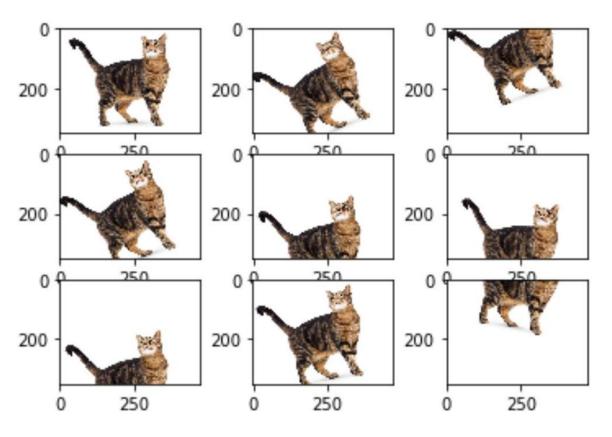
Data Augmentation – literature review – Dominik Lewy

Data Augmentation for NLP

Dominik Lewy

What data augmentation is?

Data augmentation (DA) refers to strategies for increasing the diversity of training examples without explicitly collecting new data.

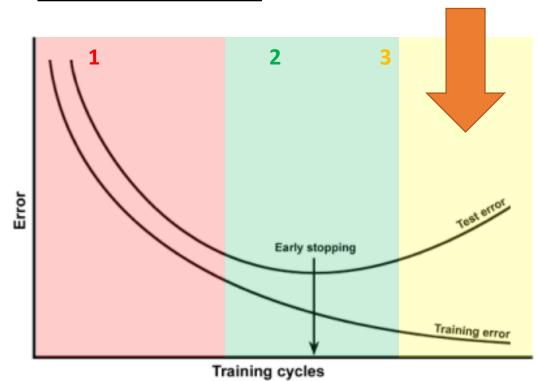


Nearest neighbors in word2vec

10/27/2021

Why do we use it?

Train/Test error curves



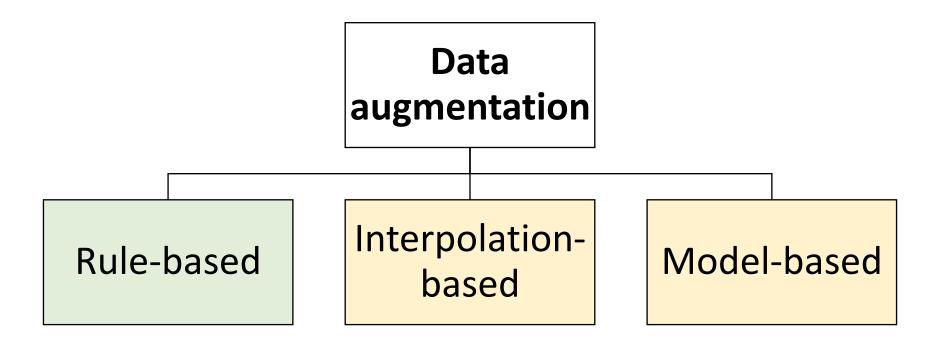
Train Error	Test Error	Strategy
High	High	Increase the capacity/complexity of the model
Low	Optimal	OK
Low	Much worse than train	Data augmentation, Regularization (weight decay, dropout)

When discussing generalization and overfitting three scenarios arise:

- 1. Model trained excludes the true data-generating process this corresponds to underfitting and induces bias
- 2. Model matched the true data-generating process
- 3. Model included the data-generating process but also many other possible generating processes this corresponds to overfitting, in such scenario variance rather than bias dominates the error

The goal of regularization is to take the model from third scenario to the second.

How can we categorize data augmentation methods in NLP space?



Copy is modified

Synthetic sample is created

Example of a rule-based method

EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks

Jason Wei^{1,2} Kai Zou³

¹Protago Labs Research, Tysons Corner, Virginia, USA

²Department of Computer Science, Dartmouth College

³Department of Mathematics and Statistics, Georgetown University

jason.20@dartmouth.edu kz56@georgetown.edu

Operation	Sentence
None	A sad, superior human comedy played out
	on the back roads of life.
SR	A lamentable, superior human comedy
	played out on the <i>backward</i> road of life.
RI	A sad, superior human comedy played out
	on <i>funniness</i> the back roads of life.
RS	A sad, superior human comedy played out
	on <i>roads</i> back <i>the</i> of life.
RD	A sad, superior human out on the roads of
	life.

