Proportionality of Approval-Based Multi-winner Rules

Piotr Skowron University of Warsaw

Model: Approval-Based Elections

We have n = 8 voters, m = 9 candidates.

We have n = 8 voters, m = 9 candidates.

We have n = 8 voters, m = 9 candidates.

- v1: c1 c2 c3 c4
- v2: c1 c2 c3 c4
- v3: c1 c2 c3 c4
- v4: c1 c2 c3 c4
- v5: c5 c6 c7
- v6: c5 c6 c7
- v7: c8 c9
- v8: c8 c9

c4							
c3				с7			
с2				с6		с9	
c1				c5		c8	
v1	v2	v3	v4	v5	v6	v7	v8

Assume the committee size to be elected is k = 4.

Assume the committee size to be elected is k = 4.

Assume the committee size to be elected is k = 4.

Which committee should be selected? Everything depends on the context!

Context: electing a representative body

Assume the committee size to be elected is k = 4.

Which committee should be selected?

In this context the committee should be proportional.

Assume the committee size to be elected is k = 4.

Which committee should be selected?

In this context the committee should be proportional.

But what does it mean and how could we achieve that?

Proportionality on the example of party-list systems.

Each voter casts one vote for a single party. Our goal is to select a committee of size k = 4:

- Party 1 gets 40 votes.
- Party 2 gets 20 votes.
- Party 3 gets 20 votes.

How should the parliament look like?

Proportionality on the example of party-list systems.

Each voter casts one vote for a single party. Our goal is to select a committee of size k = 4:

- Party 1 gets 40 votes.
- Party 2 gets 20 votes.
- Party 3 gets 20 votes.

How should the parliament look like?

- Party 1 should get 2 seats.
- Party 2 should get 1 seat.
- Party 3 should get 1 seat.

Assume the committee size to be elected is k = 4.

Assume the committee size to be elected is k = 4.

Assume the committee size to be elected is k = 4.

Proportionality for party-list systems

Each voter can cast her vote on a single party: (assume we have *n* voters and *k* parliamentary seats)

Proportionality for party-list systems

Each voter can cast her vote on a single party: (assume we have *n* voters and *k* parliamentary seats)

Intuition: The party P_i gets x_i votes. If all $\frac{x_i}{n} \cdot k$ are integers, then party P_i should get $\frac{x_i}{n} \cdot k$ seats.

Recall the first example

Party 1 Party 2 Party 3

Assume the committee size to be elected is k = 4.

How to define proportionality for more complex preferences?

How to define proportionality for more complex preferences?

Let's move back in time to the end of the 19th century?

Let's move back in time to the end of the 19th century?

Thorvald N. Thiele

Edvard Phragmén

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:

$$\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{t}$$

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:

$$\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{t}$$

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:

$$\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{t}$$

E.g., consider a committee 🏆

Points per voter: V1:

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:

$$\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{t}$$

E.g., consider a committee 🏆

Points per voter: V1: 1 + 1/2

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:

$$\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{t}$$

E.g., consider a committee 🏆

Points per voter: V1: 1 + 1/2

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:

 $\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{t}$

E.g., consider a committee 🏆 🍒

Points per voter:

V1: 1 + 1/2 V2: 1 + 1/2 V3: 1 + 1/2 + 1/3

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:

 $\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{t}$

E.g., consider a committee 🏆 🍒

Points per voter:

V1: 1 + 1/2V2: 1 + 1/2V3: 1 + 1/2 + 1/3V4: 1 + 1/2

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:

 $\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{t}$

E.g., consider a committee 🏆 🎽

Points per voter:

V1: 1 + 1/2 V2: 1 + 1/2 V3: 1 + 1/2 + 1/3 V4: 1 + 1/2 V5: 1 + 1/2

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:

 $\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{t}$

E.g., consider a committee 🏆 🍒

Points per voter:

V1: 1 + 1/2V2: 1 + 1/2V3: 1 + 1/2 + 1/3V4: 1 + 1/2V5: 1 + 1/2V6: 0

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:

 $\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{t}$

E.g., consider a committee 🏆 🎽

Points per voter:

V1: 1 + 1/2 V2: 1 + 1/2 V3: 1 + 1/2 + 1/3 V4: 1 + 1/2 V5: 1 + 1/2 V6: 0 V7: 0

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:

 $\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{t}$

E.g., consider a committee 🏆 🍒 嶺

V1: 1 + 1/2	V2: 1 + 1/2
V3: 1 + 1/2 + 1/3	V4: 1 + 1/2
V5: 1 + 1/2	V6: 0
V7: 0	V8: 1

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:

 $\sum_{i=1}^{l} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{t}$

E.g., consider a committee 🏆 🍒 嶺

Points per voter:

