Proportionality of Approval-Based Multi-winner Rules

Piotr Skowron
University of Warsaw

Model: Approval-Based Elections

A preference profile: an example

We have $\mathrm{n}=8$ voters, $\mathrm{m}=9$ candidates.

A preference profile: an example

We have $\mathrm{n}=8$ voters, $\mathrm{m}=9$ candidates.

A preference profile: an example

We have $\mathrm{n}=8$ voters, $\mathrm{m}=9$ candidates.
v1: c1 c2 c3 c4
v2: c1 c2 c3 c4
v3: c1 c2 c3 c4
v4: c1 c2 c3 c4
v5: c5 c6 c7
v6: c5 c6 c7
v7: c8 c9
v8: c8 c9

A preference profile: an example

Assume the committee size to be elected is $\mathbf{k}=4$.

A preference profile: an example

Assume the committee size to be elected is $\mathbf{k}=4$.

Which committee should be selected?

A preference profile: an example

Assume the committee size to be elected is $\mathbf{k}=4$.

Which committee should be selected?
Everything depends on the context!

Context: electing a representative body

Back to the example!

Assume the committee size to be elected is $\mathbf{k}=4$.

Which committee should be selected?
In this context the committee should be proportional.

Back to the example!

Assume the committee size to be elected is $\mathbf{k}=4$.

Which committee should be selected?
In this context the committee should be proportional.
But what does it mean and how could we achieve that?

Proportionality on the example of party-list

 systems.Each voter casts one vote for a single party. Our goal is to select a committee of size $\mathrm{k}=4$:

- Party 1 gets 40 votes.
- Party 2 gets 20 votes.
- Party 3 gets 20 votes.

How should the parliament look like?

Proportionality on the example of party-list

 systems.Each voter casts one vote for a single party. Our goal is to select a committee of size $\mathrm{k}=4$:

- Party 1 gets 40 votes.
- Party 2 gets 20 votes.
- Party 3 gets 20 votes.

How should the parliament look like?

- Party 1 should get 2 seats.
- Party 2 should get 1 seat.
- Party 3 should get 1 seat.

Back to the example!

Assume the committee size to be elected is $\mathbf{k}=4$.

Which committee should be selected?

Back to the example!

Assume the committee size to be elected is $\mathbf{k}=4$.

Which committee should be selected?

Back to the example!

Assume the committee size to be elected is $\mathbf{k}=4$.

Which committee should be selected?

Proportionality for party-list systems

Each voter can cast her vote on a single party: (assume we have n voters and k parliamentary seats)

Proportionality for party-list systems

Each voter can cast her vote on a single party: (assume we have n voters and k parliamentary seats)

Intuition: The party P_{i} gets x_{i} votes .

If all $\frac{x_{i}}{n} \cdot k$ are integers, then
party P_{i} should get $\frac{x_{i}}{n} \cdot k$ seats.

Recall the first example

Assume the committee size to be elected is $\mathbf{k}=4$.

Which committee should be selected?

How to define proportionality for more complex preferences?

How to define proportionality for more complex preferences?

Let's move back in time to the end of the 19th century?

Let's move back in time to the end of the 19th century?

Thorvald N. Thiele

Edvard Phragmén

Proportional Approval Voting (Thiele)

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:
$\sum_{i=1}^{t} \frac{1}{i}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{t}$

Proportional Approval Voting (Thiele)

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:
$\sum_{i=1}^{t} \frac{1}{i}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{t}$

Proportional Approval Voting (Thiele)

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:
$\sum_{i=1}^{t} \frac{1}{i}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{t}$
E.g., consider a committee? 会 Points per voter: V1:

Proportional Approval Voting (Thiele)

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:
$\sum_{i=1}^{t} \frac{1}{i}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{t}$
E.g., consider a committee ? Points per voter:
V1: $1+1 / 2$

Proportional Approval Voting (Thiele)

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:
$\sum_{i=1}^{t} \frac{1}{i}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{t}$
E.g., consider a committee Points per voter:
V1: $1+1 / 2$
V2: 1 + 1/2

Proportional Approval Voting (Thiele)

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:
$\sum_{i=1}^{t} \frac{1}{i}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{t}$
E.g., consider a committee ? Points per voter:
V1: $1+1 / 2$
V2: 1 + 1/2
V3: $1+1 / 2+1 / 3$

Proportional Approval Voting (Thiele)

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:
$\sum_{i=1}^{t} \frac{1}{i}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{t}$
E.g., consider a committee ? Points per voter:
V1: $1+1 / 2$
V3: $1+1 / 2+1 / 3 \quad$ V4: $1+1 / 2$

Proportional Approval Voting (Thiele)

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:
$\sum_{i=1}^{t} \frac{1}{i}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{t}$
E.g., consider a committee ? Points per voter:

V1: $1+1 / 2$
V3: $1+1 / 2+1 / 3$ V4: $1+1 / 2$
V5: $1+1 / 2$

V2: $1+1 / 2$

Proportional Approval Voting (Thiele)

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:
$\sum_{i=1}^{t} \frac{1}{i}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{t}$
E.g., consider a committee ? Points per voter:
V1: $1+1 / 2$
V3: $1+1 / 2+1 / 3$
V5: $1+1 / 2$
V2: $1+1 / 2$
V4: $1+1 / 2$
V6: 0

Proportional Approval Voting (Thiele)

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:
$\sum_{i=1}^{t} \frac{1}{i}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{t}$
E.g., consider a committee ? Points per voter:

V1: $1+1 / 2$
V3: $1+1 / 2+1 / 3$ V4: $1+1 / 2$
V5: $1+1 / 2$
V7: 0

V2: $1+1 / 2$
V6: 0

Proportional Approval Voting (Thiele)

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:
$\sum_{i=1}^{t} \frac{1}{i}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{t}$
E.g., consider a committee Points per voter:

V1: $1+1 / 2$
V3: $1+1 / 2+1 / 3$
V5: $1+1 / 2$
V7: 0

V2: $1+1 / 2$
V4: $1+1 / 2$
V6: 0
V8: 1

Proportional Approval Voting (Thiele)

