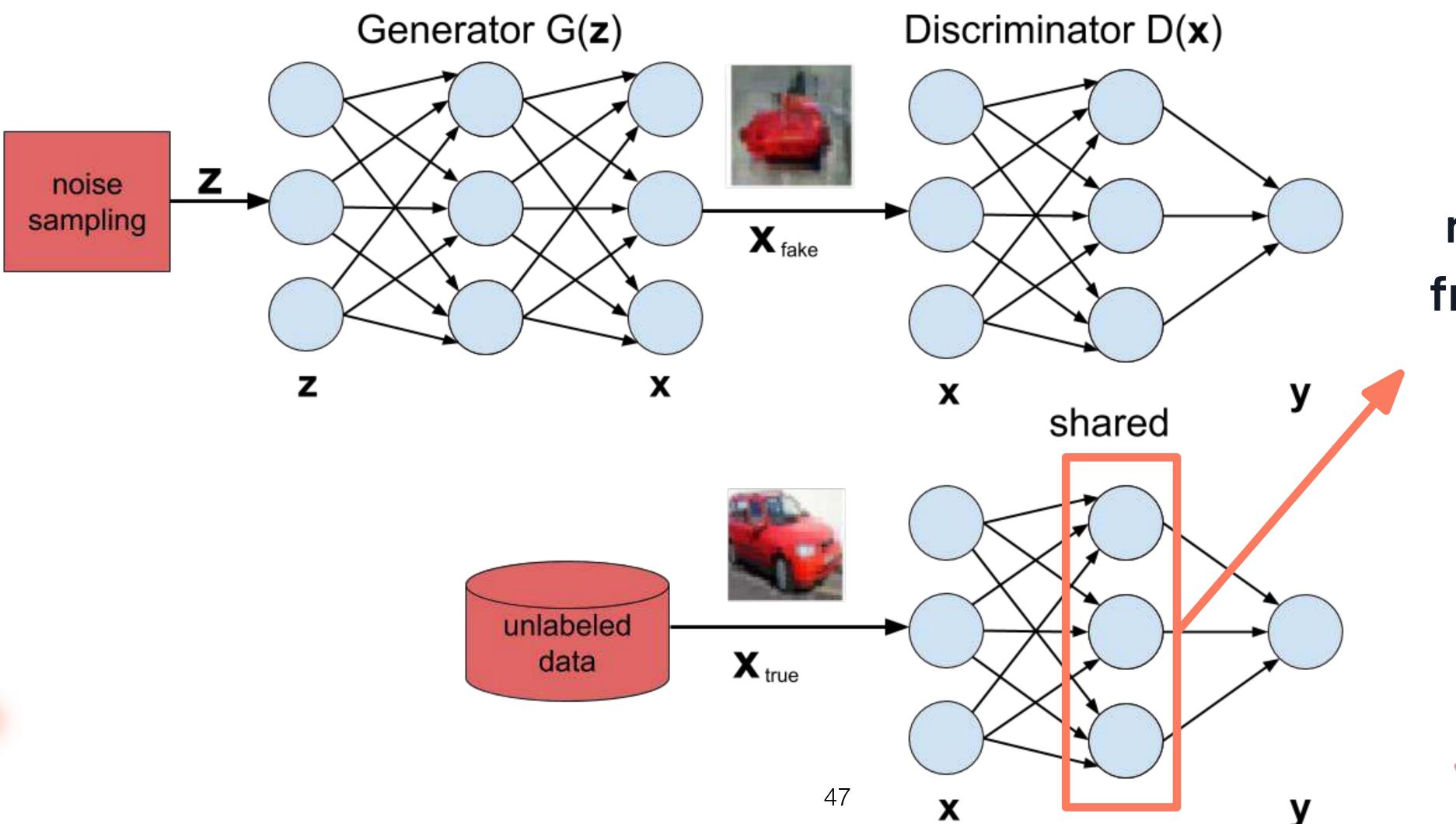


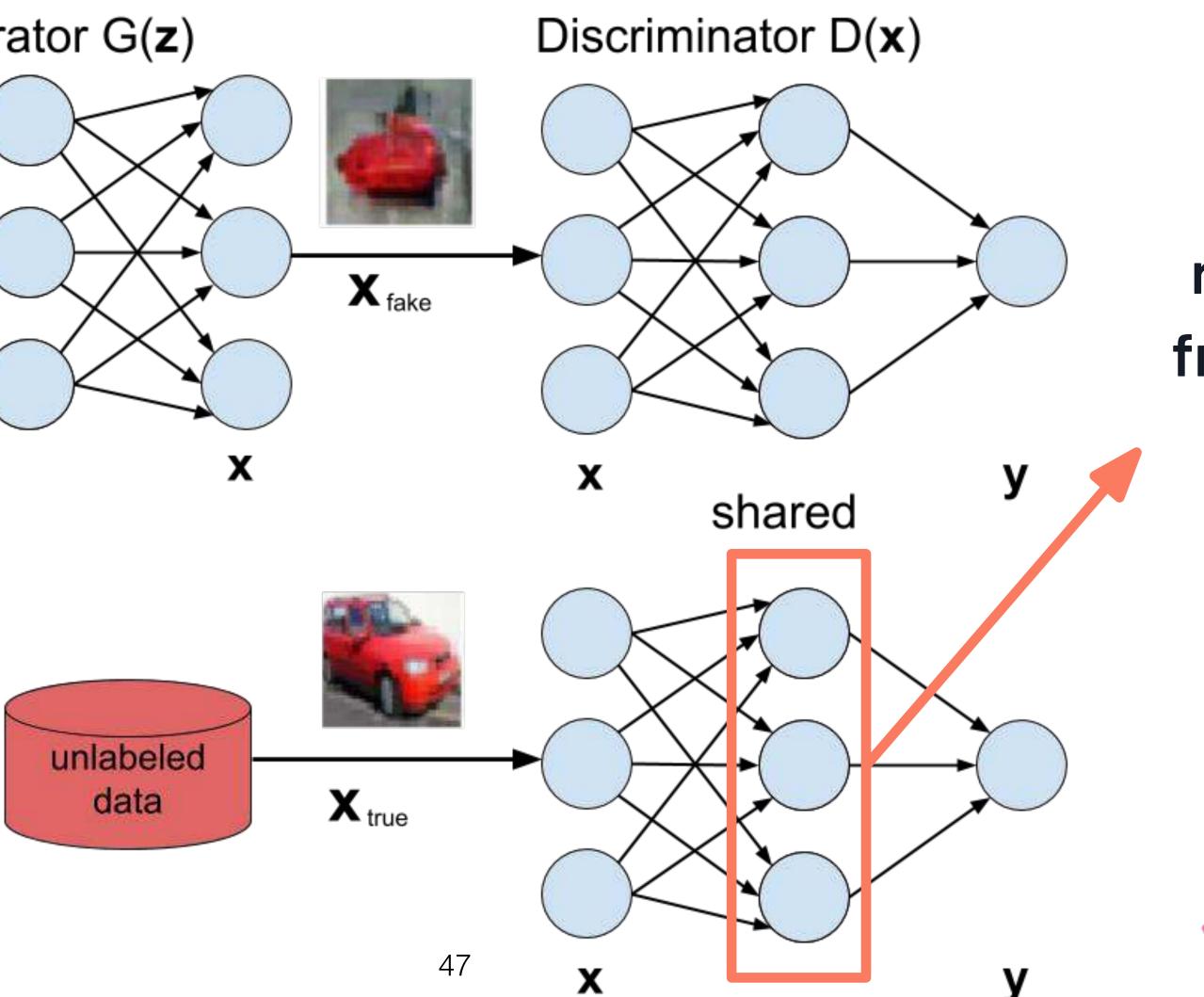
Generator G(z) tries to fool the discriminator by generating real-looking images





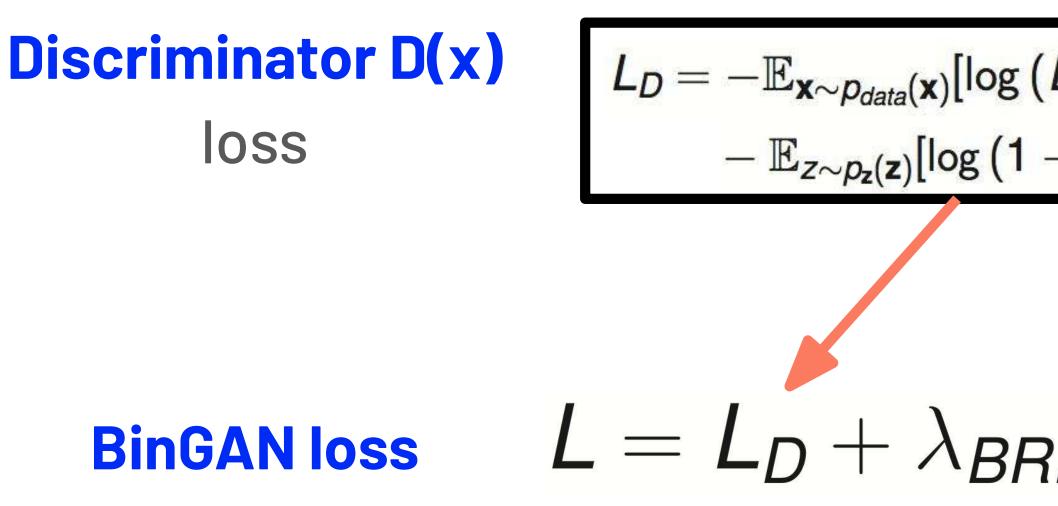
Discriminator to represent the data





Nice data representation from adversarial training

How to get binary codes?

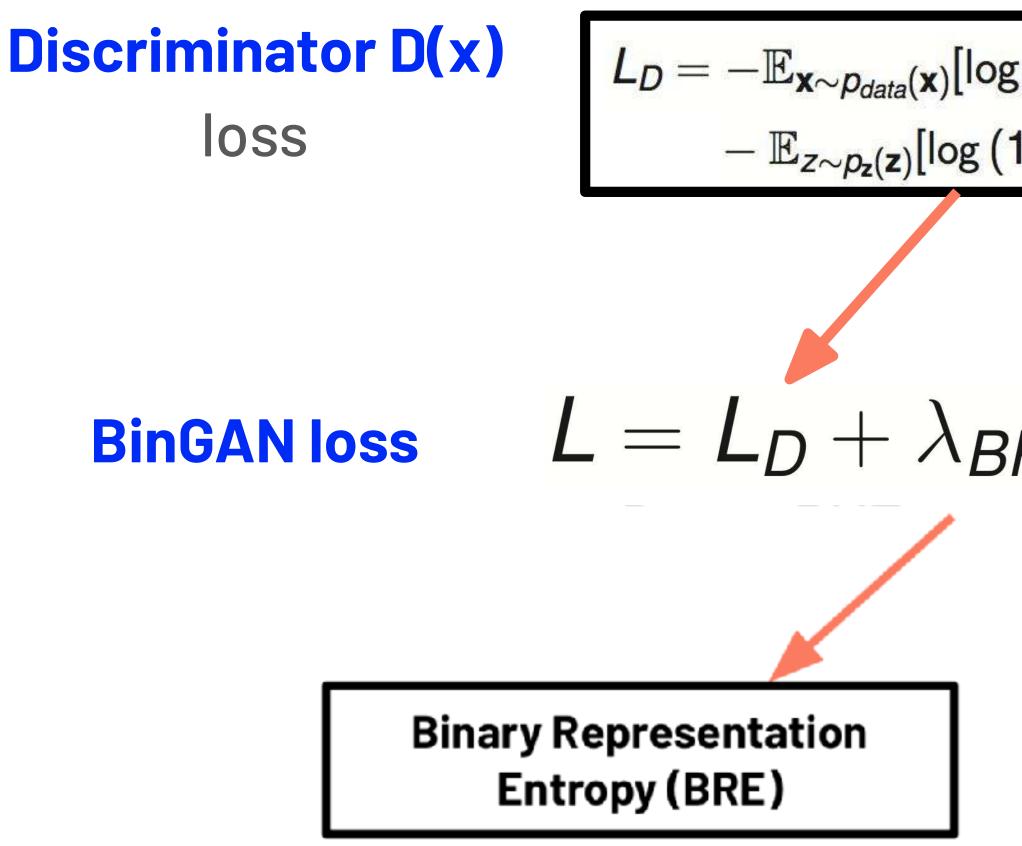


$$g(D(x))]$$

1 - $D(G(z)))]$

$L = L_D + \lambda_{BRE} \cdot L_{BRE} + \lambda_{DMR} \cdot L_{DMR}$

How to get binary codes?