V1: 1 + 1/2V2: 1 + 1/2V3: 1 + 1/2 + 1/3V4: 1 + 1/2V5: 1 + 1/2V6: 0V7: 0V8: 1

Sum of points = 8 + 5/6

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:

 $\sum_{i=1}^{t} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{t}$ E.g. Committee with the highest score wins the election. V1: V3: 1 + 1/2 + 1/3 V4: 1 + 1/2

V5: 1 + 1/2V6: 0V7: 0V8: 1

Sum of points = 8 + 5/6

Proportional Approval Voting is welfarist

The welfare vector of a committee W is defined as:

 $(|A_1 \cap W|, |A_2 \cap W|, ..., |A_n \cap W|)$

where:

 A_i is the set of candidates approved by voter i ($|A_i \cap W|$ is the number of representatives of i)

Proportional Approval Voting is welfarist

The welfare vector of a committee W is defined as:

 $(|A_1 \cap W|, |A_2 \cap W|, ..., |A_n \cap W|)$

where:

 A_i is the set of candidates approved by voter i ($|A_i \cap W|$ is the number of representatives of i)

A rule is welfarist if the decision which committee to elect can be made solely based on welfare vectors of the committees.

• Voters earn money with the constant speed (\$1 per time unit).

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters **S** who all have **n** dollars in total and who all approve a not-yet selected candidate **c**, do:

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters **S** who all have **n** dollars in total and who all approve a not-yet selected candidate **c**, do:
 - 1. Add c to the committee.
 - 2. Make voters from **S** pay for **c** (resetting their budget to 0).

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters **S** who all have **n** dollars in total and who all approve a not-yet selected candidate **c**, do:
 - 1. Add c to the committee.
 - 2. Make voters from **S** pay for **c** (resetting their budget to 0).

c4	c5	c6			
	с3		c13	c14	c15
	c2		c10	c11	c12
	c1		с7	c8	с9
v1	v2	v3	v4	v5	v6

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:
 - 1. Add c to the committee.
 - 2. Make voters from **S** pay for **c** (resetting their budget to 0).

c4	c5	c6			
	с3		c13	c14	c15
	c2		c10	c11	c12
	c1		с7	c8	с9
v1	v2	٧٦	v4	v5	v6

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:
 - 1. Add c to the committee.
 - 2. Make voters from **S** pay for **c** (resetting their budget to 0).

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters **S** who all have **n** dollars in total and who all approve a not-yet selected candidate **c**, do:
 - 1. Add c to the committee.
 - 2. Make voters from **S** pay for **c** (resetting their budget to 0).

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters **S** who all have **n** dollars in total and who all approve a not-yet selected candidate **c**, do:
 - 1. Add c to the committee.
 - 2. Make voters from **S** pay for **c** (resetting their budget to 0).

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters **S** who all have **n** dollars in total and who all approve a not-yet selected candidate **c**, do:
 - 1. Add c to the committee.
 - 2. Make voters from **S** pay for **c** (resetting their budget to 0).

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:
 - 1. Add c to the committee.
 - 2. Make voters from **S** pay for **c** (resetting their budget to 0).

k = 12

c4	c5	с6			
	с3		c13	c14	c15
	c2		c10	c11	c12
	c1		с7	c8	с9
v1	v2	v3	v4	v5	v6

t4=12						
	c4	c5	с6	c10	c11	c12
t3=6						
		с3				
t2=4		- 7		-7	-0	-0
+1 2		c2		с7	с8	с9
t1=2		c1				
t0=0		•				
	v1	v2	v3	v4	v5	v6

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:
 - 1. Add c to the committee.
 - 2. Make voters from **S** pay for **c** (resetting their budget to 0).

k =	12	
-----	----	--

c4	c5	с6			
	с3		c13	c14	c15
	c2		c10	c11	c12
	c1		c7	c8	с9
v1	v2	v3	v4	v5	v6

t4=12							
		c4	с5	с6	c10	c11	c12
t3=6							
			c3				
t2=4	•••••				_		
			c2		с7	с8	с9
t1=2			c1				
t0=0			CI				
10-0							
		v1	VZ	v3	v4	v5	v6

Which of the two rules is better?

Which of the two rules is better?

• Both Thiele and Phragmén argued that their rules are proportional by how they behave on party-list profiles.

Which of the two rules is better?

- Both Thiele and Phragmén argued that their rules are proportional by how they behave on party-list profiles.
- Historically PAV was preferred since it appeared simpler.

Which of the two rules is better?

- Both Thiele and Phragmén argued that their rules are proportional by how they behave on party-list profiles.
- Historically PAV was preferred since it appeared simpler.
- Current research suggest that PAV is better in terms of proportionality.

Two Arguments in Favour of PAV

First Argument: Axioms for Cohesive Groups

Definition: Each group with at least $\ell n/k$ voters who approve at least ℓ same candidates should have on average at least ℓ representatives in the elected committee.