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:
$\sum_{i=1}^{t} \frac{1}{i}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{t}$
E.g., consider a committee 会 Points per voter:
V1: $1+1 / 2$
V3: $1+1 / 2+1 / 3$
V5: $1+1 / 2$
V7: 0

$$
\begin{aligned}
& \text { V2: } 1+1 / 2 \\
& \text { V4: } 1+1 / 2 \\
& \text { V6: } 0 \\
& \text { V8: } 1
\end{aligned}
$$

Sum of points $=8+5 / 6$

Proportional Approval Voting (Thiele)

Assume voter v approves t members of a committee W. Then v gives to W the following number of points:
$\sum_{i=1}^{t} \frac{1}{i}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{t}$
E.g. Committee with the highest Poir score wins the election. V1:
V3: $1+1 / 2+1 / 3 \quad$ V4: $1+1 / 2$
V5: $1+1 / 2$
V6: 0
V7: 0
V8: 1
Sum of points $=8+5 / 6$

Proportional Approval Voting is welfarist

The welfare vector of a committee W is defined as:

$$
\left(\left|A_{1} \cap W\right|,\left|A_{2} \cap W\right|, \ldots,\left|A_{n} \cap W\right|\right)
$$

where:
A_{i} is the set of candidates approved by voter i
($\left|A_{i} \cap W\right|$ is the number of representatives of i)

Proportional Approval Voting is welfarist

The welfare vector of a committee W is defined as:

$$
\left(\left|A_{1} \cap W\right|,\left|A_{2} \cap W\right|, \ldots,\left|A_{n} \cap W\right|\right)
$$

where:
A_{i} is the set of candidates approved by voter i
($\left|A_{i} \cap W\right|$ is the number of representatives of i)

A rule is welfarist if the decision which committee to elect can be made solely based on welfare vectors of the committees.

Phragmén's Rule

- Voters earn money with the constant speed (\$1 per time unit).

Phragmén's Rule

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:

Phragmén’s Rule

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:

1. Add c to the committee.
2. Make voters from S pay for c (resetting their budget to 0).

Phragmén’s Rule

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:

1. Add c to the committee.
2. Make voters from S pay for c (resetting their budget to 0).

c4	c5	c6			
c3			c13	c14	c15
c2			c10	c11	c12
c1			c7	c8	c9
v1 v2 v3					

Phragmén’s Rule

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:

1. Add c to the committee.
2. Make voters from S pay for c (resetting their budget to 0).

$$
k=12
$$

c4	c5	c6			
c3			c13	c14	c15
c2			c10	c11	c12
c1			c7	c8	c9

Phragmén’s Rule

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:

1. Add c to the committee.
2. Make voters from S pay for c (resetting their budget to 0).

c4	c5	c6			
	c3		c13	c14	c15
	c2		c10	c11	c12
	c1		c7	c8	c9
v1	v2	v3	v4	v5	v6

Phragmén’s Rule

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:

1. Add c to the committee.
2. Make voters from S pay for c (resetting their budget to 0).

c4	c5	c6			
	c3		c13	c14	c15
	c2		c10	c11	c12
	c1		c7	c8	c9
v1	v2	v3	v4	v5	v6

Phragmén’s Rule

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:

1. Add c to the committee.
2. Make voters from S pay for c (resetting their budget to 0).

c 4	c 5	c 6			
	c 3		c 13	c 14	c 15
	c 2		c 10	c 11	c 12
c 1				c 7	c 8
c	c 9				

Phragmén’s Rule

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:

1. Add c to the committee.
2. Make voters from S pay for c (resetting their budget to 0).

c 4	c 5	c 6			
	c 3		c 13	c 14	c 15
	c 2		c 10	c 11	c 12
	c 1		c 7	c 8	c 9

Phragmén’s Rule

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:

1. Add c to the committee.
2. Make voters from S pay for c (resetting their budget to 0).

$\mathrm{k}=12$				
c 4 c 5 c 6 c 3 c 13 c 14 c 15 c 2 c 10 c 11 c 12 c 1 c 7 c 8 c 9 v 1 v 2 v 3 v 4 v 5 v 6				

Phragmén’s Rule

- Voters earn money with the constant speed (\$1 per time unit).
- In the first moment when there is a group of voters S who all have n dollars in total and who all approve a not-yet selected candidate c, do:

1. Add c to the committee.
2. Make voters from S pay for c (resetting their budget to 0).

$\mathrm{k}=12$				
c 4 c 5 c 6 c 3 c 13 c 14 c 15 c 2 c 10 c 11 c 12 c 1 c 7 c 8 c 9 v 1 v 2 v 3 v 4 v 5 v 6				

PAV versus Phragmén’s Rule

Which of the two rules is better?

PAV versus Phragmén's Rule

Which of the two rules is better?

- Both Thiele and Phragmén argued that their rules are proportional by how they behave on party-list profiles.

PAV versus Phragmén’s Rule

Which of the two rules is better?

- Both Thiele and Phragmén argued that their rules are proportional by how they behave on party-list profiles.
- Historically PAV was preferred since it appeared simpler.

PAV versus Phragmén’s Rule

Which of the two rules is better?

- Both Thiele and Phragmén argued that their rules are proportional by how they behave on party-list profiles.
- Historically PAV was preferred since it appeared simpler.
- Current research suggest that PAV is better in terms of proportionality.

Two Arguments in Favour of PAV

First Argument: Axioms for Cohesive Groups

How to define proportionality for more complex preferences?

How to define proportionality for more complex preferences?

How to define proportionality for more complex preferences?

For $\mathrm{k}=4$ these voters should approve (on average) 2 candidates in the selected committee.

How to define proportionality for more complex preferences?

How to define proportionality for more complex preferences?

For $\mathrm{k}=4$ these voters should approve (on average) 1 candidate in the selected committee.

How to define proportionality for more complex preferences?