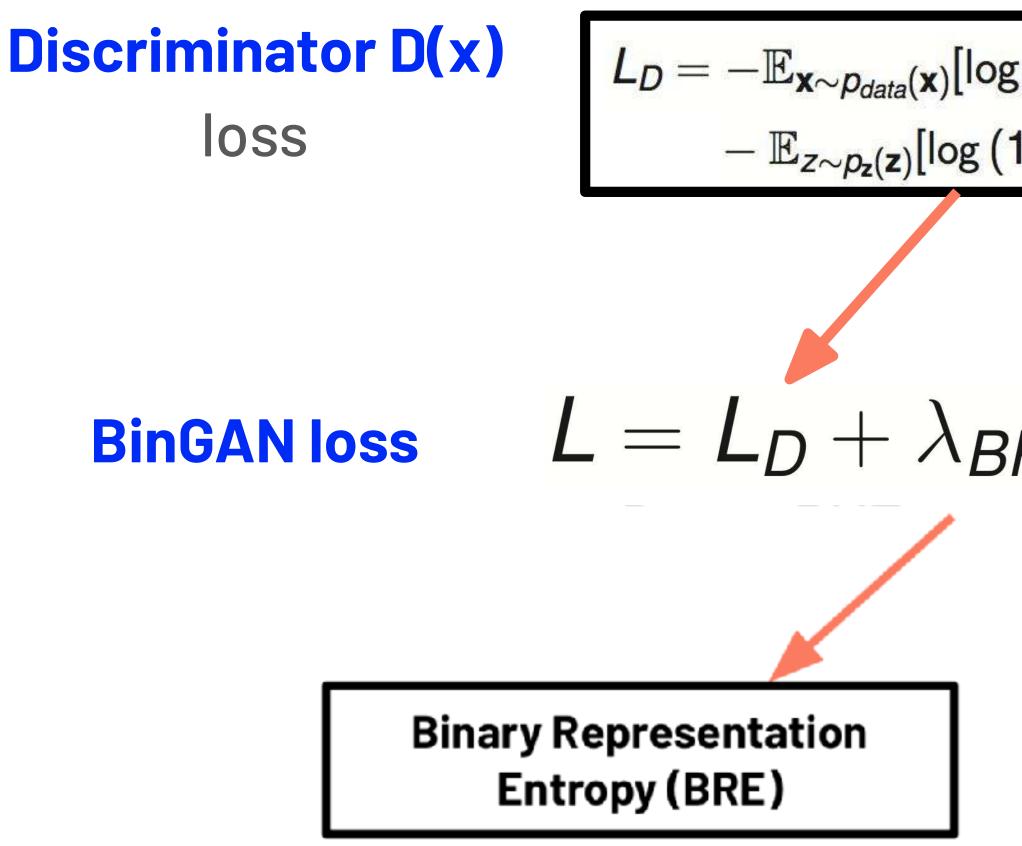


$$g(D(x))]$$

1 - $D(G(z)))]$

$L = L_D + \lambda_{BRE} \cdot L_{BRE} + \lambda_{DMR} \cdot L_{DMR}$

How to get binary codes?



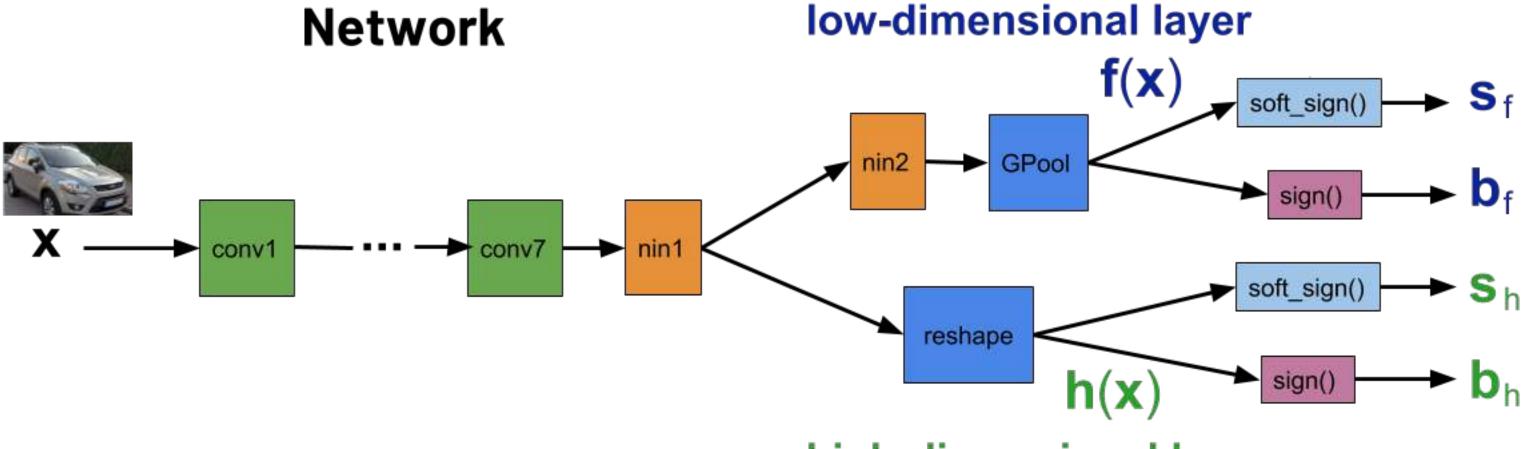
$$g(D(x))]$$

1 - $D(G(z)))]$

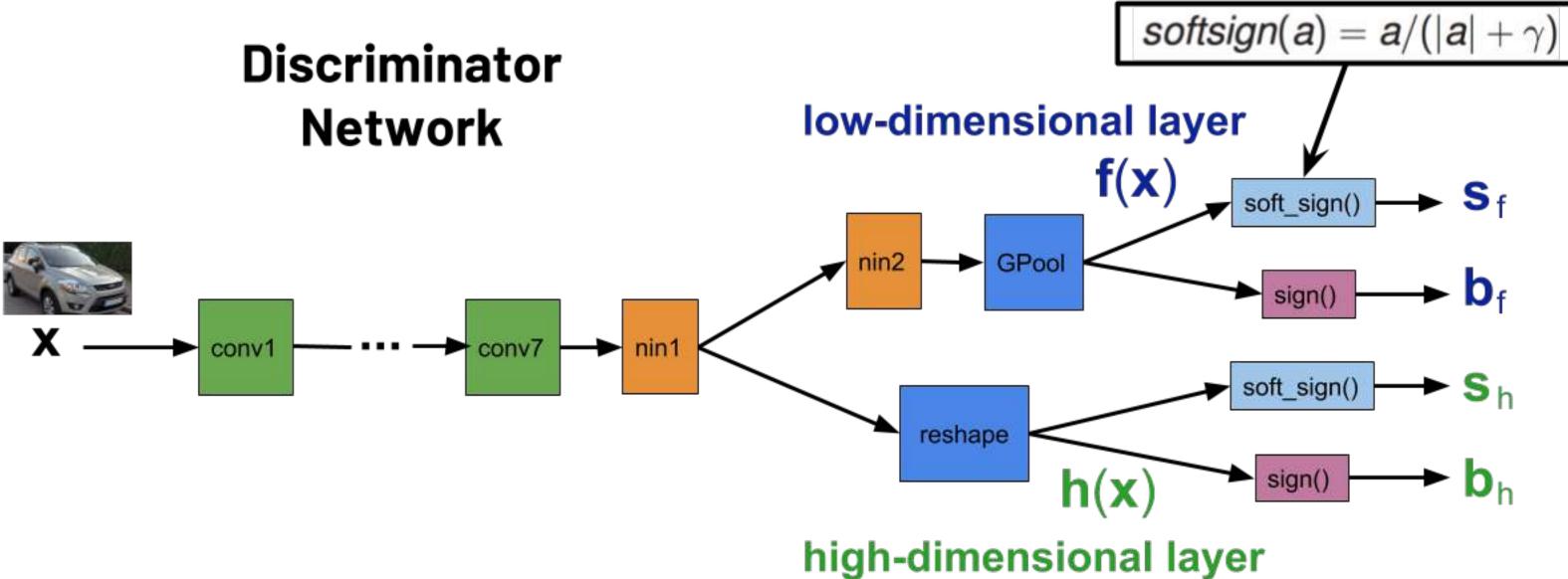
$L = L_D + \lambda_{BRE} \cdot L_{BRE} + \lambda_{DMR} \cdot L_{DMR}$

Distance Matching Regularizer (DMR)