Table 1: Sentences generated using EDA. SR: synonym replacement. RI: random insertion. RS: random swap. RD: random deletion.

Data sets include:

- SST-2 Stanford
 Sentiment Treebank
- CR customer reviews
- SUBJ –
 subjective/objective
 dataset
- TREC question type dataset
- PC Pro-Con dataset

	Training Set Size							
Model	500	2,000	5,000	full set				
RNN	75.3	83.7	86.1	87.4				
+EDA	79.1	84.4	87.3	88.3				
CNN	78.6	85.6	87.7	88.3				
+EDA	80.7	86.4	88.3	88.8				
Average	76.9	84.6	86.9	87.8				
+EDA	79.9	85.4	87.8	88.6				

Table 2: Average performances (%) across five text classification tasks for models with and without EDA on different training set sizes.

Architectures include:

- RNN LSTM-RNN
- CNN

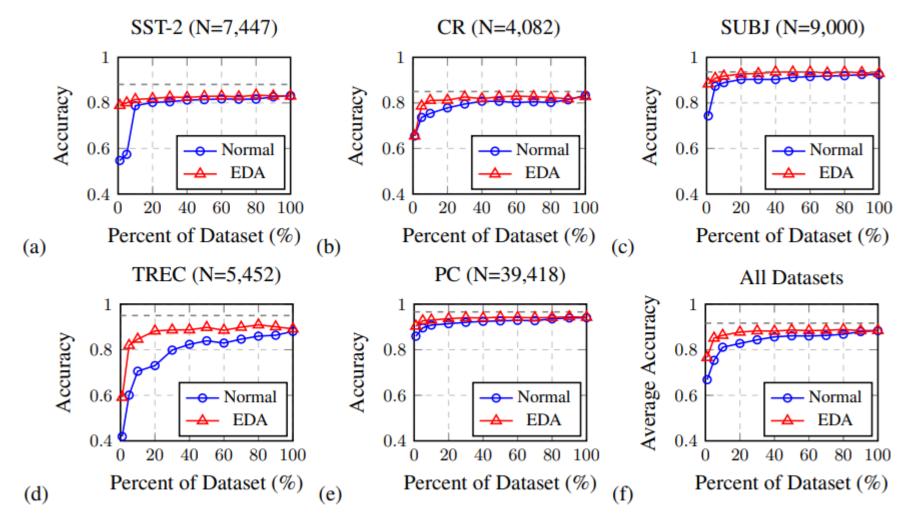


Figure 1: Performance on benchmark text classification tasks with and without EDA, for various dataset sizes used for training. For reference, the dotted grey line indicates best performances from Kim (2014) for SST-2, CR, SUBJ, and TREC, and Ganapathibhotla (2008) for PC.

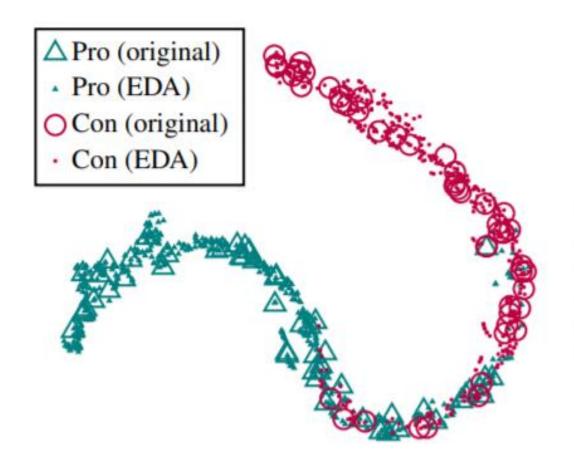


Figure 2: Latent space visualization of original and augmented sentences in the Pro-Con dataset. Augmented sentences (small triangles and circles) closely surround original sentences (big triangles and circles) of the same color, suggesting that augmented sentences maintianed their true class labels.

