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Algorithm selection problem

No-free-lunch (NFL) theorem [Wolpert et al., 1995]

"(...) all algorithms that search for an extremum of a cost function perform exactly the
same, according to any performance measure, when averaged over all possible cost
functions"
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Algorithm selection problem

Performance complementarity [Kerschke et al., 2019]

"(...) different algorithms perform best on different types of problem instances"

Observed (among others) for:

@ planning and scheduling problems
mixed integer programming
propositional satisfiability (SAT)
constraint satisfaction
travelling salesperson problem
machine learning

polynomial-time-solvable problems

continuous optimisation
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Algorithm selection problem

Per-instance algorithm selection

How to determine a priori which algorithm should be used to solve a given instance?

Per-instance algorithm selection problem - given a computational problem, a set of
algorithms for solving this problem, and a specific instance that needs to be solved,
determine which of the algorithms can be expected to perform best on that instance

[Rice, 1976].
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Algorithm selection problem

Per-instance algorithm selection

Definition 1 (Per-instance algorithm selection problem). Given
e a set I of problem instances drawn from a distribution D,
e a space of algorithms A, and
e a performance measure m: T x A — R,

the per-instance algorithm selection problem is to find a mapping s : T — A that
optimizes E;.pm(i, s(i)), i.e., the expected performance measure for instances i
distributed according to D, achieved by running the selected algorithm s(i) for

stance 1.

Figure 1: Source: [Bischl et al., 2016]
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Algorithm selection problem

Per-instance algorithm selection

": parallel algorithm runs
o (in application)

per-instance State-of-the-Art
Algorithm Selection

Systems
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Figure 2: Connections between per-instance algorithm selection and related problems
Kerschke et al., 2019
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Single-objective continuous optimization

Single-objective continuous optimization

Zaborski Exploratory landscape analysis



Single-objective continuous optimization

Single-objective continuous black box optimization problem

@ Goal - minimize an objective function
(or fitness function or cost function)

f:R"=R

@ Single-objective continuous
optimization

o Black Box scenario

o Function values of evaluated search
points are the only accessible

information
o Gradients are not available Figure 3: Sphere 2D function from COCO
@ Search cost - number of function BBOB benchmark [Hansen et al., 2019]
evaluations
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Single-objective continuous optimization

Single-objective continuous black box optimization problem

Problems

Problems:
@ Infinite number of solutions in a continuous domain
@ Multidimensional problems are difficult for grid search
@ The goal is to find a global (not local) optimum
°

Unknown function shape

Non-linear, non-quadratic
Discontinuities, sharp ridges
Non-separability

]
]
(]
o lll-conditioning
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Single-objective continuous optimization

Single-objective continuous black box optimization problem

SEES

Figure 4: Attractive Sector Function Figure 5: Gallagher's Gaussian 21-hi Peaks
(2D)[Hansen et al., 2019] Function (2D)[Hansen et al., 2019]
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Single-objective continuous optimization

Single-objective continuous black box optimization problem

SEES

X,
2
A &b H L o o N w s o

e}

Figure 6: Attractive Sector Function Figure 7: Gallagher's Gaussian 21-hi Peaks
(2D)[Hansen et al., 2019] Function (2D)[Hansen et al., 2019]
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Exploratory landscape analysis

Exploaratory landscape analysis

Initial work

Exploratory Landscape Analysis

Olaf Mersmann Bernd Bischl Heike Trautmann
TU Dortmund, Germany TU Dortmund, Germany TU Dortmund, Germany
olafm@statistik.tu- bischl@statistik.tu- trautmann@statistik.tu-
dortmund.de dortmund.de dortmund.de
Mike Preuss Claus Weihs Ginter Rudolph
TU Dortmund, Germany TU Dortmund, Germany TU Dortmund, Germany
mike.preuss@tu- weihs@statistik.tu- guenter.rudolph@tu-
dortmund.de dortmund.de dortmund.de

Figure 8: ELA initial work (2011) [Mersmann et al., 2011]
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Exploratory landscape analysis

Exploaratory landscape analysis
Motivation [Mersmann et al., 2011]

@ Once a problem is well known, one can employ a matching optimization algorithm
to solve it

@ Most problems encountered in practice (e.g. from the engineering domain) are
poorly understood

@ If computing one fitness evaluation is costly, initial testing or parameter tuning are
problematic

@ Finding interactions between problem properties and algorithms is crucial.