Discriminator Network



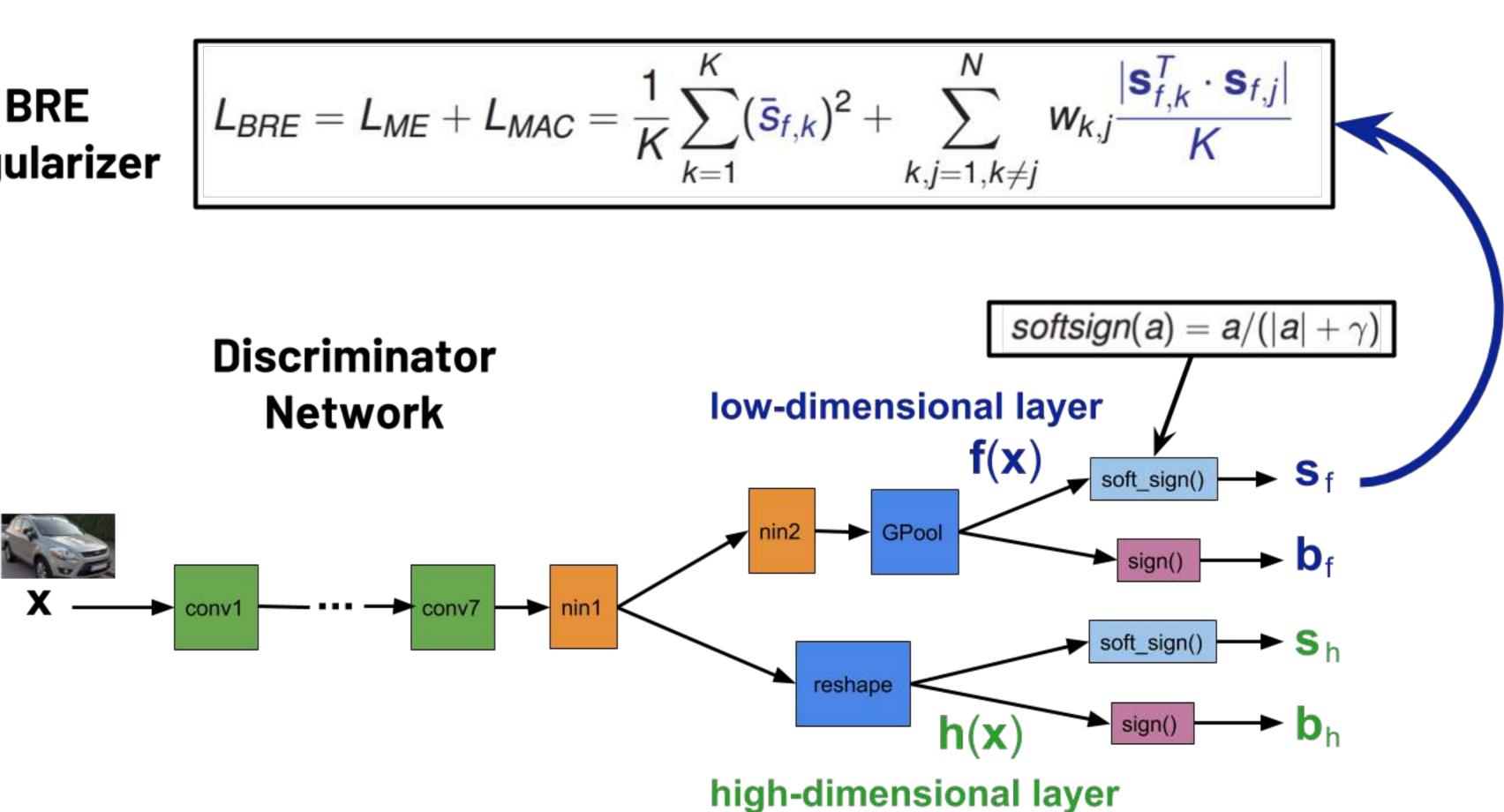
high-dimensional layer



52

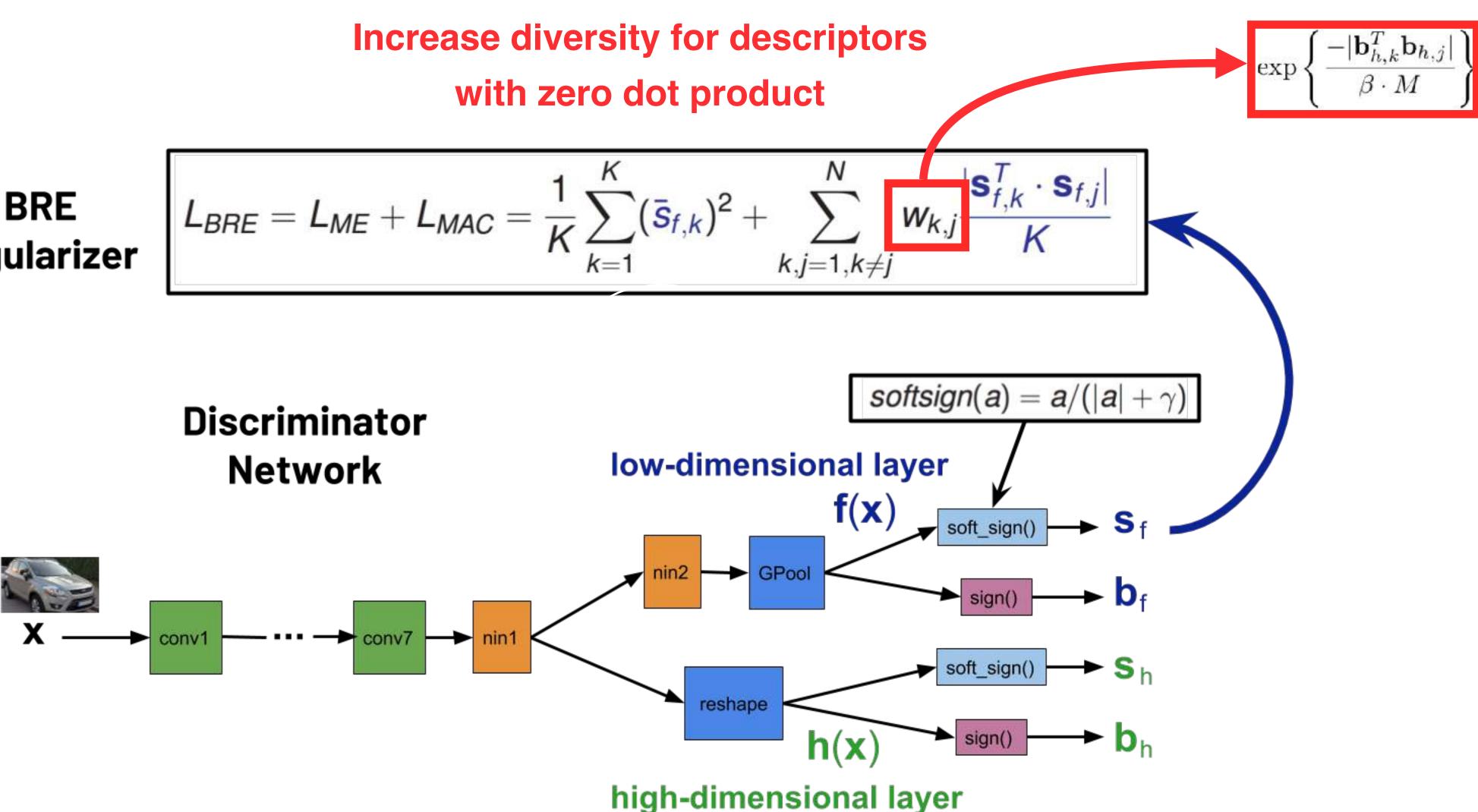
BRE regularizer

$$L_{BRE} = L_{ME} + L_{MAC} = \frac{1}{K}$$

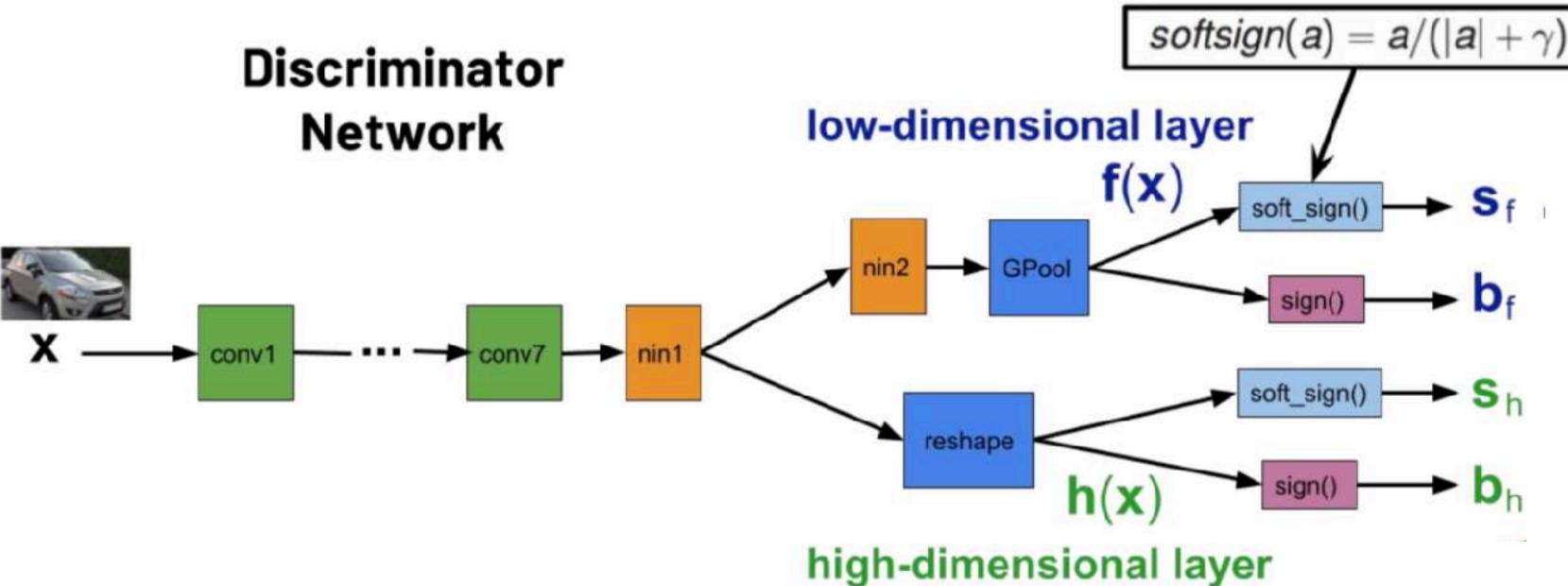


BRE regularizer

$$L_{BRE} = L_{ME} + L_{MAC} = \frac{1}{k}$$

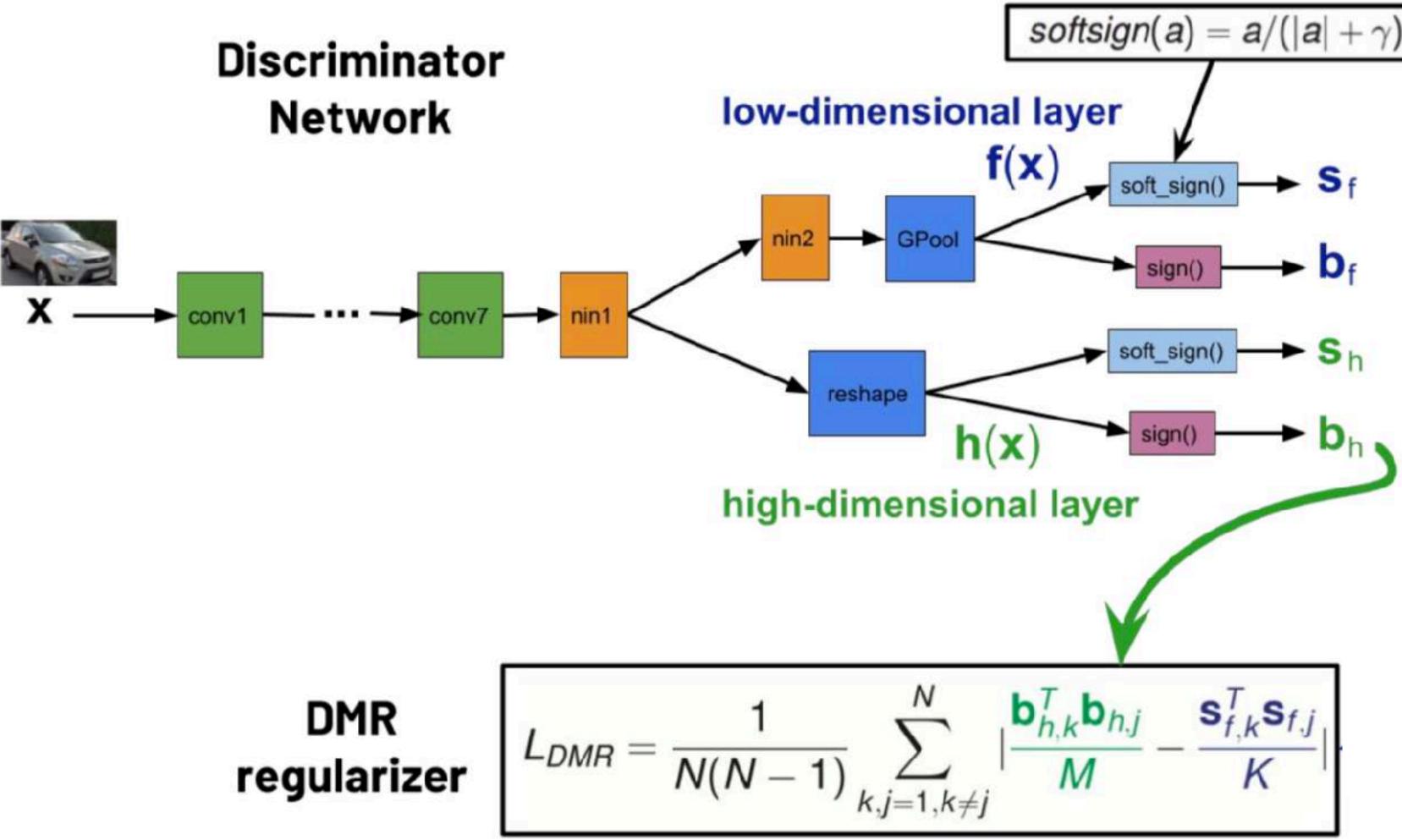


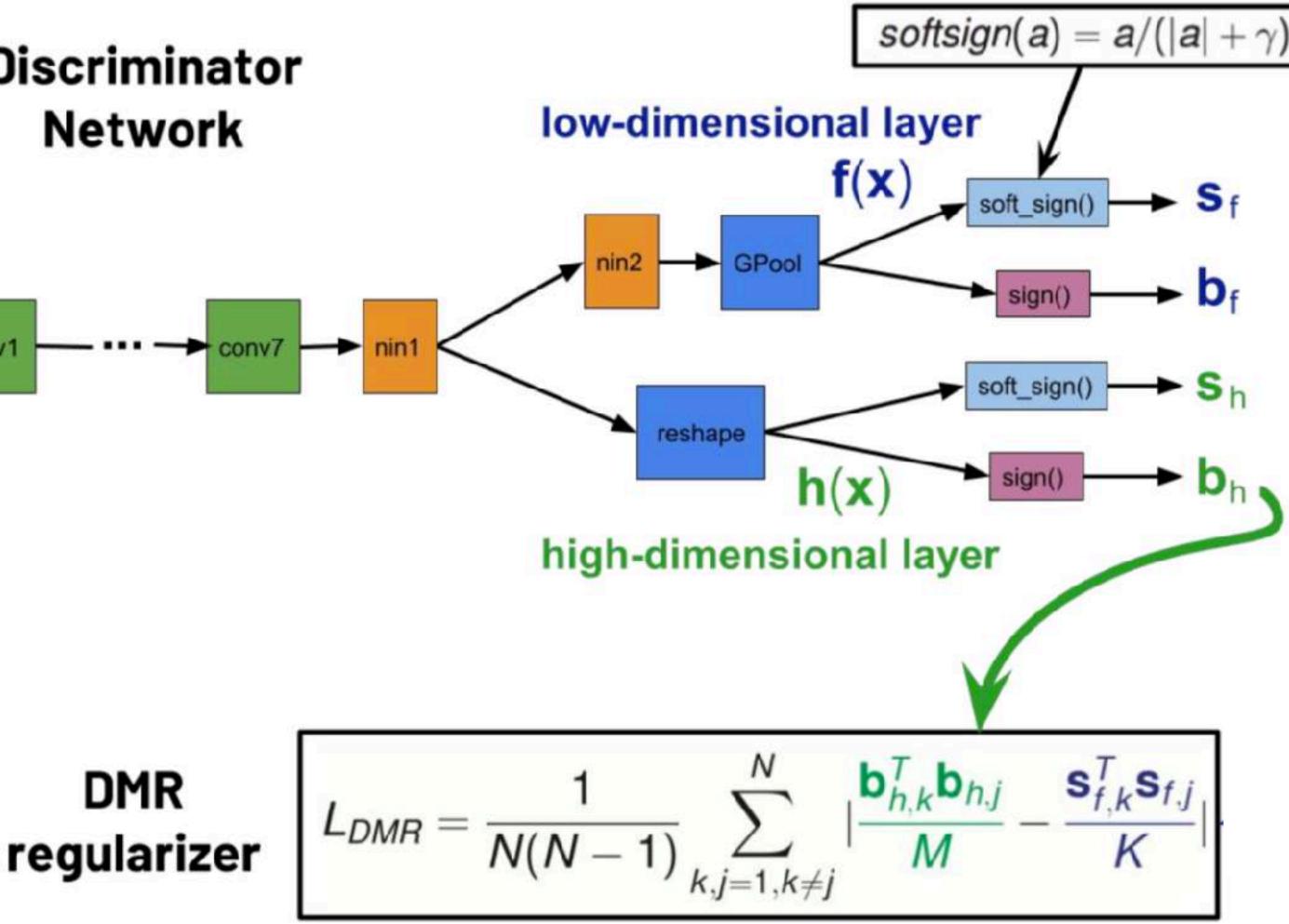
DMR Regularizer



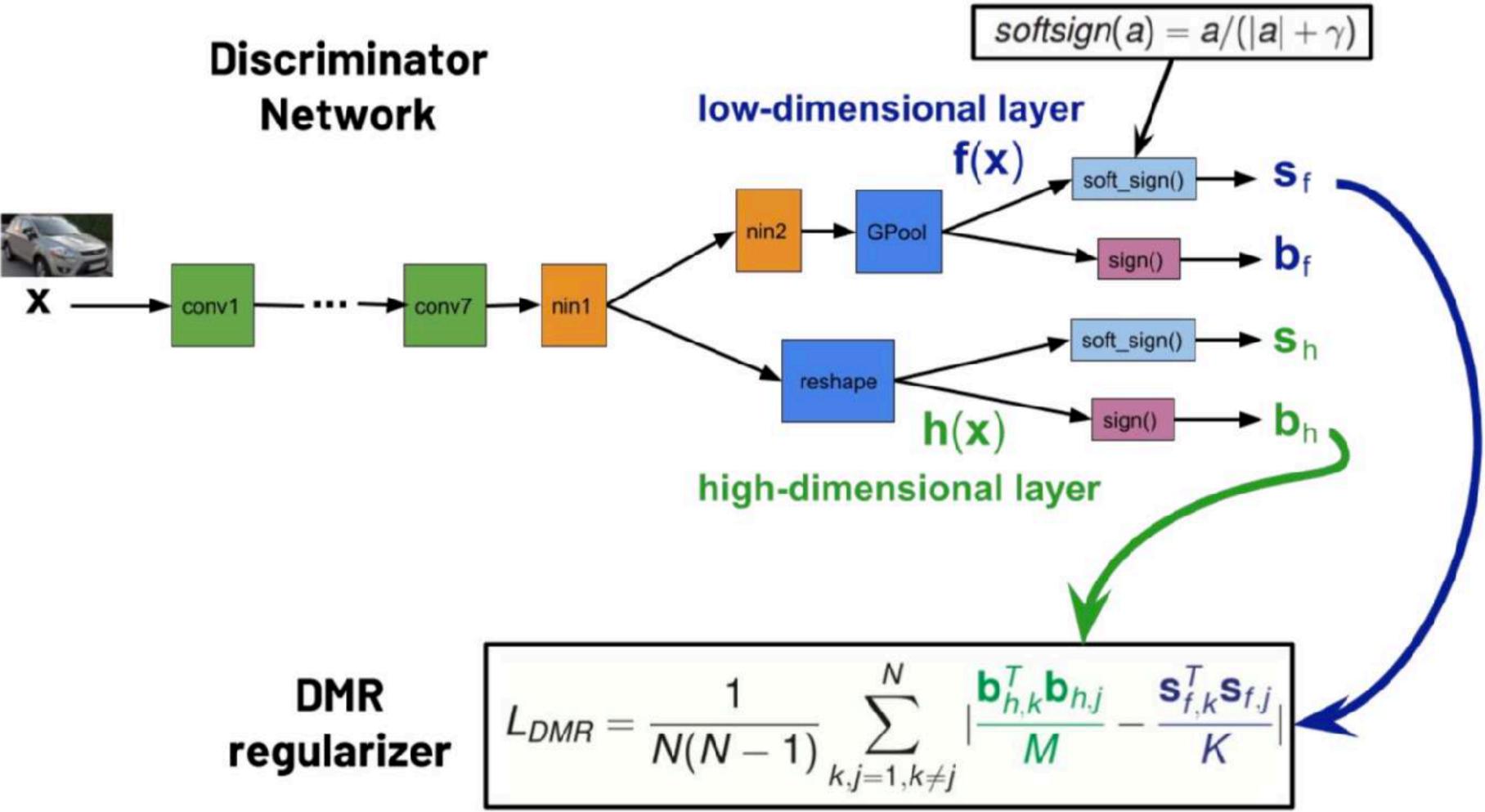
$$\frac{1}{(N-1)}\sum_{k,j=1,k\neq j}^{N} |\frac{\mathbf{b}_{h,k}^{T}\mathbf{b}_{h,j}}{M} - \frac{\mathbf{s}_{f,k}^{T}\mathbf{s}_{f,j}}{K}|$$

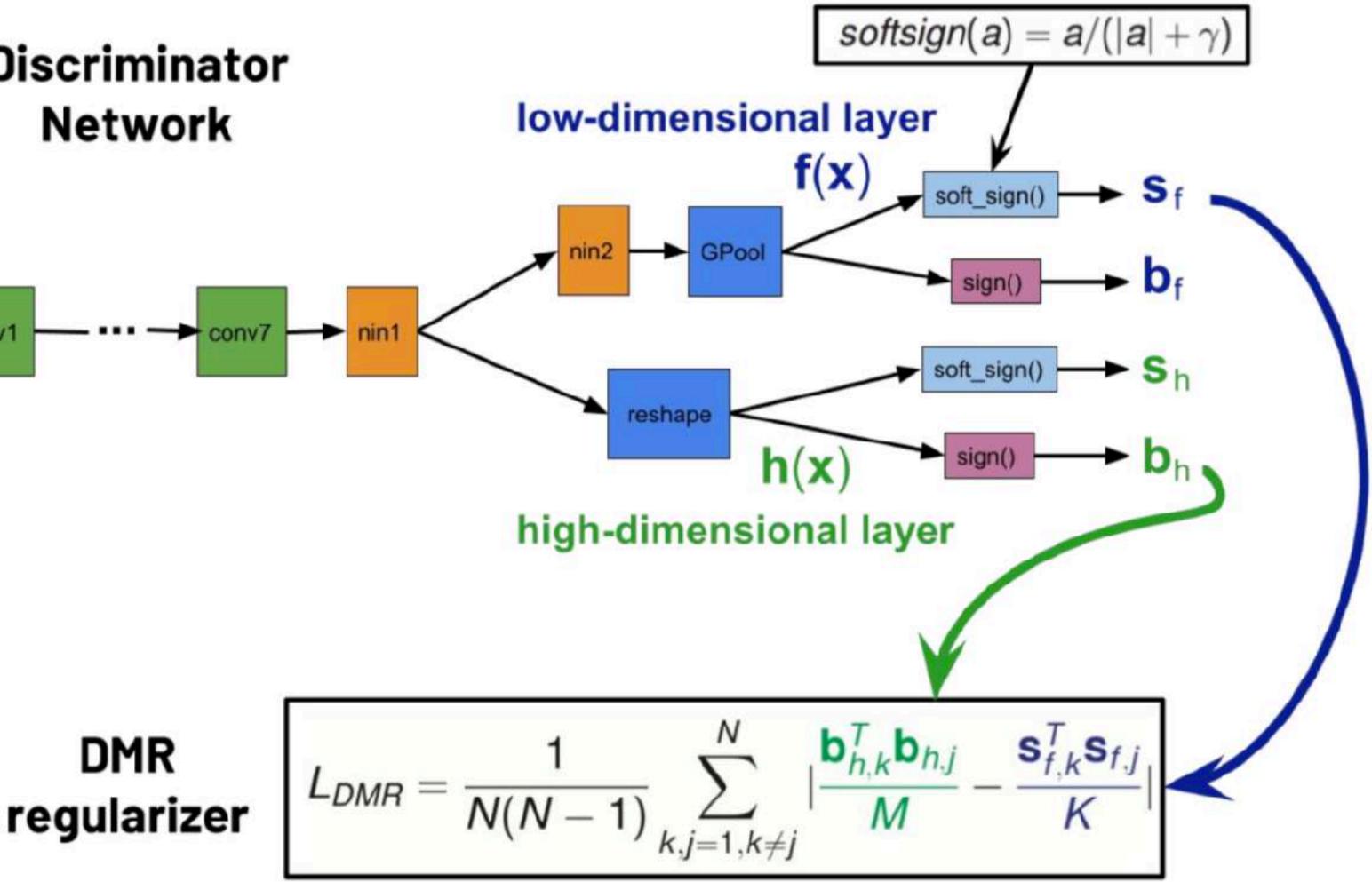
DMR Regularizer





DMR Regularizer





Results - image matching

Train	Yosem	ite	Notre	Dame	Liber	rty	Average