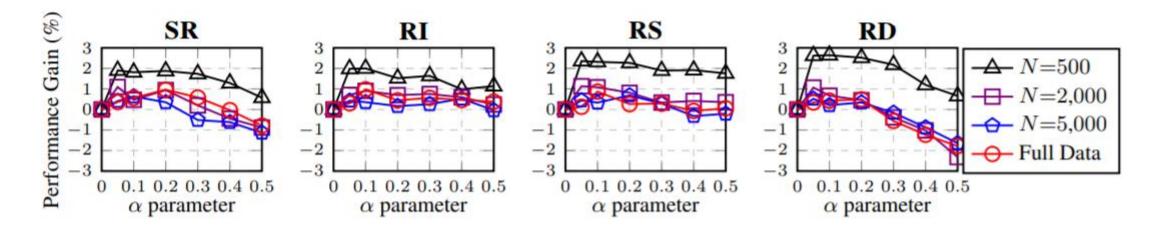


Figure 3: Average performance gain of EDA operations over five text classification tasks for different training set sizes. The α parameter roughly means "percent of words in sentence changed by each augmentation." SR: synonym replacement. RI: random insertion. RS: random swap. RD: random deletion.

Example of an interpolation-based method

Leveraging BERT with Mixup for Sentence Classification (Student Abstract)

Amit Jindal,¹ Dwaraknath Gnaneshwar,¹ Ramit Sawhney,² Rajiv Ratn Shah³

¹Manipal Institute of Technology {amitj646, dwarakasharma} @gmail.com ²Netaji Subhas Institute of Technology ramits.co@nsit.net.in ³Indraprastha Institute of Information Technology, Delhi rajivratn@iiitd.ac.in

Data Augmentation – literature review – Dominik Lewy

Data Augmentation via Mixing Images

lmage 1 label: dog

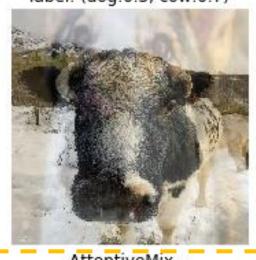
CutMix label: (dog:0.7, cow:0.3)

10/27/2021

Image 2 label: cow

SmoothMix label: (dog:0.3, cow:0.7)

Mixup label: (dog:0.3, cow:0.7)



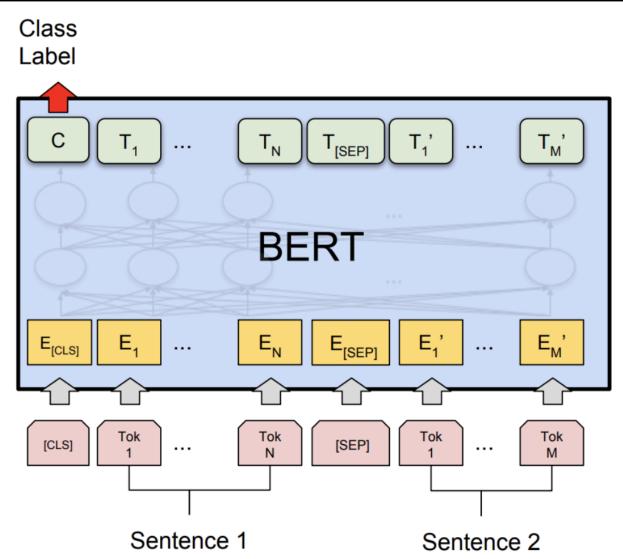
AttentiveMix label: (dog:0.14, cow:0.86)

SamplePairing label: dog

RandomSquare label: (dog:0.42, cow:0.58)

Sentence A: The quick brown fox jumps over the lazy dog.

Sentence B: Pack my box with five dozen liquor jugs.



Experiments error rates								
Model	IMDB	SST-1	MR	TREC	SUBJ			
CNN	7.67	55.0	21.61	8.8	7.59			
LSTM	12.85	53.6	21.67	13.5	8.60			
BERT	6.46	46.75	10.83	2.62	2.20			
BERT + Input Mixup	6.17	45.55	12.81	2.41	1.505			
BERT + Manifold Mixup	6.02	44.20	11.94	2.20	1.501			

Table 1: Test error (%) of the testing methods using BERT. Best results highlighted in Bold.

