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We have n = 8 voters, m = 9 candidates.

v1 v2 v3 v4 v5 v6 v7 v8

v1:  c1 c2 c3 c4

v2:  c1 c2 c3 c4

v3:  c1 c2 c3 c4

v4:  c1 c2 c3 c4

v5:  c5 c6 c7

v6:  c5 c6 c7

v7:  c8 c9

v8:  c8 c9

c2

c1

c3

c4

c5
c6

c7

c8
c9

A preference profile: an example
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v1 v2 v3 v4 v5 v6 v7 v8

Which committee should be selected?

Assume the committee size to be elected is k = 4.

Everything depends on the context!

A preference profile: an example



Context: electing a representative body
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Which committee should be selected?

Assume the committee size to be elected is k = 4.

In this context the committee should be proportional. 
 
But what does it mean and how could we achieve that?

Back to the example!



Proportionality on the example of party-list 
systems.

Each voter casts one vote for a single party. 
Our goal is to select a committee of size k = 4: 

• Party 1 gets 40 votes. 
• Party 2 gets 20 votes. 
• Party 3 gets 20 votes. 

How should the parliament look like?



Proportionality on the example of party-list 
systems.

Each voter casts one vote for a single party. 
Our goal is to select a committee of size k = 4: 

• Party 1 gets 40 votes. 
• Party 2 gets 20 votes. 
• Party 3 gets 20 votes. 

How should the parliament look like? 

• Party 1 should get 2 seats. 
• Party 2 should get 1 seat. 
• Party 3 should get 1 seat. 
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Proportionality for party-list systems

Each voter can cast her vote on a single party: 
(assume we have n voters and k parliamentary seats)

Intuition: The party    gets    votes. 
  
                If all       are integers, then     

                party    should get       seats. 

Pi xi

xi

n
⋅ k

Pi
xi

n
⋅ k



v1 v2 v3 v4 v5 v6 v7 v8

Which committee should be selected?

Assume the committee size to be elected is k = 4.

Party 1 Party 2 Party 3

Recall the first example
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How to define proportionality for more complex 
preferences?

V1:

V2:

V3:

V4:

V5:

V6:

V7:

V8:

v1 v2 v3 v4 v5 v6 v7 v8



Let’s move back in time to the end of the  
19th century?



Let’s move back in time to the end of the  
19th century?

Thorvald N. Thiele Edvard Phragmén 
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V6:

V7:

V8:

Points per voter: 
 V1: 1 + 1/2              V2: 1 + 1/2 
 V3: 1 + 1/2 + 1/3     V4: 1 + 1/2 
 V5: 1 + 1/2              V6: 0 
 V7: 0                       V8: 1

Sum of points = 8 + 5/6

E.g., consider a committee

Assume voter v approves t members 
of a committee W. Then v gives to W 
the following number of points: 
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1
2

+
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+ … +
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Committee with the highest 
score wins the election. 
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Proportional Approval Voting is welfarist

The welfare vector of a committee W is defined as: 

where: 
       is the set of candidates approved by voter  
   (               is the number of representatives of   ) 

A rule is welfarist if the decision which committee to elect can 
be made solely based on welfare vectors of the committees.

( |A1 ∩ W | , |A2 ∩ W | , …, |An ∩ W |)

Ai i
|Ai ∩ W | i
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PAV versus Phragmén’s Rule

Which of the two rules is better?

• Both Thiele and Phragmén argued that their rules are 
proportional by how they behave on party-list profiles. 

• Historically PAV was preferred since it appeared 
simpler. 

• Current research suggest that PAV is better in terms of 
proportionality.



Two Arguments in Favour 
of PAV 

 
First Argument: Axioms for Cohesive Groups 
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How to define proportionality for more complex 
preferences?

V1:

V2:

V3:

V4:

V5:

V6:

V7:

V8:

Definition: Each group with at least 
voters who approve at least    same 
candidates should have on average at 
least   representatives in the elected 
committee. 