Definition: Each group with at least $\ell n/k$ voters who approve at least ℓ same candidates should have on average at least ℓ representatives in the elected committee.

For k = 4 these voters should approve (on average) 2 candidates in the selected committee.

Definition: Each group with at least $\ell n/k$ voters who approve at least ℓ same candidates should have on average at least ℓ representatives in the elected committee.

Does there exist a system which satisfies this property?

Definition: Each group with at least $\ell n/k$ voters who approve at least ℓ same candidates should have on average at least ℓ representatives in the elected committee.

Does there exist a system which satisfies this property?

Definition: Each group with at least $\ell n/k$ voters who approve at least ℓ same candidates should have on average at least $\ell - 1$ representatives in the elected committee.

But PAV satisfies a slightly weaker property!

Definition: Each group with at least $\ell n/k$ voters who approve at least ℓ same candidates should have on average at least $\ell - 1$ representatives in the elected committee.

But PAV satisfies a slightly weaker property!

Phragmén's Rule would satisfy it only if we replaced $\ell - 1$ with $(\ell - 1)/2$.

Two Arguments in Favour of PAV

Second Argument: Axiomatic Extensions of Apportionment Methods

Proportionality for party-list systems

Each voter can cast her vote on a single party: (assume we have *n* voters and *k* parliamentary seats)

Lower-quota: The party that gets x votes should get $\left\lfloor \frac{x}{n} \cdot k \right\rfloor$ seats.

Proportionality for party-list systems

Each voter can cast her vote on a single party: (assume we have *n* voters and *k* parliamentary seats)

Lower-quota: The party that gets x votes should get $\left\lfloor \frac{x}{n} \cdot k \right\rfloor$ seats.

The D'Hondt method of apportionment satisfies lower-quota.

	Party 1	Party 2	Party 3	Party 4
#votes	6	7	39	48

	Party 1	Party 2	Party 3	Party 4
#votes	6	7	39	48
#votes/2	3	3.5	19.5	24
#votes/3	2	2.33	13	16
#votes/4	1.5	1.75	9.75	12
#votes/5	1.2	1.4	7.8	9.6
#votes/6	1	1.17	6.5	8.0
#votes/7	0.86	1	5.57	6.86

	Party 1	Party 2	Party 3	Party 4
#votes	6	7	39	48
#votes/2	3	3.5	19.5	24
#votes/3	2	2.33	13	16
#votes/4	1.5	1.75	9.75	12
#votes/5	1.2	1.4	7.8	9.6
#votes/6	1	1.17	6.5	8.0
#votes/7	0.86	1	5.57	6.86

	Party 1	Party 2	Party 3	Party 4
#votes	6	7	39	48
#votes/2	3	3.5	19.5	24
#votes/3	2	2.33	13	16
#votes/4	1.5	1.75	9.75	12
#votes/5	1.2	1.4	7.8	9.6
#votes/6	1	1.17	6.5	8.0
#votes/7	0.86	1	5.57	6.86

	Party 1	Party 2	Party 3	Party 4		
#votes	6	7	39	48		
#votes/2	3	3.5	19.5	24		
#votes/3	2 1.5	2.33 13		2.33 13	2.33 13	16
#votes/4		1.75 9.75	9.75	12		
#votes/5	1.2	1.4	7.8	9.6		
#votes/6	1	1.17	6.5	8.0		
#votes/7	0.86	1	5.57	6.86		

	Party 1	Party 2	Party 3	Party 4
#votes	6	7	39	48
#votes/2	3	3.5	19.5	24
#votes/3	2	2.33	13	16
#votes/4	1.5	1.75	9.75	12
#votes/5	1.2	1.4	7.8	9.6
#votes/6	1	1.17 6.5 8.		8.0
#votes/7	0.86	1	5.57	6.86

	Party 1	Party 2	Party 3	Party 4
#votes	6	7	39	48
#votes/2	3	3.5	19.5	24
#votes/3	2	2.33 13		16
#votes/4	1.5	1.75 9.75		12
#votes/5	1.2	1.4	7.8	9.6
#votes/6	1	1.17	6.5	8.0
#votes/7	0.86	1	5.57	6.86

	Party 1	Party 2	Party 3	Party 4
#votes	6	7	39	48
#votes/2	3	3.5	19.5	24
#votes/3	2	2.33	13	16
#votes/4	1.5	1.75	9.75	12
#votes/5	1.2	1.4	7.8	9.6
#votes/6	1	1.17	6.5	8.0
#votes/7	0.86	1	5.57	6.86

	Party 1	Party 2	Party 3	Party 4
#votes	6	7	39	48
#votes/2	3	3.5	19.5	24
#votes/3	2	2.33	13	16
#votes/4	1.5	1.75	9.75	12
#votes/5	1.2	1.4	7.8	9.6
#votes/6	1	1.17	6.5	8.0
#votes/7	0.86	1	5.57	6.86