Test	Notre Dame	Liberty	Yosemite	Liberty	Notre Dame	Yosemite	FPR@95%
Supervised							
LDAHash (16 bytes)	51.58	49.66	52.95	49.66	51.58	52.95	51.40
D-BRIEF (4 bytes)	43.96	53.39	46.22	51.30	43.10	47.29	47.54
BinBoost (8 bytes)	14.54	21.67	18.96	20.49	16.90	22.88	19.24
RFD (50-70 bytes)	11.68	19.40	14.50	19.35	13.23	16.99	15.86
Binary L2-Net (32 bytes)	2.51	6.65	4.04	4.01	1.9	5.61	4.12
Unsupervised							
SIFT (128 bytes)	28.09	36.27	29.15	36.27	28.09	29.15	31.17
BRISK (64 bytes)	74.88	79.36	73.21	79.36	74.88	73.21	75.81
BRIEF (32 bytes)	54.57	59.15	54.96	59.15	54.57	54.96	56.23
DeepBit (32 bytes)	29.60	34.41	63.68	32.06	26.66	57.61	40.67
DBD-MQ (32 bytes)	27.20	33.11	57.24	31.10	25.78	57.15	38.59
BinGAN (32 bytes)	16.88	26.08	40.80	25.76	27.84	47.64	30.76

