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Research

Research hypotheses:

• It is possible to train a generative model using exclusively

supervision from the alignment of datasets from different

modalities.

• A model trained in this way could preserve a subset of

features important for the output domain.

More concretely:

• It is possible to train a model to generate images from audio.

• The generated images are recognizable to a pretrained

classifier.
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Inspiration

Inspiration:

• Setups covering more than one data modality have not been

covered for some domains.

• In principle, it is possible to use the temporal alignment of the

data to ensure training without classic supervision.

• Going from one modality to another may be beneficial from a

practical point of view (e.g. generating visual cues).

• Strands of neuroscience research show that information might

be represented in a similar manner for different modalities.

For instance, the semantic representations evoked by listening

versus reading are almost identical [Deniz et al., 2019]. This

is actually controversial.
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Supervised vs. unsupervised

Supervised:

• Requires huge datasets.

• Annotating is costly.

• Extensive training.

• Driving a car off a cliff.

• Learns tasks, not skills.

• Some well-specified tasks have been largely solved.

• Limit to how much data we can obtain.

• Ignores physical world.
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Supervised vs. unsupervised

How do children learn?

• A lot of evolutionary knowledge.

• Vision, hearing, touch etc. in place.

• Extensive observation.

• Build a model of the world.

• Model vs. physical world.

• Surprise, curiosity guide learning.

• Continuous refinement of model.

• Limited reinforcement learning.

• All initial learning is unsupervised.
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Supervised vs. unsupervised

Unsupervised:

• In practice, very little labelled data available.

• Need to create model of world, confront it with reality.

• Attend to data.

• Manipulate world.

• Learn from little external reward.

• Learn from very few examples.

• Exploit physical structure of world to obtain links.

• Learn skills rather than tasks.
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Desired architecture

What would we like our architecture to have?

• Unsupervised/weakly-supervised.

• Model of observed data.

• Potential to learn from observation only.

• Exploit structure of physical world.
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Generative models

Models:

• Discriminative: P(Y |X = x)

• Generative. Joint probability distribution: X × Y ,P(X ,Y )

• No hard demarcation line.

Standard generative models in deep learning:

• Autoencoders.

• Variational autoencoders (VAEs).

• Generative adversarial networks (GANs).
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Autoencoders

Main idea behind autoencoders:

• One network to encode input.

• Second network to decode output.

• Bottleneck in between.

• Latent representation.
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Autoencoders

Source: Zucconi, A., An Introduction to Neural Networks and Autoencoders

10



Autoencoders

Source: [Noh et al., 2015]
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Variational Autoencoders

Introduced in [Kingma and Welling, 2014]:

• Latent variable matches unit Gaussian.

• Loss = generation loss + KL divergence.

Source: Frans, K., Variational Autoencoders Explained
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Generative Adversarial Nets

Approach model training from game-theoretic point of view

[Goodfellow et al., 2014]:

• Two networks: Generator and Discriminator.

• Generator: from latent variable z generate into data space.

• Discriminator: distinguish between real and generated data.

• Generator tries to ”fool” the Discriminator.

• Discriminator strives to ”look through” the Discriminator.

• This can be represented by a minimax two-player game.
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Generative Adversarial Nets

Training:

• Train D to maximize probability of assigning correct label to

real data and samples from G .

• Train G to maximize probability of D assigning incorrect label

to samples from G .

• D and G play:

• min
G

max
D

V (D,G ) =

Ex∼pdata(x) [log(D(x))] + Ez∼pz(z) [log(1− D(G (z)))].

• log(1− D(G (z))) may saturate early in training.

• Can train G to maximize log(D(G (z))) instead.

Source: [Goodfellow et al., 2014]
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Desired architecture

What would we like our architecture to have?

• Unsupervised/weakly-supervised.

• Model of observed data.

• Potential to learn from observation only.

• Exploit structure of physical world.

15



Multi-modal representation

Looking at data across modalities helps achieve some of our goals.

For instance, let us consider visual data with corresponding audio:

• Extensive video datasets available.

• Sound aligned with video - exploit structure of the physical

world.

• Data alignement obviates strong supervision.
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Audio-visual correspondence

What can be learnt by training audio and visual networks jointly to

establish whether audio and visual information match?

Source: [Arandjelovic and Zisserman, 2017]
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Audio-visual correspondence

Source: [Arandjelovic and Zisserman, 2017]
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Cross-modal retrieval

Source: [Arandjelovic and Zisserman, 2018]
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Cross-modal retrieval

Source: [Arandjelovic and Zisserman, 2018]
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Idea

What if we can use aligned datasets to generate images from

audio?

• Use an encoder to extract audio features.

• Condition on the audio features to generate images via a

decoder.

• Multiple ways to train this.

• Possibility to use VAE and measure the reconstruction loss

and KL divergence.

• We could also potentially train adversarially.
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Idea

Encoder/decoder setup.
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Idea

Encoder/decoder setup.
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Datasets

We use a synthetic dataset combining datasets from the audio and

image modalities:

• Audio: Free Spoken Digit Dataset (FSDD).

• Image: MNIST.
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FSDD

Free Spoken Digit Dataset (FSDD):

• Recordings of spoken digits in .wav files at 8kHz. The

recordings are trimmed so that they have near minimal silence

at the beginnings and ends.

• 2, 000 recordings, 50 pronounciations of each digit for a

speaker.

• 4 speakers.