	Party 1	Party 2	Party 3	Party 4
#votes	6	7	39	48
#votes/2	3	3.5	19.5	24
#votes/3	2	2.33	13	16
#votes/4	1.5	1.75	9.75	12
#votes/5	1.2	1.4	7.8	9.6
#votes/6	1	1.17	6.5	8.0
#votes/7	0.86	1	5.57	6.86

	Party 1	Party 2	Party 3	Party 4
#votes	6	7	39	48
#votes/2	3	3.5	19.5	24
#votes/3	2	2.33	13	16
#votes/4	1.5	1.75	9.75	12
#votes/5	1.2	1.4	7.8	9.6
#votes/6	1	1.17	6.5	8.0
#votes/7	0.86	1	1 5.57 6	

	Party 1	Party 2	Party 3	Party 4
#votes	6	7	39	48
#votes/2	3	3.5	19.5	24
#votes/3	2	2.33	13	16
#votes/4	1.5	1.75	9.75	12
#votes/5	1.2	1.4	7.8	9.6
#votes/6	1	1.17	6.5	8.0
#votes/7	0.86	1	5.57	6.86

	Party 1	Party 2		Party 3	Party 4
#votes	6	7		39	48
#votes/2	3	3.5		19.5	24
Party 1 gets 0 se	ats	-		13	16
Party 2 gets 0 se	ats	-		9.75	12
Party 3 gets 4 se	ats	-		7.8	9.6
Party 4 gets 6 se	ats			6.5	8.0
#votes/7	0.86	1		5.57	6.86

Party 1: 6 votes, Party 2: 7 votes, Party 3: 39 votes, Party 4: 48 votes

		Party 1	Party 2	2	Party 3	Party 4
#v	votes	6	7		39	48
#v	votes/2	3	3.5		19.5	24
Party 1 ge	ts 0 sea	its			13	16
Party 2 ge	ts 0 sea	its			9.75	12
Party 3 ge	ts 4 sea	its			7.8	9.6
Party 4 ge	ets 6 sea		6.5	8.0		
#v	otes/7	0.86	1		5.57	6.86

The D'Hondt method satisfies lower-quota.

Let's look at this instance

We have 9 voters, 9 candidates, and our goal is to select a committee of size k = 4.

Let's look at this instance

We have 9 voters, 9 candidates, and our goal is to select a committee of size k = 4.

Let's look at this instance

We have 9 voters, 9 candidates, and our goal is to select a committee of size k = 4.

Some basic axiomatic properties: Consistency

Some basic axiomatic properties: Consistency

Some basic axiomatic properties: Consistency

Some basic axiomatic properties: Continuity

Some basic axiomatic properties: Continuity

Some basic axiomatic properties: Continuity

Then, there exists (possibly very large) value n such that:

Axiomatic Characterisations

Theorem: Proportional Approval Voting is the only ABC ranking rule that satisfies symmetry, consistency, continuity and D'Hondt proportionality.

[LS17] M. Lackner, P. Skowron, Consistent Approval-Based Multi-Winner Rules, Arxiv 2017.

Axiomatic Characterisations

Theorem: Proportional Approval Voting symmetry, consistency, continuity and D'Hondt proportionality.

[LS17] M. Lackner, P. Skowron, Consistent Approval-Based Multi-Winner Rules, Arxiv 2017.

Axiomatic Characterisations

Theorem: Proportional Approval Voting

D'Hondt

proportionality.

[LS17] M. Lackner, P. Skowron, Consistent Approval-Based Multi-Winner Rules, Arxiv 2017.

k = 12

c4	c5	с6				c4	c5	c6			
	с3		c13	c14	c15		с3		c13	c14	c15
	c2		c10	c11	c12		c2		c10	c11	c12
	c1		с7	c8	с9		c1		с7	c8	с9
v1	v2	v3	v4	v5	v6	v1	v2	v3	v4	v5	v6

Phragmén's Rule

Thiele's Rule (PAV)

k = 12

c4	c5	с6			
	с3		c13	c14	c15
c2			c10	c11	c12
	c1		с7	c8	с9

v1 v2 v3 v4 v5 v6

Phragmén's Rule

v1	v2	v3	v4	v5	v6

c7

c13 c14 c15

с8

c12

c9

c10 c11

с5

c3

c2

c1

c4

c6

Thiele's Rule (PAV)

Proportionality with respect to power

Proportionality with respect to welfare

k = 12

c4	c5	с6			
	с3		c13	c14	c15
	c2			c11	c12
	c1		с7	c8	с9

v1 v2 v3 v4 v5 v6

Phragmén's Rule

с4	с5	с6			
	с3		c13	c14	c15
	c2		c10	c11	c12
	c1		с7	c8	с9
v1	v2	v3	v4	v5	v6

Thiele's Rule (PAV)