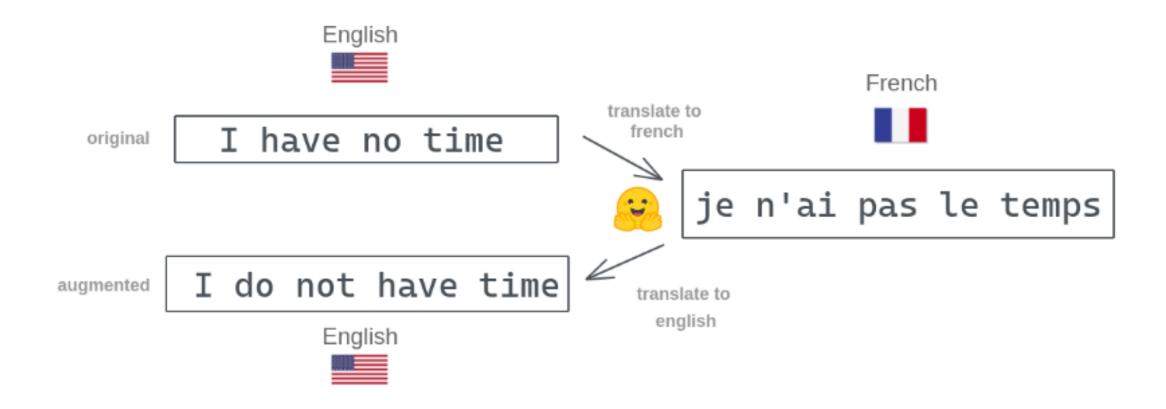
Data sets include:

- IMDB binary sentiment classification dataset
- MR movie review data set with binary sentiment
- SST-1 Stanford Sentiment Treebank
- TREC question type dataset
- SUBJ subjective/objective dataset

Table 2: Test error (%) Manifold Mixup for different sets of eligible layers S on IMDB

S	IMDB
{0}	6.17
$\{0, 1\}$	6.10
$\{0, 1, 2\}$	6.27
$\{0, 1, 2, 3\}$	6.21
$\{0, 1, 2, 3, 4\}$	6.15
$\{0, 1, 2, 3, 4, 5\}$	6.22
$\{0, 1, 2, 3, 4, 5, 6\}$	6.09
$\{0, 1, 2, 3, 4, 5, 6, 7\}$	6.02
$\{0, 1, 2, 3, 4, 5, 6, 7, 8\}$	6.23
$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$	6.25
$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$	6.28
$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$	6.40

Example of a model-based method



Data Augmentation – literature review – Dominik Lewy

Where is augmentation mostly used now?

- Low-Resource Languages
- Mitigating Bias
- Fixing Class Imbalance
- Few-Shot Learning

What is the array of tasks in NLP to be considered?

- Sentence Classification
- Summarization
- Question Answering
- Sequence Tagging
- Parsing
- Grammatical Error Correction
- Neural Machine Translation
- Data to text (NLG)
- •

Sequence Tagging – rule-based equivalent

An Analysis of Simple Data Augmentation for Named Entity Recognition

Xiang Dai^{1,2,3} Heike Adel¹

¹Bosch Center for Artificial Intelligence, Renningen, Germany

²University of Sydney, Sydney, Australia

³CSIRO Data61, Sydney, Australia

dai.dai@csiro.au heike.adel@de.bosch.com

Sequence Tagging – rule-based equivalent

							In	stance				
N	She	did	not	complain	of	headache	or	any	other	neurological	symptoms	
None	0	O	O	Ó	O	B-problem	O	B-problem	I-problem	I-problem	I-problem	O
LwTR	L.	One	not	complain	of	headache	he	any	interatrial	neurological	current	
LWIK	0	O	0	O	O	B-problem	O	B-problem	I-problem	I-problem	I-problem	O
cn	She	did	non	complain	of	headache	or	whatsoever	former	neurologic	symptom	2
SR	0	O	O	O	O	B-problem	O	B-problem	I-problem	I-problem	I-problem	O
MD	She	did	not	complain	of	neuropathic	pain	syndrome	or	acute	pulmonary	disease .
MR	0	O	0	Ò	0	B-problem	I-problem	I-problem	O	B-problem	I-problem	I-problem O
SiS	not	complain	She	did	of	headache	or	neurological	any	symptoms	other	
212	0	O	O	O	O	B-problem	O	B-problem	I-problem	I-problem	I-problem	O

Table 1: Original training instance and different types of augmented instances. We highlight changes using blue color. Note that LwTR (Label-wise token replacement) and SiS (Shuffle within segments) change token sequence only, whereas SR (Synonym replacement) and MR (Mention replacement) may also change the label sequence.