ℓn /k
ℓ

ℓ

Does there exist a system which satisfies  
this property?

v1: {a, d}       v7:   {b, c} 
v2: {a}           v8:   {c} 
v3: {a}           v9:   {c}            n = 12 
v4: {a, b}       v10: {c, d}        k = 3 
v5: {b}           v11: {d} 
v6: {b}           v12: {d}
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How to define proportionality for more complex 
preferences?

V1:

V2:

V3:

V4:

V5:

V6:

V7:

V8:

Definition: Each group with at least 
voters who approve at least    same 
candidates should have on average at 
least ____ representatives in the elected 
committee. 

ℓn /k
ℓ

ℓ − 1

But PAV satisfies a slightly weaker property! 
 
Phragmén’s Rule would satisfy it only if we  
replaced         with             .  ℓ − 1 (ℓ − 1)/2



Two Arguments in Favour 
of PAV 

 
Second Argument: Axiomatic Extensions of 

Apportionment Methods



Proportionality for party-list systems

Each voter can cast her vote on a single party: 
(assume we have n voters and k parliamentary seats)

Lower-quota: The party that gets x votes  

                      should get        seats. ⌊ x
n

⋅ k⌋



Proportionality for party-list systems

Each voter can cast her vote on a single party: 
(assume we have n voters and k parliamentary seats)

Lower-quota: The party that gets x votes  

                      should get        seats. ⌊ x
n

⋅ k⌋

The D’Hondt method of apportionment satisfies  
lower-quota.
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The D’Hondt method satisfies lower-quota.
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V2:
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V4:
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V8:

V9:

We have 9 voters, 9 candidates, and our goal is to select a committee of size k = 4.

V1:

Party 1 (5 votes)

Party 2 (2 votes)

Party 3 (2 votes)

• Party 1 gets 2 seats. 
• Party 2 gets 1 seat. 
• Party 3 gets 1 seat. 

For example
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Two New Notions of 
Proportionality 

 
Fair distribution of power 

 
(failed by PAV)
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Laminar Proportionality: Definition
We say that a profile (P, k) is laminar if: 
1. P is unanimous, or  
2. There exists a unanimously approved candidate c, and  

(P \ {c}, k-1) is laminar, or 
3. There are two disjoint laminar instances (P1, k1) and (P2, k2) 

with |P1|/k1 = |P2|/k2 such that P = P1 + P2 and k = k1 + k2

We say that a rule is laminar proportional if it behaves well 
on laminar profiles. 



Welfarist Rules

The welfare vector of a committee W is defined as: 

where: 
       is the set of candidates approved by voter  
   (               is the number of representatives of   ) 

A rule is welfarist if the decision which committee to elect can 
be made solely based on welfare vectors of the committees.

( |A1 ∩ W | , |A2 ∩ W | , …, |An ∩ W |)

Ai i
|Ai ∩ W | i
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(a) Phragmén’s rule is laminar proportional.

(b) Rule X is laminar proportional.

(c) PAV fails laminar proportionality.

3.3. No welfarist rule satisfies laminar proportionality

We have seen that PAV fails laminar proportionality. The rules that do satisfy it are not welfarist
rules. We now establish that no welfarist rule can satisfy the axiom. In our proof, we construct
two laminar instances for which the laminar proportional outcomes induce two di↵erent welfare
vectors. However, both welfare vectors can be induced by some committee in both instances.
Hence, a welfarist rule cannot choose the laminar proportional outcome in both cases.

Theorem 2. There exists no welfarist committee rule that satisfies laminar proportionality.

Proof. Assume for a contradiction that there exists a welfarist rule f which satisfies laminar
proportionality. Let gk be as in Definition 1.

Consider the following laminar instance with k = 20. The two figures show two committees; the
blue one on the left is laminar proportional, while the green one on the right is not.
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All committees that are laminar proportional (such as the blue committee) induce the utility
vector w1 = (6, 6, 6, 6, 6, 6, 6, 6). The green committee induces w2 = (7, 7, 7, 7, 5, 5, 5, 5). Since f

satisfies laminar proportionality, f selects only committees with welfare vector w1 and none with
vector w2. Thus, by definition of welfarist rules, we have g20(w1) > g20(w2).