Proportionality with respect to power

- priceability,
- laminar proportionality

Proportionality with respect to welfare

 Pigou-Dalton • EJR

k = 12

c4	c5	с6			
	с3		c13	c14	c15
c2			c10	c11	c12
	c1		c7	c8	с9

v1 v2 v3 v4 v5 v6

Phragmén's Rule

c4	c5	c6			
	с3		c13	c14	c15
	c2		c10	c11	c12
	c1		с7	c8	с9
v1	v2	v3	v4	v5	v6

Thiele's Rule (PAV)

Proportionality with respect to power

priceability,laminar proportionality

Proportionality with respect to welfare

Pigou-DaltonEJR

Two New Notions of Proportionality

Fair distribution of power

(failed by PAV)

Laminar Proportionality: Examples

It describes how the rule should behave on certain well-behaved profiles

Laminar Proportionality: Examples

	c4		c8			c12		
	с3			с7		C	1	
	c2		с6			c10		
	c1			с5		С	9	
v1	v2	v3	v4	v5	v6	v7	v8	

Party list profiles

Laminar Proportionality: Examples

	c4		c8			c12		
	c3			с7		c11		
	c2		с6			c10		
	c1			c5		с	9	
v1	v2	v3	v4	v5	v6	v7	v8	

Party list profiles

v1 v2 v3 v4 v5 v6

Party lists with a common leader

v1 v2 v3 v4 v5 v6

Party lists with a common leader

k = 12

	c10		_	
	с9	c17]	
с6	с8	c16]	
c5	с7	c15]	
	c4	c14	c20	
	с3	c13	c19	
	c2			
	c1	c11		

v1 v2 v3 v4 v5 v6 v7 v8 v9

Subdivided parties

k = 12

	c10			
	с9	c17		
с6	с8	c16		
c5	с7	c15		
	c4	c14	c20	
	с3	c13	c19	
	c2			
	c1	c11		

v1 v2 v3 v4 v5 v6 v7 v8 v9

Subdivided parties

We say that a profile (P, k) is laminar if:

1. P is unanimous, or

- 1. P is unanimous, or
- 2. There exists a unanimously approved candidate c, and (P \ {c}, k-1) is laminar, or

- 1. P is unanimous, or
- 2. There exists a unanimously approved candidate c, and (P \ {c}, k-1) is laminar, or

- 1. P is unanimous, or
- 2. There exists a unanimously approved candidate c, and (P \ {c}, k-1) is laminar, or

- 1. P is unanimous, or
- 2. There exists a unanimously approved candidate c, and (P \ {c}, k-1) is laminar, or
- 3. There are two disjoint laminar instances (P1, k1) and (P2, k2) with |P1|/k1 = |P2|/k2 such that P = P1 + P2 and k = k1 + k2

- 1. P is unanimous, or
- 2. There exists a unanimously approved candidate c, and (P \ {c}, k-1) is laminar, or
- 3. There are two disjoint laminar instances (P1, k1) and (P2, k2) with |P1|/k1 = |P2|/k2 such that P = P1 + P2 and k = k1 + k2

								_		
	с6			c8		C]			
	c5 c7		c5 c7		с7			c13		
		c4					12	c17		
	с3						c11			
			c2			C	10	c15		
			c1				с9			
v1	v2	v3	v4	v5	v6	v7	v8	v9		

We say that a profile (P, k) is laminar if:

- 1. P is unanimous, or
- There exists a unanimously approved candidate c, and (P \ {c}, k-1) is laminar, or

 $k^2 = 8$

3. There are two disjoint laminar instances (P1, k1) and (P2, k2) with |P1|/k1 = |P2|/k2 such that P = P1 + P2 and k = k1 + k2

k1 = 4

								_
	c6		c8			C		
	c5			с7		C		
	c4							c17
			с3			C	1	c16
			c2			C	10	c15
	c1						с9	
v1	v2	v3	v4	v5	v6	v7	v8	v9

- 1. P is unanimous, or
- 2. There exists a unanimously approved candidate c, and (P \ {c}, k-1) is laminar, or
- 3. There are two disjoint laminar instances (P1, k1) and (P2, k2) with |P1|/k1 = |P2|/k2 such that P = P1 + P2 and k = k1 + k2

We say that a profile (P, k) is laminar if:

- 1. P is unanimous, or
- 2. There exists a unanimously approved candidate c, and (P \ {c}, k-1) is laminar, or
- 3. There are two disjoint laminar instances (P1, k1) and (P2, k2) with |P1|/k1 = |P2|/k2 such that P = P1 + P2 and k = k1 + k2

We say that a rule is laminar proportional if it behaves well on laminar profiles.