Sequence Tagging – interpolation-based equivalent

SeqMix: Augmenting Active Sequence Labeling via Sequence Mixup

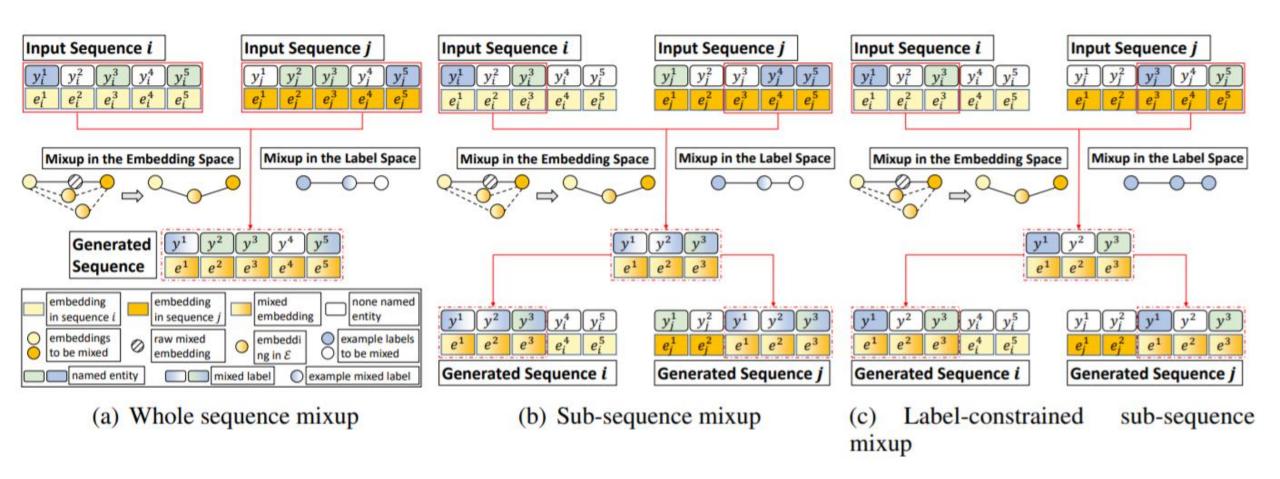
Rongzhi Zhang

Georgia Tech

Yue Yu Georgia Tech Chao Zhang Georgia Tech

rongzhi.zhang@gatech.edu yueyu@gatech.edu chaozhang@gatech.edu

Sequence Tagging – interpolation-based equivalent



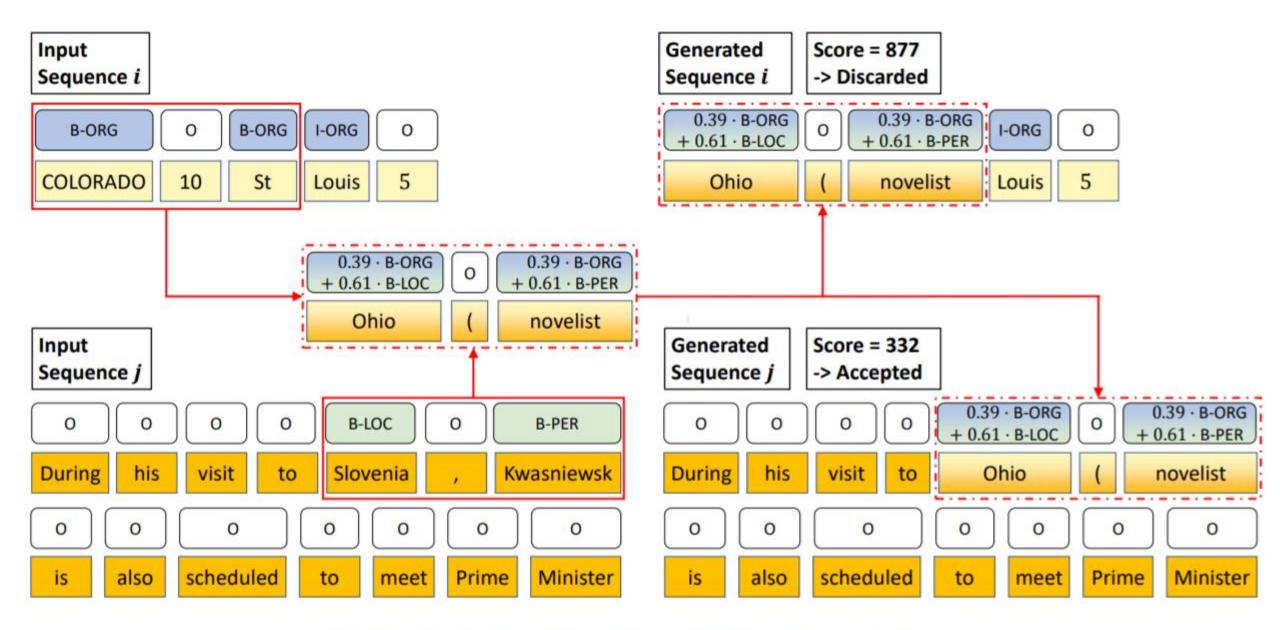


Figure 5: A generation case of sub-sequence mixup.

Other methods

DA Method	Ext.Know	Pretrained	Preprocess	Level	Task-Agnostic
SYNONYM REPLACEMENT (Zhang et al., 2015)	/	×	tok	Input	1
RANDOM DELETION (Wei and Zou, 2019)	×	×	tok	Input	1
RANDOM SWAP (Wei and Zou, 2019)	×	×	tok	Input	1
BACKTRANSLATION (Sennrich et al., 2016)	×	1	Depends	Input	1
SCPN (Wieting and Gimpel, 2017)	×	1	const	Input	1
SEMANTIC TEXT EXCHANGE (Feng et al., 2019)	×	1	const	Input	/
CONTEXTUALAUG (Kobayashi, 2018)	×	1	-	Input	/
LAMBADA (Anaby-Tavor et al., 2020)	×	1	-	Input	×
GECA (Andreas, 2020)	×	×	tok	Input	×
SEQMIXUP (Guo et al., 2020)	×	×	tok	Input	×
SWITCHOUT (Wang et al., 2018b)	×	×	tok	Input	×