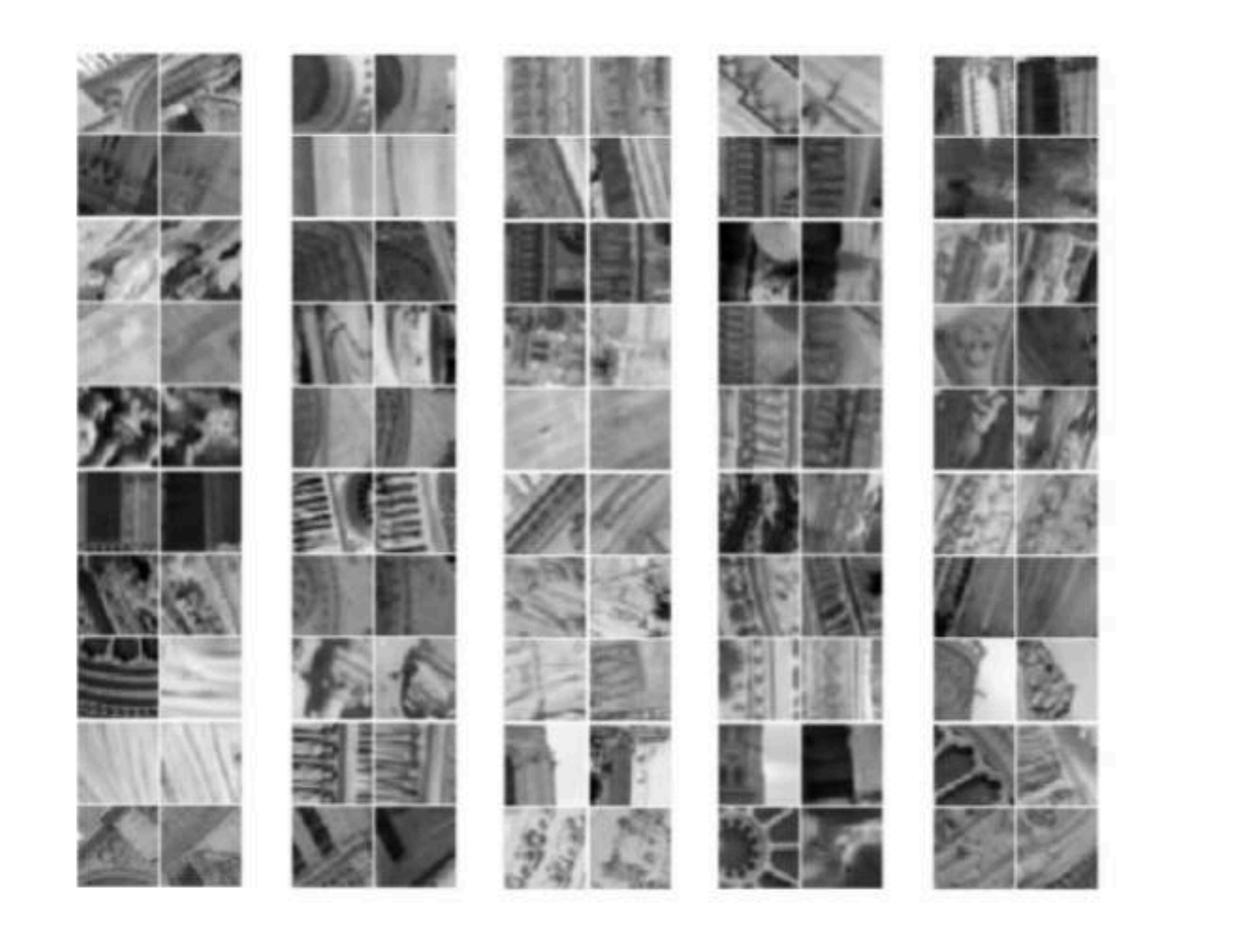
Results - image retrieval

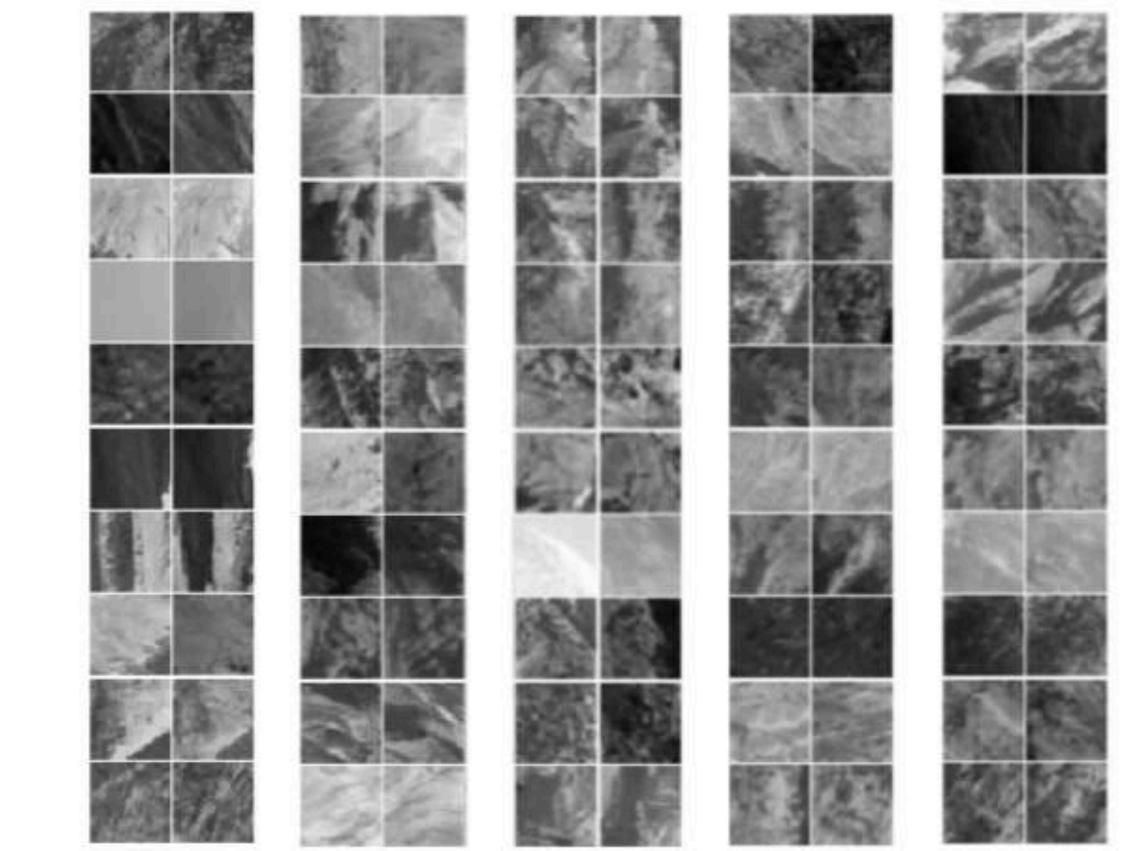
Mean Average Precision (mAP) - top 1000.

Method	16 bit	32 bit	64 bit
KHM	13.59	13.93	14.46
SphH	13.98	14.58	15.38
SpeH	12.55	12.42	12.56
SH	12.95	14.09	13.89
PCAH	12.91	12.60	12.10
LSH	12.55	13.76	15.07
PCA-ITQ	15.67	16.20	16.64
DH	16.17	16.62	16.96
DeepBit	19.43	24.86	27.73
DBD-MQ	21.53	26.50	31.85
BinGAN	30.05	34.65	36.77

Top 10 retrieved base images Query

Semi-supervised learning?





Representing 3D point clouds

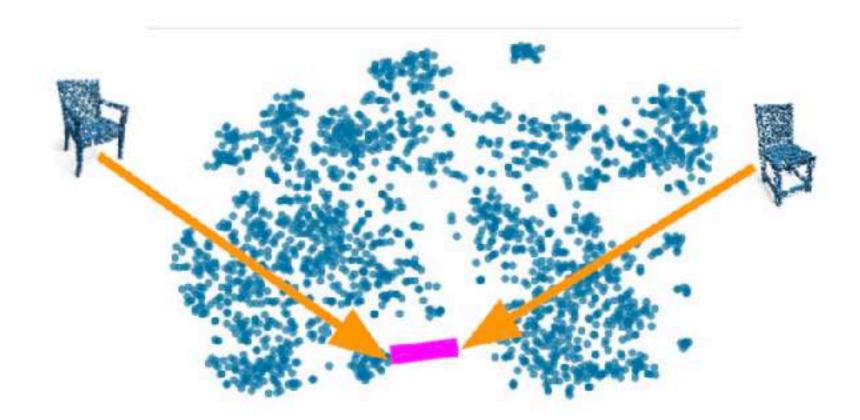
We seek representations of 3D point clouds that can be useful for:

- sampling unseen examples (data augmentation)
- interpolating between 3D point clouds
- retrieval
- reconstruction
- clustering

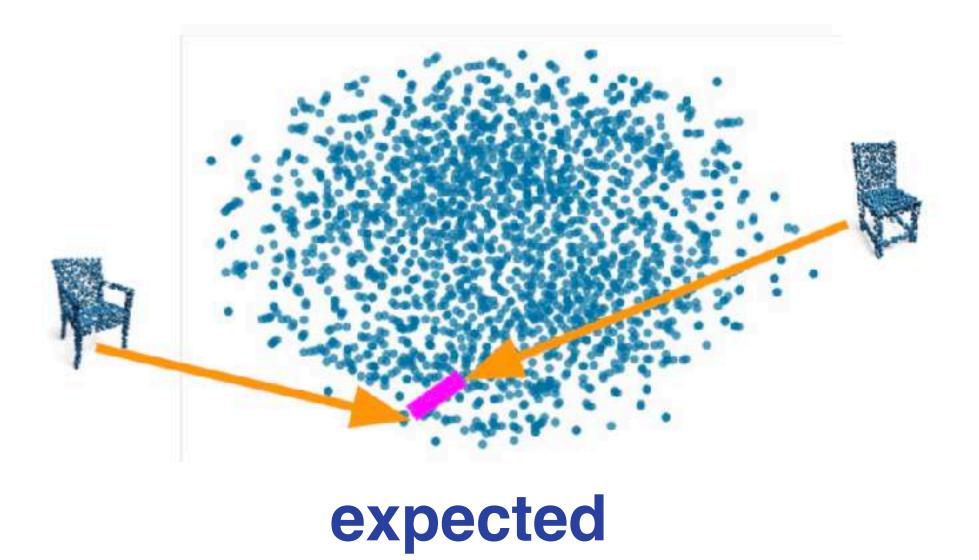
... and they need to be **efficient**.