Welfarist Rules

The welfare vector of a committee W is defined as:

 $(|A_1 \cap W|, |A_2 \cap W|, ..., |A_n \cap W|)$

where:

 A_i is the set of candidates approved by voter i ($|A_i \cap W|$ is the number of representatives of i)

A rule is welfarist if the decision which committee to elect can be made solely based on welfare vectors of the committees.

c_9	c_{14}				
c_8	c_{13}	c_{18}	c_{22}		
c_7	c_{12}	c_{17}	c_{21}		
c_6	c_{11}	c_{16}	c_{20}		
c_5	c_{10}	c_{15}	c_{19}		
С	2	С	24		
С	1	<i>C</i> 3			
$v_1 v_2$	$v_3 v_4$	$v_5 v_6$	$v_7 v_8$		
6 6	6 6	6 6	6 6		

c_9	c_{14}		
c_8	c_{13}	c_{18}	c_{22}
c_7	c_{12}	c_{17}	c_{21}
c_6	c_{11}	c_{16}	c_{20}
c_5	c_{10}	c_{15}	c_{19}
0	2	(C4
6	² 1	(<u>_3</u>
$v_1 v_2$	$v_3 v_4$	$v_5 v_6$	$v_7 v_8$
7 7	7 7	5 5	5 5

<i>C</i> 9	c_{14}				C	9	c_{1}	14				
<i>c</i> ₈	c_{13}	c_{18}	c_{22}		c_8	8	c_1	13	c_{1}	18	c_{2}	22
c_7	c_{12}	c_{17}	c_{21}		Ċ	7	c_{1}	12	c_{1}	17	c_{2}	21
c_6	c_{11}	c_{16}	c_{20}		c_0	6	c_1	11	c_{1}	16	c_{2}	20
c_5	c_{10}	c_{15}	c_{19}		C_{i}	5	c_1	10	c_{1}	15	c_{1}	19
c	2	C	24			c	2			С	4	
c	1	С	3			c	1			С	3	
$v_1 v_2$	$v_3 v_4$	$v_5 v_6$	$v_7 v_8$	- '	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8
6 6	6 6	6 6	6 6		7	7	7	7	5	5	5	5

Welfare (6, 6, 6, 6, 6, 6, 6, 6) is preferred over welfare (7, 7, 7, 7, 5, 5, 5, 5)

<i>C</i> 9	c_{14}				9	c_{1}	14				
c_8	c_{13}	c_{18}	c_{22}	c	8	c_{1}	13	c_{1}	18	c_{1}	22
c_7	c_{12}	c_{17}	c_{21}	c	7	c_{1}	12	c_{1}	17	c_{1}	21
c_6	c_{11}	c_{16}	c_{20}	<i>c</i>	6	c_{1}	11	c_{1}	16	c_{1}	20
c_5	c_{10}	c_{15}	c_{19}		5	c_{1}	10	c_{1}	15	c	19
C	2	0	24		С	2			C	4	
C	² 1	C	3		С	1			C	3	
$v_1 v_2$	$v_3 v_4$	$v_5 v_6$	$v_7 \ v_8$	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8
6 6	6 6	6 6	6 6	7	7	7	7	5	5	5	5

Welfare (6, 6, 6, 6, 6, 6, 6, 6) is preferred over welfare (7, 7, 7, 7, 5, 5, 5, 5)

c_{17} c_{18} c_{19} c_{20}		c_{17} c_{18} c_{19} c_{20}		
<i>C</i> ₆	c_{21} c_{22} c_{23} c_{24}	c_6	c_{21} c_{22}	c_{23} c_{24}
c_5	c_{11} c_{16}	c_5	c_{11}	c_{16}
c_4	c_{10} c_{15}	c_4	c_{10}	c_{15}
<i>C</i> 3	$c_9 c_{14}$	c_3	c_9	c_{14}
c_2	$c_8 c_{13}$	c_2	c_8	c_{13}
c_1	$c_7 c_{12}$	c_1	c_7	c_{12}
v_1 v_2 v_3 v_4	v_5 v_6 v_7 v_8	v_1 v_2 v_3 v_4	$v_5 v_6$	$v_7 v_8$
6 6 6 6	6 6 6 6	7 7 7 7	5 5	5 5

Welfare (7, 7, 7, 7, 5, 5, 5, 5) is preferred over welfare (6, 6, 6, 6, 6, 6, 6, 6)

A price system is a pair $ps = (p, \{p_i\}_{i \in [n]})$, where p > 0 is a price, and for each voter $i \in [n]$, there is a payment function $p_i : C \rightarrow [0, 1]$ such that:

- 1. A voter can only pay for candidates she approves of),
- 2. A voter can spend at most one dollar.

A price system is a pair $ps = (p, \{p_i\}_{i \in [n]})$, where p > 0 is a price, and for each voter $i \in [n]$, there is a payment function $p_i : C \rightarrow [0, 1]$ such that:

- 1. A voter can only pay for candidates she approves of),
- 2. A voter can spend at most one dollar.