Now consider a second laminar instance as follows; again k = 20.
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In this instance, the blue committee on the right is the unique laminar proportional committee. It
induces welfare vector w2. The green committee on the left induces w1. Hence, since g20(w1) >
g20(w2), the rule f does not select the blue committee at this instance. Hence, f fails laminar
proportionality, a contradiction.
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Hence, a welfarist rule cannot choose the laminar proportional outcome in both cases.
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All committees that are laminar proportional (such as the blue committee) induce the utility
vector w1 = (6, 6, 6, 6, 6, 6, 6, 6). The green committee induces w2 = (7, 7, 7, 7, 5, 5, 5, 5). Since f

satisfies laminar proportionality, f selects only committees with welfare vector w1 and none with
vector w2. Thus, by definition of welfarist rules, we have g20(w1) > g20(w2).

Now consider a second laminar instance as follows; again k = 20.
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In this instance, the blue committee on the right is the unique laminar proportional committee. It
induces welfare vector w2. The green committee on the left induces w1. Hence, since g20(w1) >
g20(w2), the rule f does not select the blue committee at this instance. Hence, f fails laminar
proportionality, a contradiction.
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Priceability
A price system is a pair ps = (p, {pi}i∈[n]), where p > 0 is a price, and for 
each voter i ∈ [n], there is a payment function pi : C → [0, 1] such that: 

1.A voter can only pay for candidates she approves of),︎  

2.A voter can spend at most one dollar. 

We say that a price system ps = (p, {pi}i∈[n]) supports a committee W if 
the following hold:  

1.For each elected candidate, the sum of the payments to this candidate 
equals the price p.  

2.No candidate outside of the committee gets any payment.  

3.There exists no unelected candidate whose supporters, in total, have a 
remaining unspent budget of more than p  
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No welfarist rule can be priceable
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Figure 2: A diagram illustrating profiles used in the proof that the requirement of being supported
by a price system is incompatible with welfarism (subject to Pareto-optimality). Each
of the first six voters in each of the two profiles approves at least 57 candidates.

We first prove that each of the last 6 voters has at most 5 representatives in W . Assume towards
a contradiction that one of the last 6 voters, say v7, has at least 6 representatives. This means
that p 6 1/6, since no other voter approves candidates approved by v7, and thus v7 must fully pay
for these. Since p 6 1/6, each of the last 6 voters must have at least 5 representatives, since they
otherwise have a remaining budget of strictly more than p. Thus, at least 31 seats are filled by
candidates from A7 [ · · · [A12, leaving at most 57� 31 = 26 seats for other candidates. Hence,
the total spending of voters v1, . . . , v6 is at most 26

6 . Thus, the average remaining budget among
v1, . . . , v6 is at least

6� 26
6

6
= 1� 13

18
=

5

18
>

1

6
.

Hence, one of these voters has a remaining budget of strictly more than p, and could a↵ord an
additional representative, a contradiction.
Second, we prove that each of the last 6 voters has at least 4 representatives in the winning

committee. For a contradiction, assume that one voter, say v7, has at most 3 representatives.
This means that p > 1/4. Thus, each of the last 6 voters can have at most 4 representatives
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Core: Definition

We say that a committee W is in the core if there exists no group of 
voters S and a subset of candidates T such that: 

1.                    ,and 

2.  Each voter in S prefers T to W.
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Theorem: PAV gives the best possible 
Approximation of the core subject to 
Satisfying the Pigou-Dalton principle!
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Figure 4: A diagram illustrating the reasoning in Theorem 10, showing that there exists no welfarist
rule that satisfies the core property. Here each rectangle denotes a single candidate who
is approved by the respective voters. For example, in Profile 1 candidates c5 and c6 are
approved by {v1, v2, v3, v4} and c11 is approved by {v5, v6}. Profile 2 depicts the case
for x = 3 and y = 6. Profile 3 depicts the case for x = 2 and y = 5.
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Our new method: Rule X



• Each voter is initially given $k. 
• Buying a candidate c costs $n in total. This cost is spread equally among 

the voters who approve c and who still have money. 
 