Definition: Each group with at least $\ell n / k$ voters who approve at least ℓ same candidates should have on average at least ℓ representatives in the elected committee.

How to define proportionality for more complex preferences?

Definition: Each group with at least $\ell n / k$ voters who approve at least ℓ same candidates should have on average at least ℓ representatives in the elected committee.

For $k=4$ these voters should approve (on average) 2 candidates in the selected committee.

How to define proportionality for more complex preferences?

Definition: Each group with at least $\ell n / k$ voters who approve at least ℓ same candidates should have on average at least ℓ representatives in the elected committee.

Does there exist a system which satisfies this property?

How to define proportionality for more complex preferences?

Definition: Each group with at least $\ell n / k$ voters who approve at least ℓ same candidates should have on average at least ℓ representatives in the elected committee.

Does there exist a system which satisfies this property?

$$
\begin{array}{lll}
\text { v1: }\{a, d\} & \text { v7: }\{b, c\} & \\
\text { v2: }\{a\} & \text { v8: }\{c\} & \\
\text { v3: }\{a\} & \text { v9: }\{c\} & \mathrm{n}=12 \\
\text { v4: }\{a, b\} & \text { v10: }\{c, \mathrm{~d}\} & \mathrm{k}=\mathbf{3} \\
\text { v5: }\{b\} & \text { v11: }\{d\} & \\
\text { v6: }\{b\} & \text { v12: }\{d\} &
\end{array}
$$

How to define proportionality for more complex preferences?

Definition: Each group with at least $\ell n / k$ voters who approve at least ℓ same candidates should have on average at least $\underline{\ell-1}$ representatives in the elected committee.

But PAV satisfies a slightly weaker property!

How to define proportionality for more complex preferences?

Definition: Each group with at least $\ell n / k$ voters who approve at least ℓ same candidates should have on average at least $\underline{\ell-1}$ representatives in the elected committee.

But PAV satisfies a slightly weaker property!
Phragmén's Rule would satisfy it only if we replaced $\ell-\mathbf{1}$ with $(\ell-\mathbf{1}) / 2$.

Two Arguments in Favour of PAV

Second Argument: Axiomatic Extensions of Apportionment Methods

Proportionality for party-list systems

Each voter can cast her vote on a single party: (assume we have n voters and k parliamentary seats)

Lower-quota: The party that gets x votes
should get $\left\lfloor\frac{x}{n} \cdot k\right]$ seats.

Proportionality for party-list systems

Each voter can cast her vote on a single party: (assume we have n voters and k parliamentary seats)

Lower-quota: The party that gets x votes
should get $\left\lfloor\left.\frac{x}{n} \cdot k \right\rvert\,\right.$ seats.

The D'Hondt method of apportionment satisfies lower-quota.

D'Hondt method: An example

Party 1: 6 votes, Party 2: 7 votes, Party 3: 39 votes, Party 4: 48 votes

D'Hondt method: An example

Party 1: 6 votes, Party 2: 7 votes, Party 3: 39 votes, Party 4: 48 votes

	Party 1	Party 2	Party 3	Party 4
\#votes	6	7	39	48

D'Hondt method: An example

Party 1: 6 votes, Party 2: 7 votes, Party 3: 39 votes, Party 4: 48 votes

	Party 1	Party 2	Party 3	Party 4
\#votes	6	7	39	48
\#votes/2	3	3.5	19.5	24
\#votes/3	2	2.33	13	16
\#votes/4	1.5	1.75	9.75	12
\#votes/5	1.2	1.4	7.8	9.6
\#votes/6	1	1.17	6.5	8.0
\#votes/7	0.86	1	5.57	6.86

D'Hondt method: An example

Party 1: 6 votes, Party 2: 7 votes, Party 3: 39 votes, Party 4: 48 votes

	Party 1	Party 2	Party 3	Party 4
\#votes	6	7	39	48
\#votes/2	3	3.5	19.5	24
\#votes/3	2	2.33	13	16
\#votes/4	1.5	1.75	9.75	12
\#votes/5	1.2	1.4	7.8	9.6
\#votes/6	1	1.17	6.5	8.0
\#votes/7	0.86	1	5.57	6.86

D'Hondt method: An example

Party 1: 6 votes, Party 2: 7 votes, Party 3: 39 votes, Party 4: 48 votes

	Party 1	Party 2	Party 3	Party 4
\#votes	6	7	39	48
\#votes/2	3	3.5	19.5	24
\#votes/3	2	2.33	13	16
\#votes/4	1.5	1.75	9.75	12
\#votes/5	1.2	1.4	7.8	9.6
\#votes/6	1	1.17	6.5	8.0
\#votes/7	0.86	1	5.57	6.86

D'Hondt method: An example

Party 1: 6 votes, Party 2: 7 votes, Party 3: 39 votes, Party 4: 48 votes

	Party 1	Party 2	Party 3	Party 4
\#votes	6	7	39	$\mathbf{4 8}$
\#votes/2	3	3.5	19.5	$\mathbf{2 4}$
\#votes/3	2	2.33	13	16
\#votes/4	1.5	1.75	9.75	12
\#votes/5	1.2	1.4	7.8	9.6
\#votes/6	1	1.17	6.5	8.0
\#votes/7	0.86	1	5.57	6.86

D'Hondt method: An example

Party 1: 6 votes, Party 2: 7 votes, Party 3: 39 votes, Party 4: 48 votes

	Party 1	Party 2	Party 3	Party 4
\#votes	6	7	39	$\mathbf{4 8}$
\#votes/2	3	3.5	19.5	$\mathbf{2 4}$
\#votes/3	2	2.33	13	16
\#votes/4	1.5	1.75	9.75	12
\#votes/5	1.2	1.4	7.8	9.6
\#votes/6	1	1.17	6.5	8.0
\#votes/7	0.86	1	5.57	6.86