We say that a price system ps = (p, $\{p_i\}_{i\in [n]}$) supports a committee W if the following hold:

1. For each elected candidate, the sum of the payments to this candidate equals the price p.

A price system is a pair $ps = (p, \{p_i\}_{i \in [n]})$, where p > 0 is a price, and for each voter $i \in [n]$, there is a payment function $p_i : C \rightarrow [0, 1]$ such that:

- 1. A voter can only pay for candidates she approves of),
- 2. A voter can spend at most one dollar.

We say that a price system $ps = (p, \{p_i\}_{i \in [n]})$ supports a committee W if the following hold:

- 1. For each elected candidate, the sum of the payments to this candidate equals the price p.
- 2. No candidate outside of the committee gets any payment.

A price system is a pair $ps = (p, \{p_i\}_{i \in [n]})$, where p > 0 is a price, and for each voter $i \in [n]$, there is a payment function $p_i : C \rightarrow [0, 1]$ such that:

- 1. A voter can only pay for candidates she approves of),
- 2. A voter can spend at most one dollar.

We say that a price system ps = (p, $\{p_i\}_{i\in [n]}$) supports a committee W if the following hold:

- 1. For each elected candidate, the sum of the payments to this candidate equals the price p.
- 2. No candidate outside of the committee gets any payment.
- 3. There exists no unelected candidate whose supporters, in total, have a remaining unspent budget of more than p

The price is p = 0.5.

1. v1 pays 1/6 for c1, c2 and c3 and 1/2 for c4

c4	c5	c6			
	с3		c13	c14	c15
	c2		c10	c11	c12
	c1			c8	с9
v1	v2	v3	v4	v5	v6

The price is p = 0.5.

k = 12

c4	c5	c6			
	с3		c13	c14	c15
	c2		c10	c11	c12
	c1		с7	c8	с9
v1	v2	v3	v4	v5	v6

- 1. v1 pays 1/6 for c1, c2 and c3 and 1/2 for c4
- 2. v2 pays 1/6 for c1, c2 and c3 and 1/2 for c5
- 3. v3 pays 1/6 for c1, c2 and c3 and 1/2 for c6

The price is p = 0.5.

- 1.v1 pays 1/6 for c1, c2 and c3 and 1/2 for c4
 - 2. v2 pays 1/6 for c1, c2 and c3 and 1/2 for c5
 - 3. v3 pays 1/6 for c1, c2 and c3 and 1/2 for c6
 - 4. v4 pays 1/2 for c7 and c10

k = 12

c4	c5	с6			
	с3		c13	c14	c15
	c2		c10	c11	c12
	c1		с7	c8	с9
v1	v2	v3	v4	v5	v6

The price is p = 0.5.

- 1. v1 pays 1/6 for c1, c2 and c3 and 1/2 for c4
- 2. v2 pays 1/6 for c1, c2 and c3 and 1/2 for c5
- 3. v3 pays 1/6 for c1, c2 and c3 and 1/2 for c6
- 4. v4 pays 1/2 for c7 and c10
- 5. v5 pays 1/2 for c8 and c11
- 6. V6 pays 1/2 for c9 and c12

k = 12

c4	c5	с6			
c3			c13	c14	c15
c2			c10	c11	c12
c1			с7	c8	с9
v1	v2	v3	v4	v5	v6

No welfarist rule can be priceable

No welfarist rule can be priceable

Core

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1.
$$\frac{|\mathbf{T}|}{k} \leq \frac{|\mathbf{S}|}{n}$$
, and

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1.
$$\frac{|\mathbf{T}|}{k} \leq \frac{|\mathbf{S}|}{n}$$
, and

c4	c5	c6			
c3			c13	c14	c15
c2			c10	c11	c12
c1			c7	c8	с9
v1	v2	v3	v4	v5	v6

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1.
$$\frac{|\mathbf{T}|}{k} \leq \frac{|\mathbf{S}|}{n}$$
, and

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1.
$$\frac{|\mathbf{T}|}{k} \leq \frac{|\mathbf{S}|}{n}$$
, and

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1.
$$\frac{|\mathbf{T}|}{k} \leq \frac{|\mathbf{S}|}{n}$$
, and

2. Each voter in **S** prefers **T** to **W**.

Not in the core!

k = 12

k = 12

	c4	c5	c6			
	с3			c13	c14	c15
	c2			c10	c11	c12
	c1			c7	c8	с9
C	v1	v2	v3	v4	v5	v6

Core: Definition

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1.
$$\frac{|\mathbf{T}|}{k} \leq \frac{|\mathbf{S}|}{n}$$
, and

2. Each voter in **S** prefers **T** to **W**.

Core contradicts the Pigou-Dalton principle!