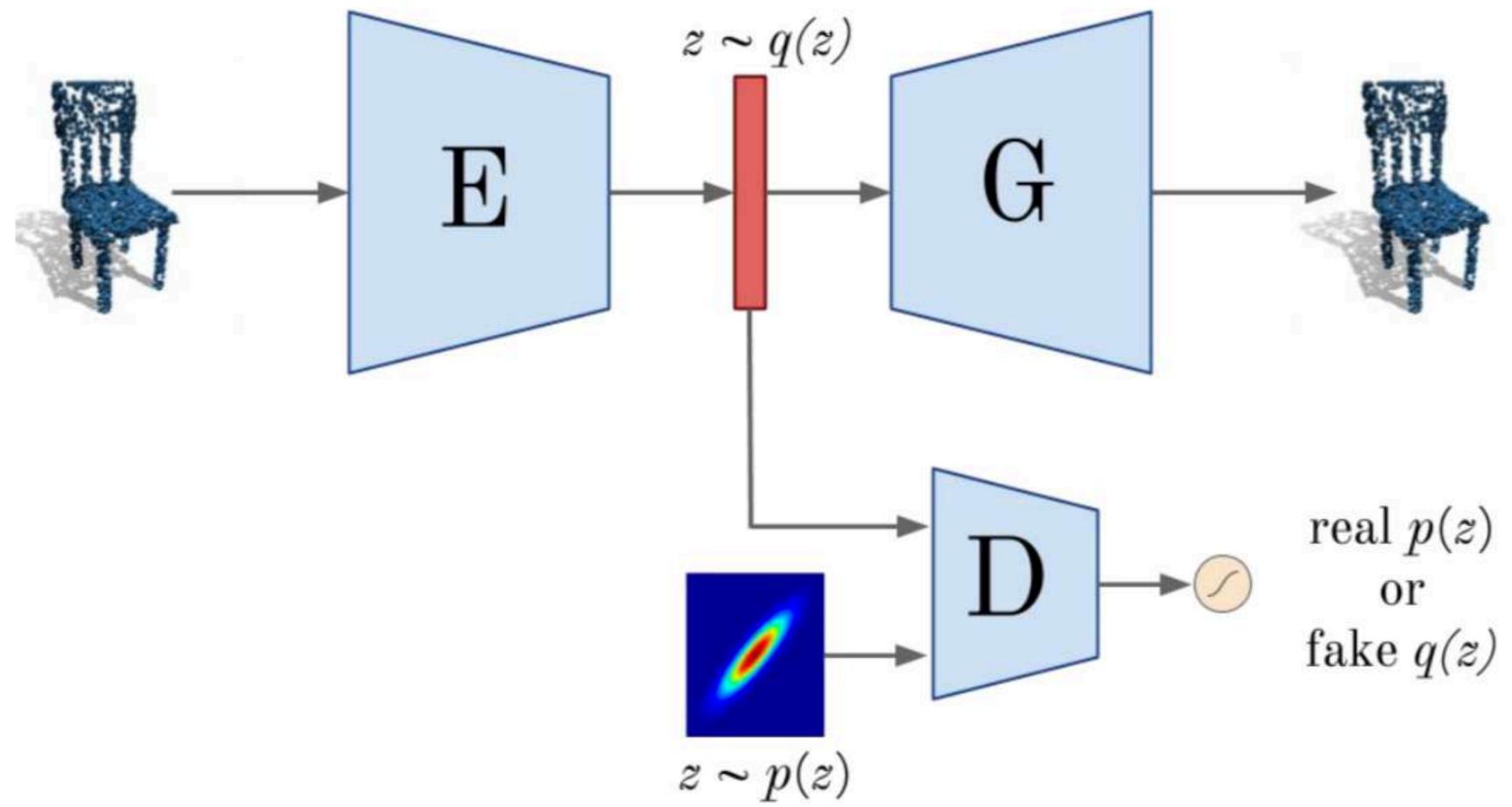
Current methods

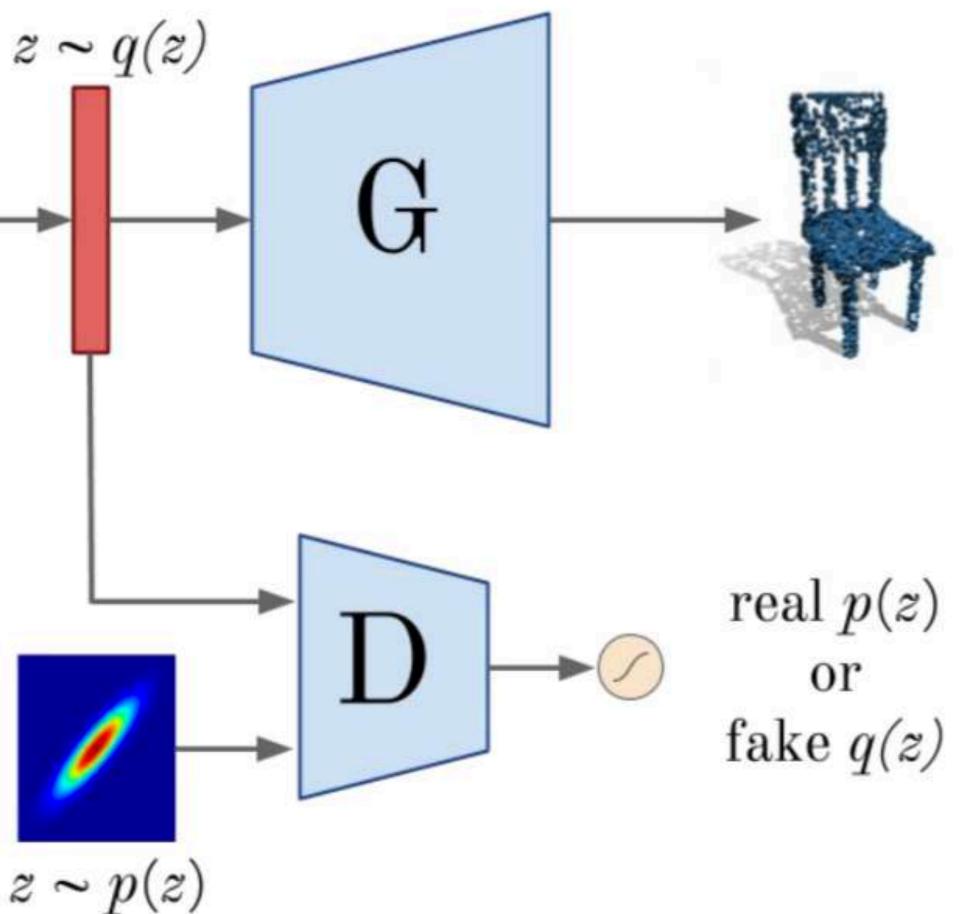
- representation learning decoupled from generation
- assume normal distribution in the latent space
- interpolation space not continuous