D'Hondt method: An example

Party 1: 6 votes, Party 2: 7 votes, Party 3: 39 votes, Party 4: 48 votes

	Party 1	Party 2	Party 3	Party 4
\#votes	6	7	39	48
\#votes/2	3	3.5	19.5	24
\#votes/3	2	2.33	13	16
\#votes/4	1.5	1.75	9.75	12
\#votes/5	1.2	1.4	7.8	9.6
\#votes/6	1	1.17	6.5	8.0
\#votes/7	0.86	1	5.57	6.86

D'Hondt method: An example

Party 1: 6 votes, Party 2: 7 votes, Party 3: 39 votes, Party 4: 48 votes

	Party 1	Party 2	Party 3	Party 4
\#votes	6	7	39	48
\#votes/2	3	3.5	19.5	24
\#votes/3	2	2.33	13	16
\#votes/4	1.5	1.75	9.75	12
\#votes/5	1.2	1.4	7.8	9.6
\#votes/6	1	1.17	6.5	8.0
\#votes/7	0.86	1	5.57	6.86

D'Hondt method: An example

Party 1: 6 votes, Party 2: 7 votes, Party 3: 39 votes, Party 4: 48 votes

	Party 1	Party 2	Party 3	Party 4
\#votes	6	7	39	48
\#votes/2	3	3.5	19.5	24
\#votes/3	2	2.33	13	16
\#votes/4	1.5	1.75	9.75	12
\#votes/5	1.2	1.4	7.8	9.6
\#votes/6	1	1.17	6.5	8.0
\#votes/7	0.86	1	5.57	6.86

D'Hondt method: An example

Party 1: 6 votes, Party 2: 7 votes, Party 3: 39 votes, Party 4: 48 votes

	Party 1	Party 2	Party 3	Party 4
\#votes	6	7	39	48
\#votes/2	3	3.5	19.5	24
\#votes/3	2	2.33	13	16
\#votes/4	1.5	1.75	9.75	12
\#votes/5	1.2	1.4	7.8	9.6
\#votes/6	1	1.17	6.5	8.0
\#votes/7	0.86	1	5.57	6.86

D'Hondt method: An example

Party 1: 6 votes, Party 2: 7 votes, Party 3: 39 votes, Party 4: 48 votes

	Party 1	Party 2	Party 3	Party 4
\#votes	6	7	39	48
\#votes/2	3	3.5	19.5	24
\#votes/3	2	2.33	13	16
\#votes/4	1.5	1.75	9.75	12
\#votes/5	1.2	1.4	7.8	9.6
\#votes/6	1	1.17	6.5	8.0
\#votes/7	0.86	1	5.57	6.86

D'Hondt method: An example

Party 1: 6 votes, Party 2: 7 votes, Party 3: 39 votes, Party 4: 48 votes

	Party 1	Party 2	Party 3	Party 4
\#votes	6	7	39	48
\#votes/2	3	3.5	19.5	24
\#votes/3	2	2.33	13	16
\#votes/4	1.5	1.75	$\mathbf{9 . 7 5}$	12
\#votes/5	1.2	1.4	7.8	9.6
\#votes/6	1	1.17	6.5	$\mathbf{8 . 0}$
\#votes/7	0.86	1	5.57	6.86

D'Hondt method: An example

Party 1: 6 votes, Party 2: 7 votes, Party 3: 39 votes, Party 4: 48 votes

	Party 1	Party 2	Party 3	Party 4
\#votes	6	7	39	48
\#votes/2	3	3.5	19.5	24
Party 1 gets 0 seats		13	16	
Party 2 gets 0 seats		9.75	12	
Party 3 gets 4 seats		7.8	9.6	
Party 4 gets 6 seats			6.5	$\mathbf{8 . 0}$
\#votes/7		0.86	1	5.57

D'Hondt method: An example

Party 1: 6 votes, Party 2: 7 votes, Party 3: 39 votes, Party 4: 48 votes

	Party 1	Party 2	Party 3	Party 4
\#votes	6	7	39	48
\#votes/2	3	3.5	19.5	24
Party 1 gets 0 seats			13	16
Party 2 gets 0 seats			9.75	12
Party 3 gets 4 seats			7.8	9.6
Party 4 gets 6 seats			6.5	8.0
\#votes/7	0.86	1	5.57	6.86

The D'Hondt method satisfies lower-quota.

Let's look at this instance

We have 9 voters, 9 candidates, and our goal is to select a committee of size $\mathbf{k}=4$.

Let's look at this instance

We have 9 voters, 9 candidates, and our goal is to select a committee of size $\mathbf{k}=4$.

Let's look at this instance

We have 9 voters, 9 candidates, and our goal is to select a committee of size $\mathbf{k}=4$.

Some basic axiomatic properties: Symmetry

Some basic axiomatic properties: Symmetry

Some basic axiomatic properties: Symmetry

Some basic axiomatic properties: Symmetry

Some basic axiomatic properties: Consistency

Some basic axiomatic properties: Consistency

Some basic axiomatic properties: Consistency

v4: 2	
v5:	v5: ${ }^{\text {a }}$
v7: 篹曾	v7: ${ }^{\text {a }}$
v8:	v8:

Some basic axiomatic properties: Continuity

Some basic axiomatic properties: Continuity

Some basic axiomatic properties: Continuity

Then, there exists (possibly very large) value n such that:
$\mathrm{n} \cdot \mathrm{E} 1+\mathrm{E} 2:$

Axiomatic Characterisations

Theorem: Proportional Approval Voting is the only ABC ranking rule that satisfies symmetry, consistency, continuity and D'Hondt proportionality.
[LS17] M. Lackner, P. Skowron, Consistent Approval-Based Multi-Winner Rules, Arxiv 2017.

Axiomatic Characterisations

Theorem: Proportional Approval Voting symmetry, consistency, continuity and D'Hondt

 proportionality.[LS17] M. Lackner, P. Skowron, Consistent Approval-Based Multi-Winner Rules, Arxiv 2017.

Axiomatic Characterisations

Theorem: Proportional Approval Voting

> D'Hondt
proportionality.
[LS17] M. Lackner, P. Skowron, Consistent Approval-Based Multi-Winner Rules, Arxiv 2017.