Not in the core!

k = 12

k = 12

c4	c5	с6			
	c3		c13	c14	c15
	c2		c10	c11	c12
	c1		c7	c8	с9
v1	v2	v3	v4	v5	v6

Core: Definition

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1.
$$\frac{|\mathbf{T}|}{k} \leq \frac{|\mathbf{S}|}{n}$$
, and

2. Each voter in **S** prefers **T** to **W**.

Core contradicts the Pigou-Dalton principle!

Not in the core!

k = 12

Theorem: PAV gives the best possible Approximation of the core subject to Satisfying the Pigou-Dalton principle!

No welfarist rule can satisfy the core

No welfarist rule can satisfy the core

 v_1 v_2 v_3 v_4 v_5 v_6 v_7 v_8 v_9 v_{10} v_{11} v_{12} v_{13} v_{14} v_{15} v_{16}

Profile 2:

 v_1 v_2 v_3 v_4 v_5 v_6 v_7 v_8 v_9 v_{10} v_{11} v_{12} v_{13} v_{14} v_{15} v_{16}

• Each voter is initially given \$k.

- Each voter is initially given \$k.
- Buying a candidate c costs \$n in total. This cost is spread equally among the voters who approve c and who still have money.

- Each voter is initially given \$k.
- Buying a candidate c costs \$n in total. This cost is spread equally among the voters who approve c and who still have money.

Formally, we find a minimal price **p(c)** such that if each voter who approves **c** pays **p(c)** or all the money she is left with, then **c** gets **\$n**.

- Each voter is initially given \$k.
- Buying a candidate c costs \$n in total. This cost is spread equally among the voters who approve c and who still have money.

Formally, we find a minimal price **p(c)** such that if each voter who approves **c** pays **p(c)** or all the money she is left with, then **c** gets \$n.

- Each voter is initially given \$k.
- Buying a candidate c costs \$n in total. This cost is spread equally among the voters who approve c and who still have money.

Formally, we find a minimal price **p(c)** such that if each voter who approves **c** pays **p(c)** or all the money she is left with, then **c** gets **\$n**.

• We add candidates to the committee in the ascending order of the prices.

k = 12

c4	c5	с6			
	с3		c13	c14	c15
	c2		c10	c11	c12
	c1		c7	c8	с9
v1	v2	v3	v4	v5	v6

- Each voter is initially given \$k.
- Buying a candidate c costs \$n in total. This cost is spread equally among the voters who approve c and who still have money.

Formally, we find a minimal price **p(c)** such that if each voter who approves **c** pays **p(c)** or all the money she is left with, then **c** gets **\$n**.

- Each voter is initially given \$k.
- Buying a candidate c costs \$n in total. This cost is spread equally among the voters who approve c and who still have money.

Formally, we find a minimal price **p(c)** such that if each voter who approves **c** pays **p(c)** or all the money she is left with, then **c** gets **\$n**.

- Each voter is initially given \$k.
- Buying a candidate c costs \$n in total. This cost is spread equally among the voters who approve c and who still have money.

Formally, we find a minimal price **p(c)** such that if each voter who approves **c** pays **p(c)** or all the money she is left with, then **c** gets **\$n**.

- Each voter is initially given \$k.
- Buying a candidate c costs \$n in total. This cost is spread equally among the voters who approve c and who still have money.

Formally, we find a minimal price **p(c)** such that if each voter who approves **c** pays **p(c)** or all the money she is left with, then **c** gets **\$n**.

- Each voter is initially given \$k.
- Buying a candidate c costs \$n in total. This cost is spread equally among the voters who approve c and who still have money.

Formally, we find a minimal price **p(c)** such that if each voter who approves **c** pays **p(c)** or all the money she is left with, then **c** gets **\$n**.

k = 12					1						
κ -				p(c4)=	=6	с4	с5	с6	c10	c11	c12
c4 c5 c6											
c3	c13	c14	c15	p(c3)=	-2		с3				
c2	c10	c11	c12	p(c2)=	-2		c2		с7	c8	с9
c1	с7	c8	с9	p(c1)=	=2		c1				
v1 v2 v3	v4	v5	v6			v1	v2	v3	v4	v5	v6

Comparison of committee rules

	Thiele's method (PAV)	Phragmén's method	Our method
laminar proportional		\checkmark	\checkmark
priceable		\checkmark	\checkmark
PJR	\checkmark	\checkmark	\checkmark
EJR	\checkmark		\checkmark
core with constrained deviations			\checkmark
core	2-approx.	?	$O(\log k)$ -approx.
welfarist	\checkmark		
Pareto-optimal	\checkmark		
Pigou–Dalton	\checkmark		
computation	NP-complete	polynomial time	polynomial time

Table 1: The rules we consider and properties that they satisfy.

Thiele versus Phragmén

Borda versus Condorcet

Open questions:

• Does there always exist a Pareto-optimal priceable committee?

• What is the best possible core-approximation among welfarist rules?