Formally, we find a minimal price p(c) such that if each voter who 
approves c pays p(c) or all the money she is left with, then c gets $n.  

• We add candidates to the committee in the ascending order of the prices.
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v1 v2 v3 v4 v5 v6

c2

c1

c3

p(c1)=2

c7 c8 c9

c10 c11 c12c4 c5 c6

p(c2)=2

p(c3)=2

p(c4)=6



Thiele’s method (PAV) Phragmén’s method Our method

laminar proportional X X
priceable X X
PJR X X X
EJR X X
core with constrained deviations X
core 2-approx. ? O(log k)-approx.

welfarist X
Pareto-optimal X
Pigou–Dalton X
computation NP-complete polynomial time polynomial time

Table 1: The rules we consider and properties that they satisfy.

Phragmén’s objection. In one possible description of Phragmén’s rule, imagine that each voter
has a bank account, initially with no money in it. At a common and constant rate, each account
is continuously topped up with money. As soon as there is a candidate c whose approvers have
a combined account balance summing to at least (by continuity, equal to) $1, the candidate c

is elected and removed, and the balance of each approving voter is set to $0. We then continue.
Phragmén’s rule returns the committee consisting of the first k candidates elected this way.
Phragmén called the virtual money “voting power”.
In an 1899 article, Phragmén points out some downsides of PAV. He considers an example

(here slightly adapted to avoid ties) where 3000 voters approve {a, b1, b2, b3, b4} and 1000 voters
approve {a, c1, c2, c3, c4}. There are k = 5 seats to be filled. Intuitively, there are two parties:
B = {b1, b2, b3, b4}, supported by 75% of voters, and C = {c1, c2, c3, c4}, supported by 25%. Voters
are partisan and approve exactly one of the parties, except that there is a consensus candidate a

who is approved by all voters. Phragmén’s rule elects a committee of the form {a, bi, bj , bk, cl}: one
seat is filled with the consensus candidate, and the remaining 4 seats are filled by party members
in proportion to the party’s support. Intuitively, this is a proportional choice. However, the PAV
score of {a, b1, b2, b3, c1} is 3000 · (1 + 1

2 + 1
3 + 1

4) + 1000 · (1 + 1
2) = 7750, while the PAV score

of {a, b1, b2, b3, b4} is 3000 · (1 + 1
2 + 1

3 + 1
4 + 1

5) + 1000 · 1 = 7850 > 7750, so the latter is the
committee chosen by PAV.

Phragmén (1899) argues that PAV’s behavior on the above example is undesirable2, and indeed
the committees returned by his rule in this scenario appear more intuitive. On the other hand,
Phragmén’s rule fails the the EJR property mentioned above [Brill et al., 2017]. Our aim is to
clarify the di↵erences in the types of proportionality provided by the two rules.

Summary of our main results

Based on Phragmén’s arguments we identify some general classes of situations in which PAV seems
to fail to provide proportionality. These failures inspire the definition of two new proportionality

2
Phragmén writes: “As we can see, Thiele’s method benefits the larger party at the expense of the smaller one.

This obviously means that, when using Thiele’s method, the smaller party could never come to an agreement

wherein both parties vote for one or more candidates that are not aligned with either party. To me it has

always seemed to be the most important, or in any case one of the most important, requirements to impose on a

proportional election method, that it must not obstruct such agreements between parties. It therefore seems to

me that the mentioned property of Thiele’s method is a very serious flaw.” In a sense, PAV removes incentives

to compromise and rewards partisanship.

4

Comparison of committee rules



Thiele versus Phragmén 

Borda versus Condorcet



Open questions:

• Does there always exist a Pareto-optimal priceable 
committee? 
 

• What is the best possible core-approximation among 
welfarist rules?