PAV versus Phragmén's Rule

PAV versus Phragmén’s Rule

$$
k=12
$$

$\mathrm{c4}$	c 5	c 6			
c 3				c 13	c 14
c 15					
	c 2		c 10	c 11	c 12
	c 1		c 7	c 8	c 9
	v 1	v 2	v 3	v 4	v 5

Phragmén's Rule

PAV versus Phragmén’s Rule

$$
k=12
$$

$\mathrm{c4}$	c 5	c 6			
c 3				c 13	c 14
c 15					
	c 2		c 10	c 11	c 12
	c 1		c 7	c 8	c 9
v 1	v 2	v 3	v 4	v 5	v 6

Phragmén's Rule

Proportionality with respect to power

c4	c5	c6			
	c3		c13	c14	c15
	c2		c10	c11	c12
	c1		c7	c8	c9
v1	v2 v3 v4 v5 v6				
Thiele's Rule (PAV)					

Proportionality with respect to welfare

PAV versus Phragmén’s Rule

$$
k=12
$$

$\mathrm{c4}$	c 5	c 6			
c 3				c 13	c 14
c 15					
	c 2		c 10	c 11	c 12
	c 1		c 7	c 8	c 9
v 1	v 2	v 3	v 4	v 5	v 6

Phragmén's Rule

Proportionality with respect to power

- priceability,
- laminar proportionality

Proportionality with respect to welfare

-Pigou-Dalton
-EJR

PAV versus Phragmén’s Rule

$$
k=12
$$

c 4	c 5	c 6			
	c 3		c 13	c 14	c 15
	c 2		c 10	c 11	c 12
	c 1		c 7	c 8	c 9
v 1	v 2	v 3	v 4	v 5	v 6

Phragmén's Rule

Proportionality with respect to power
-priceability,

- laminar proportionality

C4	c5	c6			
c3			c13	c14	c15
c2			c10	c11	c12
c1			c7	c8	c9
v1	v2 v3		v4	v5	v6

Proportionality with respect to welfare

-Pigou-Dalton
-EJR

Two New Notions of Proportionality

Fair distribution of power
(failed by PAV)

Laminar Proportionality: Examples

It describes how the rule should behave on certain well-behaved profiles

Laminar Proportionality: Examples

$$
k=8
$$

c4	c8	c12
c3	c7	c11
c2	c6	c10
c 1		c 5
c	c 9	

Party list profiles

Laminar Proportionality: Examples

$$
k=8
$$

c4	c8	c12
c3	c7	$c 11$
c2	c6	$c 10$
c 1		c 5
v	c 9	

Party list profiles

Laminar Proportionality: Examples

$$
k=4
$$

Party lists with a common leader

Laminar Proportionality: Examples

$$
k=4
$$

Party lists with a common leader

Laminar Proportionality: Examples

$k=12$

Subdivided parties

Laminar Proportionality: Examples

$k=12$

Subdivided parties

Laminar Proportionality: Definition

Laminar Proportionality: Definition

We say that a profile (P, k) is laminar if:

1. P is unanimous, or

Laminar Proportionality: Definition

We say that a profile (P, k) is laminar if:

1. P is unanimous, or
2. There exists a unanimously approved candidate c , and ($\mathrm{P} \backslash\{\mathrm{c}\}, \mathrm{k}-1$) is laminar, or

Laminar Proportionality: Definition

We say that a profile (P, k) is laminar if:

1. P is unanimous, or
2. There exists a unanimously approved candidate c, and ($\mathrm{P} \backslash\{\mathrm{c}\}, \mathrm{k}-1$) is laminar, or

$$
k=4
$$

v1 v2 v3 v4 v5 v6

Laminar Proportionality: Definition

We say that a profile (P, k) is laminar if:

1. P is unanimous, or
2. There exists a unanimously approved candidate c, and ($\mathrm{P} \backslash\{\mathrm{c}\}, \mathrm{k}-1$) is laminar, or

$$
k=4
$$

Laminar Proportionality: Definition

We say that a profile (P, k) is laminar if:

1. P is unanimous, or
2. There exists a unanimously approved candidate \mathbf{c}, and ($\mathrm{P} \backslash\{\mathrm{c}\}, \mathrm{k}-1$) is laminar, or
3. There are two disjoint laminar instances (P1, k1) and (P2, k2) with $|P 1| / k 1=|P 2| / k 2$ such that $P=P 1+P 2$ and $k=k 1+k 2$

Laminar Proportionality: Definition

We say that a profile (P, k) is laminar if:

1. P is unanimous, or
2. There exists a unanimously approved candidate \mathbf{c}, and ($\mathrm{P} \backslash\{\mathrm{c}\}, \mathrm{k}-1$) is laminar, or
3. There are two disjoint laminar instances (P1, k1) and (P2, k2) with $|P 1| / k 1=|P 2| / k 2$ such that $P=P 1+P 2$ and $k=k 1+k 2$

$$
k=12
$$

c6	c8	c14	
c5	c7	c13	
c4		c12	c17
c3		c11	c16
c2		c10	c15
c1		c9	
v2	v5	7 v	v9

Laminar Proportionality: Definition

We say that a profile (P, k) is laminar if:

1. P is unanimous, or
2. There exists a unanimously approved candidate c, and ($\mathrm{P} \backslash\{\mathrm{c}\}, \mathrm{k}-1$) is laminar, or
3. There are two disjoint laminar instances (P1, k1) and (P2, k2) with $|P 1| / k 1=|P 2| / k 2$ such that $P=P 1+P 2$ and $k=k 1+k 2$

$$
k 2=8 \quad k 1=4
$$

c6	c8	c14	
c5	c7	c13	
c4		c12	c17
c3		c11	c16
c2		c10	c15
c1		c9	

Laminar Proportionality: Definition

We say that a profile (P, k) is laminar if:

1. P is unanimous, or
2. There exists a unanimously approved candidate c , and ($\mathrm{P} \backslash\{\mathrm{c}\}, \mathrm{k}-1$) is laminar, or
3. There are two disjoint laminar instances ($\mathrm{P} 1, \mathrm{k} 1$) and ($\mathrm{P} 2, \mathrm{k} 2$) with $|P 1| / k 1=|P 2| / k 2$ such that $P=P 1+P 2$ and $k=k 1+k 2$

Laminar Proportionality: Definition

We say that a profile (P, k) is laminar if:

1. P is unanimous, or
2. There exists a unanimously approved candidate c , and ($\mathrm{P} \backslash\{\mathrm{c}\}, \mathrm{k}-1$) is laminar, or
3. There are two disjoint laminar instances (P1, k1) and (P2, k2) with $|P 1| / k 1=|P 2| / k 2$ such that $P=P 1+P 2$ and $k=k 1+k 2$

We say that a rule is laminar proportional if it behaves well on laminar profiles.

Welfarist Rules

The welfare vector of a committee W is defined as:

$$
\left(\left|A_{1} \cap W\right|,\left|A_{2} \cap W\right|, \ldots,\left|A_{n} \cap W\right|\right)
$$

where:
A_{i} is the set of candidates approved by voter i
($\left|A_{i} \cap W\right|$ is the number of representatives of i)

A rule is welfarist if the decision which committee to elect can be made solely based on welfare vectors of the committees.

No welfarist rule can be laminar proportional

No welfarist rule can be laminar proportional

No welfarist rule can be laminar proportional

c_{9}		c_{14}					
c_{8}		c_{13}		c_{18}			22
c_{7}		c_{12}		c_{17}			21
c_{6}		c_{11}		c_{16}			20
c_{5}		c_{10}		c_{15}			19
c_{2}				c_{4}			
c_{1}				c_{3}			
v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}
6	6	6	6	6	6	6	6

Welfare $(6,6,6,6,6,6,6,6)$ is preferred over welfare ($7,7,7,7,5,5,5,5$)

No welfarist rule can be laminar proportional

c_{9}		c_{14}					
c_{8}		c_{13}		c_{18}		c_{22}	
c_{7}		c_{12}		c_{17}		c_{21}	
c_{6}		c_{11}		c_{16}		c_{20}	
c_{5}		c_{10}		c_{15}		c_{19}	
c_{2}				c_{4}			
c_{1}				c_{3}			
v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}
6	6	6	6	6	6	6	6

Welfare $(6,6,6,6,6,6,6,6)$ is preferred over welfare $(7,7,7,7,5,5,5,5)$

c_{17}	c_{18}	c_{19}	c_{20}				
c_{6}				c_{21}	c_{22}	c_{23}	c_{24}
c_{5}				c_{11}		c_{16}	
c_{4}				c_{10}		c_{15}	
c_{3}				c_{9}		c_{14}	
c_{2}				c_{8}		c_{13}	
c_{1}				c_{7}		c_{12}	
v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}
6	6	6	6		6		6

c_{17}	c_{18}	c_{19}	c_{20}				
c_{6}				c_{21}	c_{22}	c_{23}	c_{24}
c_{5}				c_{11}		c_{16}	
c_{4}				c_{10}		c_{15}	
c_{3}				c_{9}		c_{14}	
c_{2}				c_{8}		c_{13}	
c_{1}				c_{7}		c_{12}	
v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}
7	7	7	7	5	5	5	5

Welfare $(7,7,7,7,5,5,5,5)$ is preferred over welfare $(6,6,6,6,6,6,6,6)$

Priceability

Priceability

A price system is a pair $p s=(p,\{p i\} i \in[n])$, where $p>0$ is a price, and for each voter $\mathrm{i} \in[\mathrm{n}]$, there is a payment function $\mathrm{p}_{\mathrm{i}}: \mathrm{C} \rightarrow[0,1]$ such that:

1. A voter can only pay for candidates she approves of),
2. A voter can spend at most one dollar.

Priceability

A price system is a pair $p s=(p,\{p i\} i \in[n])$, where $p>0$ is a price, and for each voter $\mathrm{i} \in[\mathrm{n}]$, there is a payment function $\mathrm{p}_{\mathrm{i}}: \mathrm{C} \rightarrow[0,1]$ such that:

1. A voter can only pay for candidates she approves of),
2. A voter can spend at most one dollar.

We say that a price system $\mathrm{ps}=(\mathrm{p},\{\mathrm{pi}\} \mathrm{i} \in[\mathrm{n}])$ supports a committee W if the following hold:

1. For each elected candidate, the sum of the payments to this candidate equals the price p.

Priceability

A price system is a pair $\mathrm{ps}=(\mathrm{p},\{\mathrm{pi}\} \mathrm{i} \in[\mathrm{n}])$, where $\mathrm{p}>0$ is a price, and for each voter $\mathrm{i} \in[\mathrm{n}]$, there is a payment function $\mathrm{pi}_{\mathrm{i}}: \mathrm{C} \rightarrow[0,1]$ such that:

1. A voter can only pay for candidates she approves of),
2. A voter can spend at most one dollar.

We say that a price system ps $=(p,\{p i\} i \in[n])$ supports a committee W if the following hold:

1. For each elected candidate, the sum of the payments to this candidate equals the price p.
2. No candidate outside of the committee gets any payment.

Priceability

A price system is a pair $\mathrm{ps}=(\mathrm{p},\{\mathrm{pi}\} \mathrm{i} \in[\mathrm{n}])$, where $\mathrm{p}>0$ is a price, and for each voter $\mathrm{i} \in[\mathrm{n}]$, there is a payment function $\mathrm{pi}_{\mathrm{i}}: \mathrm{C} \rightarrow[0,1]$ such that:

1. A voter can only pay for candidates she approves of),
2. A voter can spend at most one dollar.

We say that a price system ps $=(\mathrm{p},\{\mathrm{pi}\} \mathrm{i} \in[\mathrm{n}])$ supports a committee W if the following hold:

1. For each elected candidate, the sum of the payments to this candidate equals the price p.
2. No candidate outside of the committee gets any payment.
3. There exists no unelected candidate whose supporters, in total, have a remaining unspent budget of more than p

Priceability: Example

The price is $\mathrm{p}=0.5$.