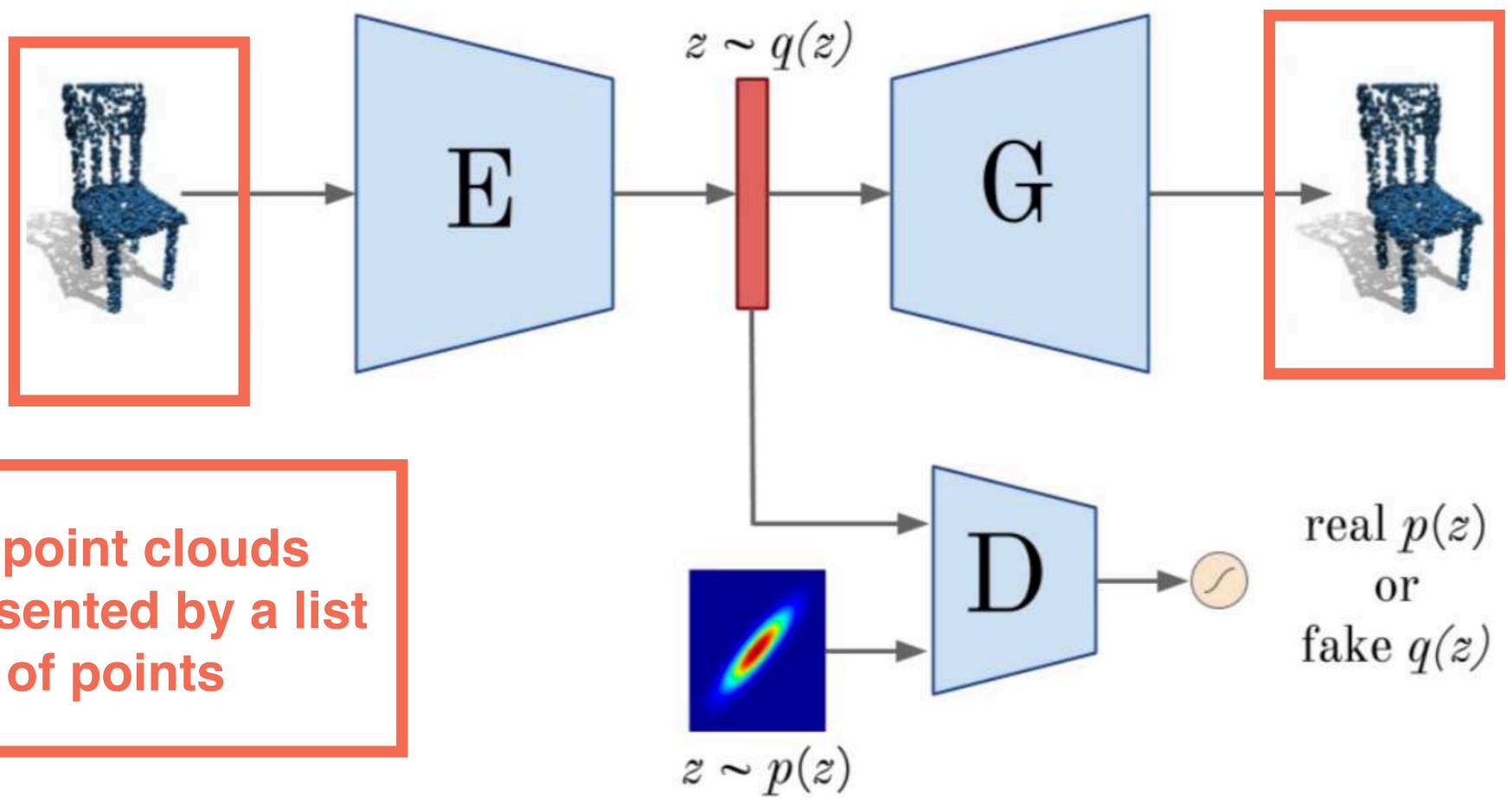


current

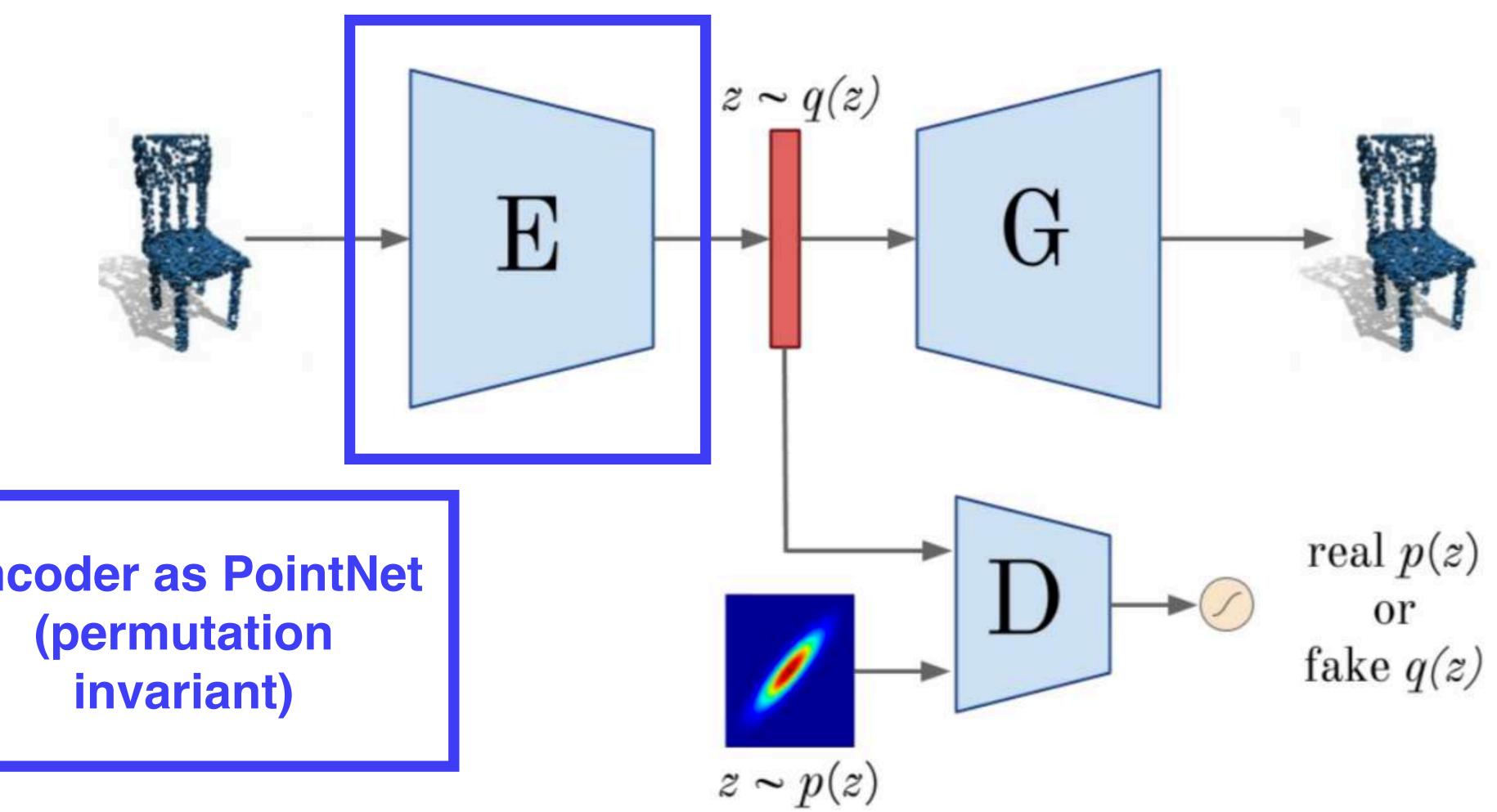




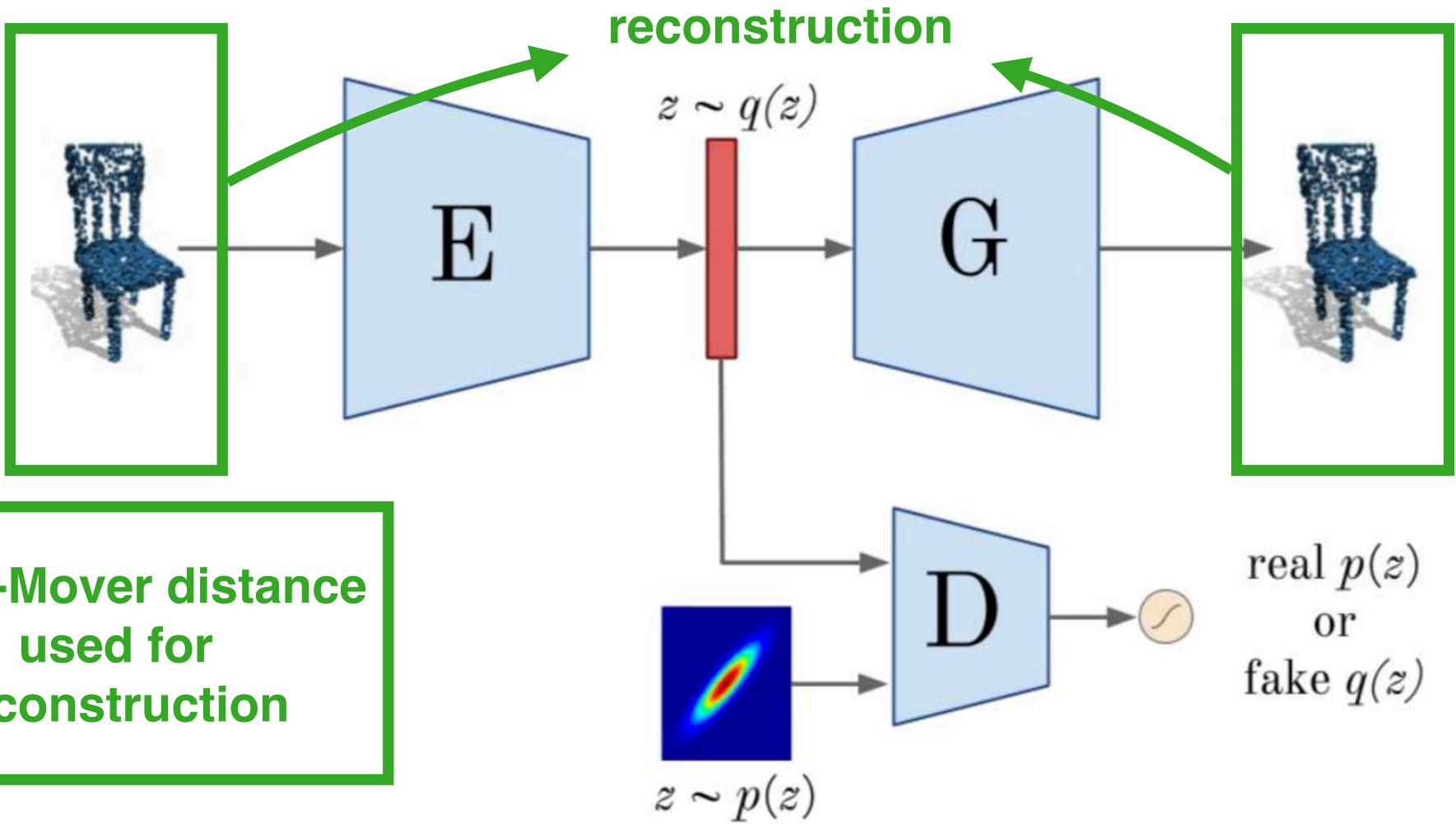




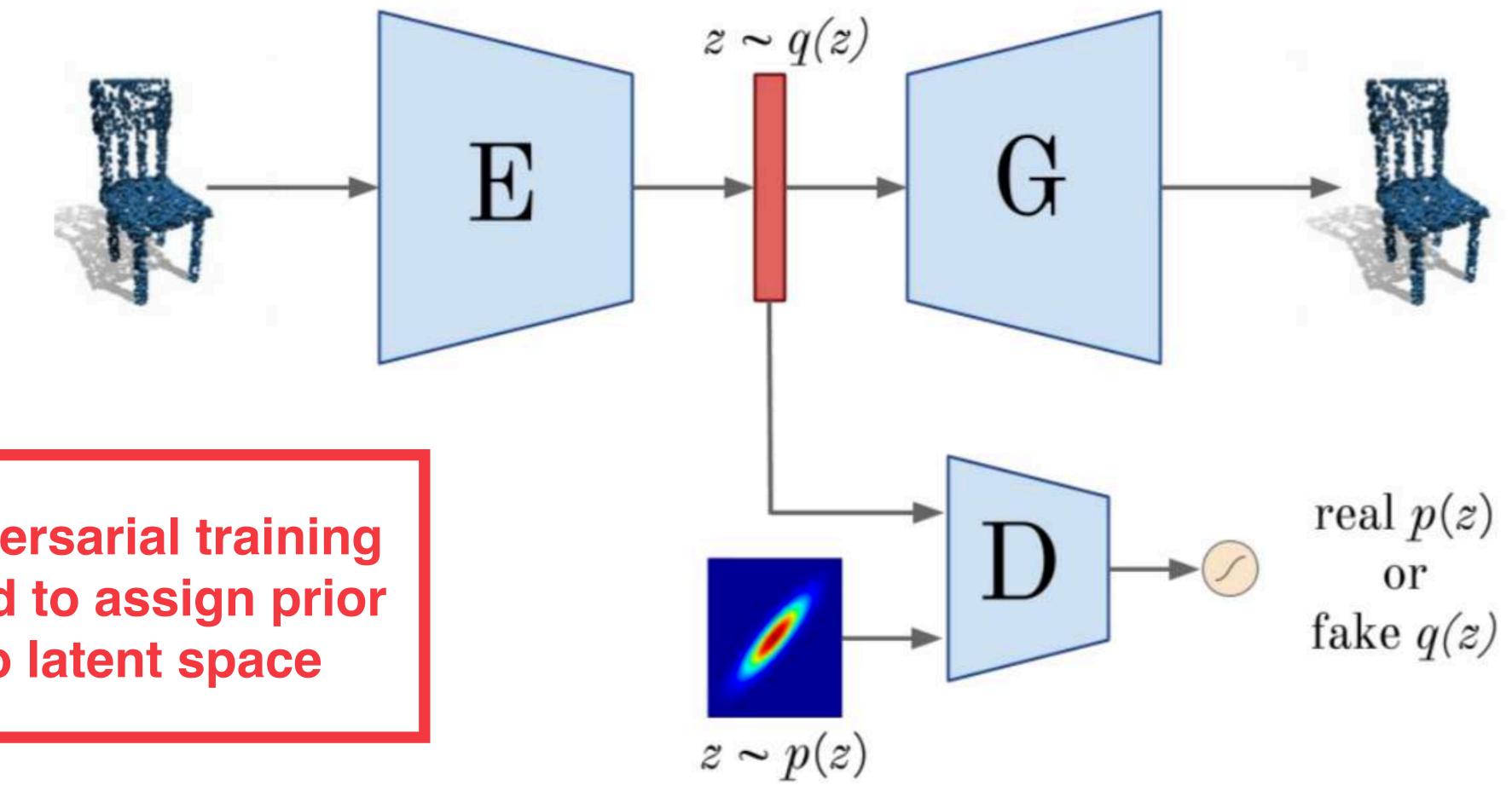
3D point clouds represented by a list of points



Encoder as PointNet



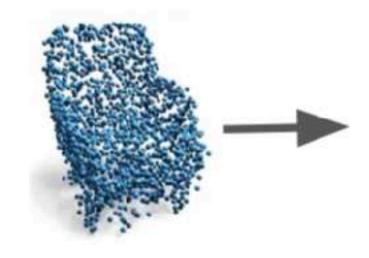
Earth-Mover distance reconstruction



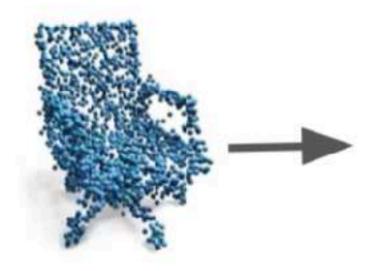
Adversarial training used to assign prior to latent space