EMIX (Jindal et al., 2020a)	×	×	-	Emb/Hidden	/
SPEECHMIX (Jindal et al., 2020b)	×	×	-	Emb/Hidden	Speech/Audio
MIXTEXT (Chen et al., 2020c)	×	×	-	Emb/Hidden	/
SIGNEDGRAPH (Chen et al., 2020b)	×	×	0.70	Input	×
DTREEMORPH (Şahin and Steedman, 2018)	×	×	dep	Input	/
Sub^{2} (Shi et al., 2021)	×	×	dep	Input	Substructural
DAGA (Ding et al., 2020)	×	×	tok	Input+Label	×
WN-HYPERS (Feng et al., 2020)	/	×	const+KWE	Input	/
SYNTHETIC NOISE (Feng et al., 2020)	×	×	tok	Input	/
UEDIN-MS (DA part) (Grundkiewicz et al., 2019)	1	×	tok	Input	/
NONCE (Gulordava et al., 2018)	/	×	const	Input	/
XLDA (Singh et al., 2019)	×	1	Depends	Input	/
SEQMIX (Zhang et al., 2020)	×	1	tok	Input+Label	×
SLOT-SUB-LM (Louvan and Magnini, 2020)	×	1	tok	Input	/
UBT & TBT (Vaibhav et al., 2019)	×	1	Depends	Input	/
SOFT CONTEXTUAL DA (Gao et al., 2019)	×	1	tok	Emb/Hidden	1
DATA DIVERSIFICATION (Nguyen et al., 2020)	×	1	Depends	Input	1
DIPS (Kumar et al., 2019a)	×	1	tok	Input	/
AUGMENTED SBERT (Thakur et al., 2021)	×	1	-	Input+Label	Sentence Pairs

The end. Thank you!

Data Augmentation – literature review – Dominik Lewy

Discussion