$k=12$					
c4	c5	c6			
	c3		c13	c14	c15
	c2		c10	c11	c12
	c1		c7	c8	C9
v1	v2	v3	v4	v5	v6

1. v1 pays $1 / 6$ for $c 1, c 2$ and $c 3$ and 1/2 for c4

Phragmén's Rule

Priceability: Example

The price is $\mathrm{p}=0.5$.

$k=12$					
c4	c5	c6			
c3			c13	c14	c15
c2			c10	c11	c12
c1			c7	c8	C9
v1 v2 v3 v4 v5 v6					

1. v1 pays $1 / 6$ for $c 1, c 2$ and $c 3$ and 1/2 for c4
2. v2 pays $1 / 6$ for $c 1, c 2$ and $c 3$ and 1/2 for c5
3. v3 pays $1 / 6$ for c1, c2 and c3 and 1/2 for c6

Phragmén's Rule

Priceability: Example

The price is $\mathrm{p}=0.5$.

$k=12$					
c4	c5	c6			
c3			c13	c14	c15
c2			c10	c11	c12
c1			c7	c8	c9
v1 v2 v3			v4	v5	v6

1.v1 pays $1 / 6$ for $c 1, c 2$ and $c 3$ and 1/2 for c4
2. v2 pays $1 / 6$ for $c 1, c 2$ and $c 3$ and 1/2 for c5
3. v3 pays $1 / 6$ for c1, c2 and c3 and 1/2 for c6
4. v4 pays $1 / 2$ for c7 and c10

Phragmén's Rule

Priceability: Example

The price is $\mathrm{p}=0.5$.

$k=12$					
c4	c5	c6			
	c3		c13	c14	c15
	c2		c10	c11	c12
	c1		c7	c8	c9
	v2	v3	v4	v5	v6
	Phragmén's Rule				

1.v1 pays $1 / 6$ for $c 1, c 2$ and $c 3$ and 1/2 for c4
2. v2 pays $1 / 6$ for $c 1, c 2$ and $c 3$ and 1/2 for c5
3. v3 pays $1 / 6$ for c1, c2 and c3 and 1/2 for c6
4. v4 pays $1 / 2$ for c 7 and c 10
5. v5 pays $1 / 2$ for $c 8$ and $c 11$
6. V6 pays $1 / 2$ for c 9 and c12

No welfarist rule can be priceable

No welfarist rule can be priceable

Profile 1:
Profile 2:

Core

Core: Definition

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1. $\frac{|\mathrm{T}|}{k} \leq \frac{|\mathrm{S}|}{n}$, and
2. Each voter in S prefers T to W .

Core: Definition

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1. $\frac{|\mathrm{T}|}{k} \leq \frac{|\mathrm{S}|}{n}$, and
2. Each voter in S prefers T to W.

$k=12$					
c4	c5	c6			
	c3		c13	c14	c15
	c2		c10	c11	c12
	c1		c7	c8	c9
v2 v3 v4 v5					

Core: Definition

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1. $\frac{|\mathrm{T}|}{k} \leq \frac{|\mathrm{S}|}{n}$, and
2. Each voter in S prefers T to W.

$$
k=12
$$

c4	c5	c6			
c3			c13	c14	c15
c2			c10	c11	c12
c1			c7	c8	c9
v1 v2 v3) v4 v5					

Core: Definition

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1. $\frac{|\mathrm{T}|}{k} \leq \frac{|\mathrm{S}|}{n}$, and
2. Each voter in S prefers T to W.

$$
k=12
$$

$$
k=12
$$

c4	c5	c6			
c3			c13	c14	c15
c2			c10	c11	c12
c1			c7	c8	c9
v1 v2 v3) v4 v5 v6					

c4	c5	c6			
	c3		c13	c14	c15
c2			c10	c11	c12
c1			c7	c8	c9
v1 v2 v3)			v4	v5	v6

Core: Definition

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1. $\frac{|\mathrm{T}|}{k} \leq \frac{|\mathrm{S}|}{n}$, and
2. Each voter in S prefers T to W.

Not in the core!

$k=12$
$k=12$

c4	c5	c6			
c3			c13	c14	c15
c2			c10	c11	c12
c1			c7	c8	c9
v1 v2			v 4	v5	v6

c4	c5	c6			
c3			c13	c14	c15
c2			c10	c11	c12
c1			c7	c8	c9
(v1 v2 v3) v4 v5 v6					

Core: Definition

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1. $\frac{|\mathrm{T}|}{k} \leq \frac{|\mathrm{S}|}{n}$, and
2. Each voter in S prefers T to W .

Core contradicts the Pigou-Dalton principle!

Not in the core!

$$
k=12
$$

$$
k=12
$$

c4	c5	c6			
c3			c13	c14	c15
c2			c10	c11	c12
c1			c7	c8	c9
(v1 v2 v3) v4 v5 v6					

c4	c5	c6			
c3			c13	c14	c15
c2			c10	c11	c12
c1			c7	c8	c9
v1 v2 v3) v4 v5 v6					

Core: Definition

We say that a committee W is in the core if there exists no group of voters S and a subset of candidates T such that:

1. $\frac{|\mathbf{T}|}{k} \leq \frac{|\mathrm{S}|}{n}$, and
2. Each voter in S prefers T to W.

Core contradicts the Pigou-Dalton principle!

Not in the core!

Theorem: PAV gives the best possible Approximation of the core subject to Satisfying the Pigou-Dalton principle!