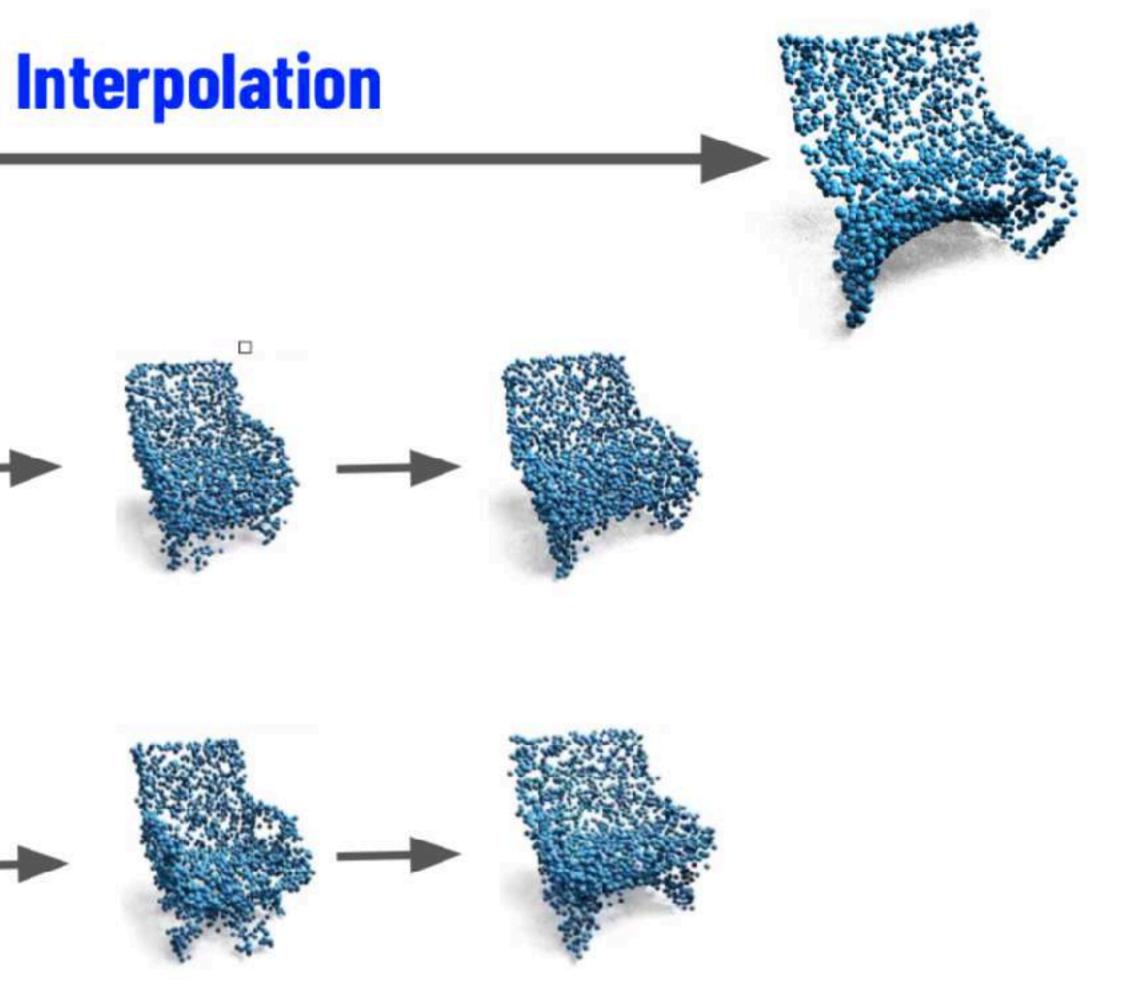
Interpolation

Autoencoder



Adversarial autoencoder





Interpolation - video

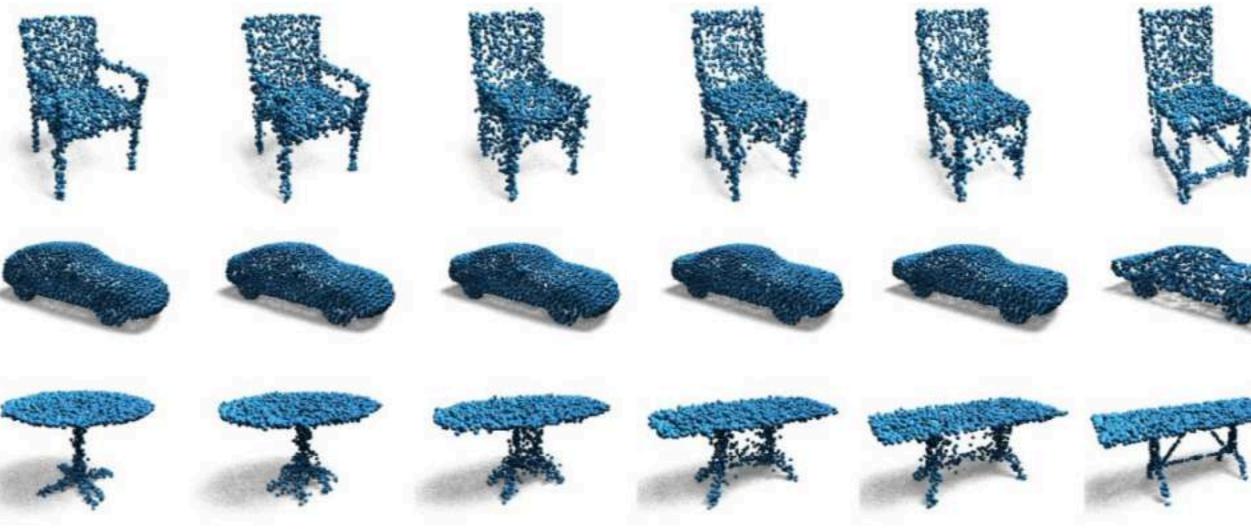


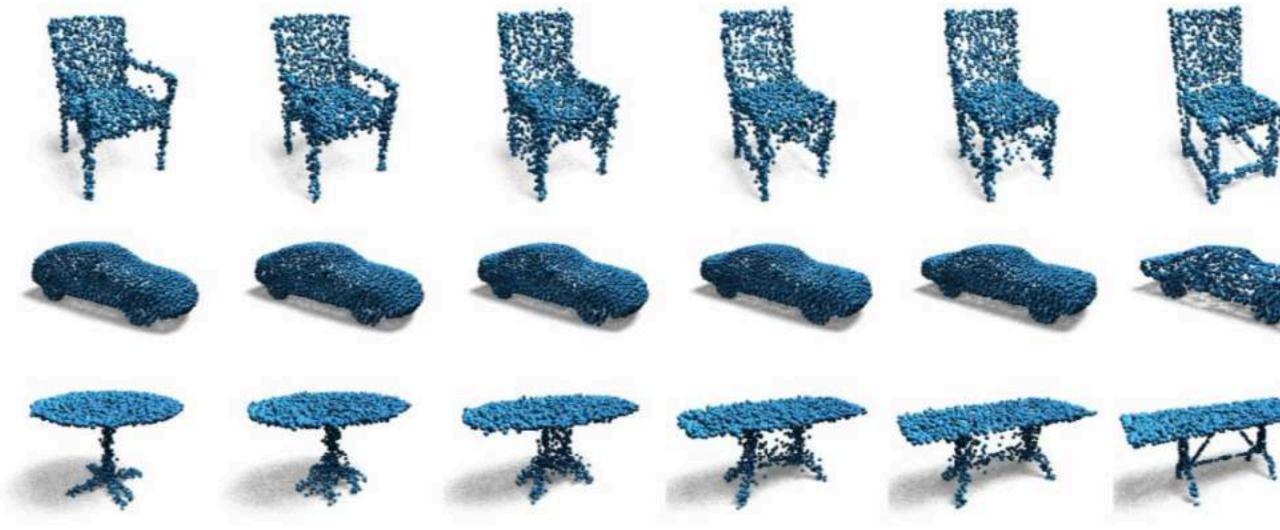
baseline

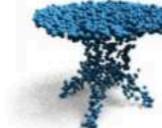
ours (3dAAE)

Interpolation

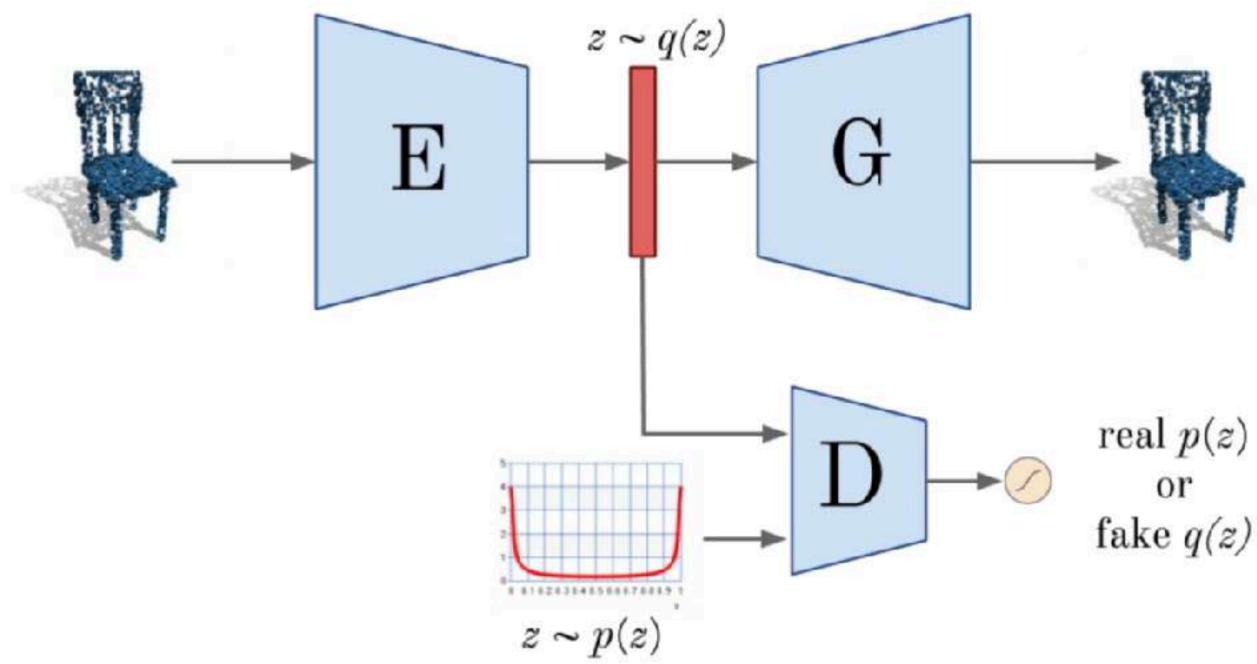
Generated samples







Interpolations



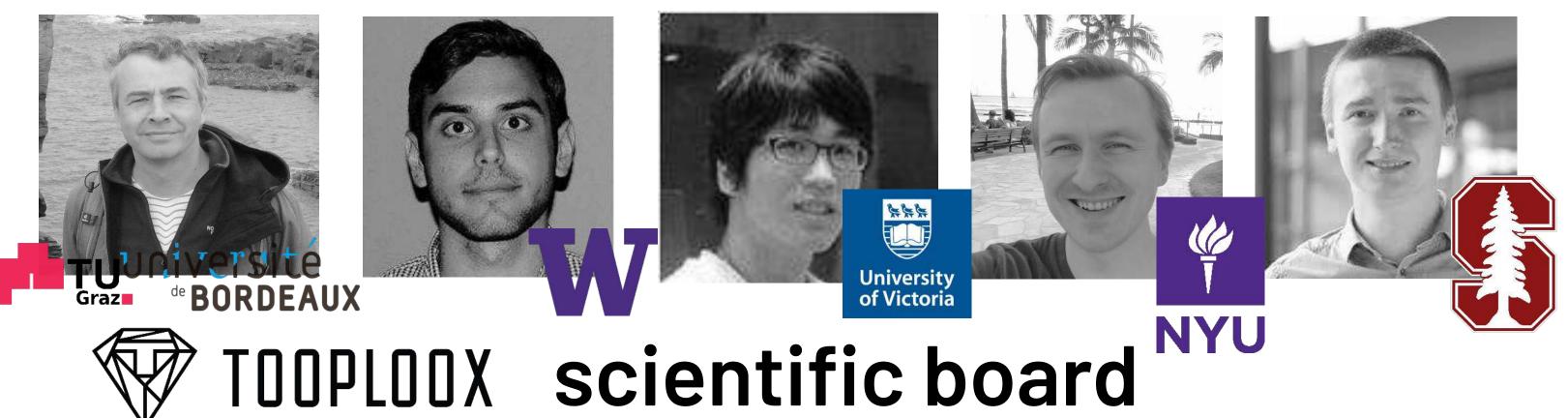
Method	Numeric	Binary	
AE	0.829	0.787	
3dAAE	0.807	0.768	
3dAAE-Bernoulli	0.913	0.892	
3dAAE-Beta	0.939	0.921	

Table 4. Retrieval results on ShapeNet dataset with 5 categories: car, rifle, sofa and table. We report results for numerical and binary features.

Concusions

- Learning representation useful for retrieval and matching
- Binary descriptors are efficient and cheap to store
- They can be learnt with linear projections, boosting and Siamese Networks (ECCV'12, NIPS'12, CVPR'12, ECCVW18)
- Compact and robust representations (also for 3D points) can be learnt in an **unsupervised manner** using **generative models** (NeurIPS'18)

Acknowledgments



Wrocław University of Technology

THANK YOU!

<u>tomasz.trzcinski@pw.edu.pl</u> <u>tomasz.trzcinski@tooploox.com</u>

DON