• English pronounciations.

https://github.com/Jakobovski/free-spoken-digit-dataset
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MNIST

Modified National Institute of Standards and Technology (MNIST)

database:

• Images of digits, 28× 28 pixels, antialiased.

• Train set: 60, 000 images.

• Test set: 10, 000 images.

http://yann.lecun.com/exdb/mnist/
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MNIST/FSDD Mix

We apply the following procedure to combine MNIST with FSDD:

• We represent FSDD recordings as 48× 48 MEL-scaled

spectrograms.

• We perform a 90/10 random train/test split on FSDD.

• For each image from the MNIST train set, we select a subset

of the FSDD train set with the same labels as the image and

we randomly choose (with replacement) a spectrogram from

this subset.

• Similarly, for each image from the MNIST test set, we select a

subset of the FSDD test set with the same labels as the image

and we randomly choose (with replacement) a spectrogram

from this subset.

http://yann.lecun.com/exdb/mnist/
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MNIST/FSDD Mix

We apply the following procedure to combine MNIST with FSDD:

• The train set consists of 60, 000 audio-image pairs aligned

along labels. The images are unique while the spectrograms

are not.

• The test set consists of 10, 000 audio-image pairs aligned

along labels. The images are unique while the spectrograms

are not.

• Prior to evaluation, this is the only point when labels are used.
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VAE

Encoder/decoder setup.
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VAE

Audio Encoder Image Decoder

Input 48x48 Input 64

Conv 4x4, 64, str=2, ReLU FC 512, ReLU

Conv 4x4, 128, str=2, ReLU FC 1024, ReLU

FC 1024, ReLU FC 7x7x128

FC 512, ReLU Upconv 4x4, 64, str=2, ReLU

µ, σ: FC 64, ReLU Upconv 4x4, 1, str=2, Sigmoid

Output 2x64 Output 28x28

30



VAE Training

Hyperparameters:

• Epochs = 100.

• Batch size = 128.

• Learning rate = 0.001.

Total number of parameters = 20, 950, 529.

Training time ≈ 2 hours.
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VAE Results

Images generated in last epoch.
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VAE Results

Images for test set audio.
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VAE Results

Qualitative results:

• Generated images are similar to those from data.

• There seems to be an archetype of each digit.

What about a qualitative assessment of these results?
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LeNet5

LeNet5

Input 32x32

Conv 1x1, 6, str=5, ReLU

Max Pool 2x2, str=2

Conv 6x6, 16, str=5, ReLU

Max Pool 2x2, str=2

Conv 16x16, 120, str=5, ReLU

Flatten 120

FC 84, ReLU

FC 10, Softmax

Output 10

Trained for 100 epochs, batch size = 128, learning rate = 0.001.

Accuracy on test set = 98.7%.
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VAE Results

Quantitative evaluation:

• Present the images generated from test set audio to the

pre-trained LeNet5 architecture.

• Measure agreement between the labels predicted by LeNet5

and actual labels.

• LeNet5 is able to correctly classify 93.7% of instances.

It seems that Audio-Image VAE is able to retain a lot of

information helpful in image classification.
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VAE Results

Some considerations:

• The generated images strongly adhere to specific archetypes.

• There is very little variability between the samples.

• While this could be beneficial in some settings, it could be a

hurdle in others.

Is it possible to generate more diverse images?
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VAE-GAN

Audio Encoder Image Decoder Discriminator

Input 48x48 Input 64 Input 28x28

Conv 4, 128, 2 Upconv 3, 512, 2 Conv 4, 128, 2

Conv 4, 256, 2 Upconv 3, 256, 2 Conv 4, 256, 2

Conv 4, 512, 2 Upconv 2, 128, 2 Conv 4, 512, 2

µ, σ: Conv 4, 64, 2 Upconv 2, 1, 2 Conv 1, 1, 1, Sigm

Output 2x64 Output 28x28 Output 1

LeakyReLU(0.2) ReLU LeakyReLU(0.2)

BatchNorm BatchNorm BatchNorm

There are no fully-conected layers anywhere in this setup. This is

crucial.
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VAE-GAN

It turns out that using a simple GAN formulation results in images

that look like ones from the training set but do not correspond to

audio labels. We remedy this by incorporating the reconstruction

loss and KL divergence within the adversarial framework:

• min
G

max
D

V (D,G ) =

Ex∼pdata(x) [log(D(x))] + Ez∼pz(z) [log(1− D(G (z)))] +

αRL(G (z), x) + βDKL(pz(z) || N (0, 1))

• In simpler terms: we add a reconstruction loss and KL

divergence term to the Generator loss.

• We set β = 0.5.
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VAE-GAN Training

Hyperparameters:

• Epochs = 100.

• Batch size = 128.

• Learning rate = 0.0002.

Total number of parameters = 7, 909, 382.

Training time ≈ 2 hours.
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VAE-GAN Results

Images generated in last epoch (α = 0.2).
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VAE-GAN Results

Real images from training set.
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VAE-GAN Results

Actual vs. reconstructed images for the test set.

LeNet5 is able to correctly classify 79% of instances.
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VAE-GAN Results

Results:

• A hybrid VAE-GAN approach is able to generate more diverse

images from audio.

• The quality of the images still needs improvement.

• In spite of the substandard quality, generated images preserve

features important for classification.

• There is a tradeoff between image quality and diversity.

Relatively high values of α result in images similar to the ones

observed for the VAE setup.
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