No welfarist rule can satisfy the core

No welfarist rule can satisfy the core

Profile 1:

c_{1}	c_{2}	c_{3}	c_{4}										
c_{5}													
c_{6}													
c_{7}													
c_{8}													
c9													
c_{10}				c_{11}									
v_{1}	v_{2}	v_{3}	v_{4}	v	v_{7}	v_{8}	v_{9}	v_{10}	v_{11}	v_{12}	v_{13}	v_{14}	$v_{15} v_{16}$

Profile 2:

Our new method: Rule X

Our new method: Rule X

- Each voter is initially given $\$ k$.

Our new method: Rule X

- Each voter is initially given \$k.
- Buying a candidate c costs $\$ \mathrm{n}$ in total. This cost is spread equally among the voters who approve c and who still have money.

Our new method: Rule X

- Each voter is initially given $\$ k$.
- Buying a candidate c costs $\$ \mathrm{n}$ in total. This cost is spread equally among the voters who approve c and who still have money.

Formally, we find a minimal price p(c) such that if each voter who approves c pays $\mathrm{p}(\mathrm{c})$ or all the money she is left with, then c gets $\$ \mathrm{n}$.

Our new method: Rule X

- Each voter is initially given $\$ k$.
- Buying a candidate c costs $\$ \mathrm{n}$ in total. This cost is spread equally among the voters who approve c and who still have money.

Formally, we find a minimal price p(c) such that if each voter who approves c pays $\mathrm{p}(\mathrm{c})$ or all the money she is left with, then c gets $\$ \mathrm{n}$.

- We add candidates to the committee in the ascending order of the prices.

Our new method: Rule X

- Each voter is initially given $\$ k$.
- Buying a candidate c costs $\$ \mathrm{n}$ in total. This cost is spread equally among the voters who approve c and who still have money.

Formally, we find a minimal price p(c) such that if each voter who approves c pays p (c) or all the money she is left with, then c gets $\$ \mathrm{n}$.

- We add candidates to the committee in the ascending order of the prices.

$$
k=12
$$

c4	c5	c6			
c3			c13	c14	c15
c2			c10	c11	c12
c1			c7	c8	c9
v1 v2 v3 v4 v5					

Our new method: Rule X

- Each voter is initially given $\$ k$.
- Buying a candidate c costs $\$ \mathrm{n}$ in total. This cost is spread equally among the voters who approve c and who still have money.

Formally, we find a minimal price p(c) such that if each voter who approves c pays p (c) or all the money she is left with, then c gets $\$ \mathrm{n}$.

- We add candidates to the committee in the ascending order of the prices.

$k=12$					
c4	c5	c6			
c3			c13	c14	c15
c2			c10	c11	c12
c1			c7	c8	c9
v1 v2 v3 v4 v5 v6					

$$
\begin{aligned}
& p(c 1)=2[\ldots \ldots . . \\
& \text { v1 v2 v3 v4 v5 }
\end{aligned}
$$

Our new method: Rule X

- Each voter is initially given $\$ k$.
- Buying a candidate c costs $\$ \mathrm{n}$ in total. This cost is spread equally among the voters who approve c and who still have money.

Formally, we find a minimal price p(c) such that if each voter who approves c pays $\mathrm{p}(\mathrm{c})$ or all the money she is left with, then c gets $\$ \mathrm{n}$.

- We add candidates to the committee in the ascending order of the prices.

$$
k=12
$$

c4	c5	c6			
c3			c13	c14	c15
c2			c10	c11	c12
c1			c7	c8	C9
v1 v2 v3			v4	v5	v6

Our new method: Rule X

- Each voter is initially given $\$ k$.
- Buying a candidate c costs $\$ \mathrm{n}$ in total. This cost is spread equally among the voters who approve c and who still have money.

Formally, we find a minimal price p(c) such that if each voter who approves c pays $\mathrm{p}(\mathrm{c})$ or all the money she is left with, then c gets $\$ \mathrm{n}$.

- We add candidates to the committee in the ascending order of the prices.

$$
k=12
$$

c4	c5	c6			
c3			c13	c14	c15
c2			c10	c11	c12
c1			c7	c8	C9
v1 v2 v3			v4	v5	v6

Our new method: Rule X

- Each voter is initially given $\$ k$.
- Buying a candidate c costs $\$ \mathrm{n}$ in total. This cost is spread equally among the voters who approve c and who still have money.

Formally, we find a minimal price p(c) such that if each voter who approves c pays p (c) or all the money she is left with, then c gets $\$ \mathrm{n}$.

- We add candidates to the committee in the ascending order of the prices.

$\mathrm{k}=12$				
c 4 c 5 c 6 c 3 c 13 c 14 c 15 c 2 c 10 c 11 c 12 c 1 c 7 c 8 c 9 v 1 v 2 v 3 v 4 v 5 v 6				

Our new method: Rule X

- Each voter is initially given $\$ k$.
- Buying a candidate c costs $\$ \mathrm{n}$ in total. This cost is spread equally among the voters who approve c and who still have money.

Formally, we find a minimal price p(c) such that if each voter who approves c pays p (c) or all the money she is left with, then c gets $\$ \mathrm{n}$.

- We add candidates to the committee in the ascending order of the prices.

$\mathrm{k}=12$				
c 4 c 5 c 6 c 3 c 13 c 14 c 15 c 2 c 10 c 11 c 12 c 1 c 7 c 8 c 9 v 1 v 2 v 3 v 4 v 5 v 6				

Comparison of committee rules

	Thiele's method (PAV)	Phragmén's method	Our method
laminar proportional		\checkmark	\checkmark
priceable		\checkmark	\checkmark
PJR	\checkmark	\checkmark	\checkmark
EJR	\checkmark		\checkmark
core with constrained deviations	2 -approx.	\checkmark	$O(\log k)$-approx.
core	\checkmark		
welfarist	\checkmark		
Pareto-optimal	\checkmark		
Pigou-Dalton	NP-complete	polynomial time	polynomial time
computation			

Table 1: The rules we consider and properties that they satisfy.

Thiele versus Phragmén

Borda versus Condorcet

Open questions:

- Does there always exist a Pareto-optimal priceable committee?
- What is the best possible core-approximation among welfarist rules?