@ Problem features defining a specific algorithm’s performance can be gathered
without actually running it.

o Properties are estimated using a small sample of function values combined with
statistical and machine learning techniques.
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Exploratory landscape analysis

Exploaratory landscape analysis

Principle

Principle:
© 6 low-level feature sets introduced (fitness landscape characterization)
curvature
convexity
levelset
local search
meta models
y-distribution

@ 50 sub-features
@ Latin Hypercube Sampling (D* = [X*,Y?])
Q Prediction of BBOB fetures / high-level features
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Exploratory landscape analysis

COCO BBOB functions

COCO BBOB functions groups [Hansen et al., 2019]:
@ Separable functions: f1 - f5
@ Functions with low or moderate conditioning: 6 - f9
e Functions with high conditioning and unimodal: f10 - f14
e Multimodal functions with adequate global structure: f15 - 19
e Multimodal functions with weak global structure: 20 - f24
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Exploratory landscape analysis

Exploaratory landscape analysis

High-level features

Multi-modality refers to the number of local optima of a problem. In practical applications,
many problems are not unimodal (convex) as favoured by most classical optimization algo-
rithms.

Global structure is what remains after deleting all non-optimal points. For Rastrigins problem,
we obtain a perforated parabola which is unimodal. Problems without global basin structure
are more difficult because one virtually needs to look in every corner.

Separability means a problem may be partitioned into subproblems which are then of lower di-
mensionality and should be considerably easier to solve. However, for an unknown problem,
information about its separability may be scarce.

Variable scaling can make a problem behave differently in each dimension. It can be essential
to perform small steps in some dimensions, and large ones in others, which is due to the
non-spherical form of basins of attraction. Note that scaling may differ between different
basins of attraction.

Figure 9: High-level features [Mersmann et al., 2010]
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Exploaratory landscape analysis

High-level features

Search space homogeneity refers to a search space without phase transitions. Its overall appear-
ance is similar in different search space areas. Most benchmark problems are of this type.

Basin size homogeneity means the size relation (largest to smallest) of all basins of attraction
(e.g. [12] postulated that size differences influence problem hardness).

Global to local optima contrast refers to the difference between global and local peaks in com-
parison to the average fitness level of a problem. It thus determines if very good peaks are
easily recognized as such.

Plateaus can make the life of optimization algorithms a lot harder as they do not provide any
information about good directions to turn to. However, in the BBOB’09 test set, this property
is largely unused.

Figure 10: High-level features [Mersmann et al., 2010]
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Exploaratory landscape analysis

Low-level features [Mersmann et al., 2010]

Feature group and name

Description

Meta-model features:

1 approx. (linear, lineari}_ar2
1 approx.linear_{min,max}_coef
2 approx. {quadratic }_ar2
2 approx.quadratic.

adjusted 12 of the estimated linear regression model without and with interaction

minimum and maximum value of the absolute values of the linear model coefficients

adjusted R2 of the estimated quadratic regression model without or with interaction

maximum absolute value divided by minimum absolute value of the coefficients of the quadratic terms in the quadratic model

Convexity features:
3 convex. {linear, convex}_p

3 convex.linear_dev

estimated probability of lincarity and convexity
mean deviation from linearity

y distribution features:
4 distr.skewness_y
4 distr.kurtosis_
4 distr.n_peaks

skewness of the distribution of the function values
urtosis of the distribution of the function values
estimation of the number of peaks in the distribution of the function values

Levelset features:
5 t.1da_mmce_{10,25,5
_{10,25
evelset.qda_mmce_{10, 25,
7 levelset.mda_mmce {10,325

mean LDA misclassification error for function values split by 0.1, 0.25, 0.5 quantile (estimated by CV)
levelset.lda_mmce_{10,25,50} Lhudedby level. .qda_r - 25,5
mean QDA misclassification error for function values split by 0.1,0.25, 0.5 quantile (estimated by CV)
mean MDA misclassification error for function values split by 0.1,0.25, 0.5 quantile (estimated by CV)

Local search features:
8 1s.n_local_optima
_mean_contrast

number of local optima estimated by the number of identified clusters
minimum value of cluster centers divided by the mean value of cluster centers

proportion of points in the best and worst cluster

mean proportion of points in all clusters but the cluster with the best cluster center

0,025,0.5,0.75 and 1 quantile of the distribution of the number of function evaluations performed during a single local search

Curvature features:
9 numderiv.grad_norm_(mi
9 ale_{min, 1q,

9 numderiv
10 numderiv.

, 1g, med, ug, max}
ed, ug, max}
n_cond_(min, lq, med, ug, max ) minimum, lower quantile, median, upper quantile and maximum of the maximum divided by the minimum eigenvalue of the estimated hessian matrix

minimum, lower quantile, median, upper quantile and maximum of the euclidean norm of the estimated numerical gradient
minimum, lower quantile, median, upper quantile and maximum of the maximum divided by the minimum of the absolute values of the

mated partial gradients
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Exploratory landscape analysis

COCO BBOB functions

Function multim. gl-struc. separ. scaling homog. basins gl-loc.
1 Sphere none  none  high nome high  nome nonme
2Ellipsoidal scparable  none  none  high high high  none none
3 Rastrigin separable high  strong none low  high low low

4 Bueche-Rastrigin high  strong  high low  high med. low

5 Linear Slope nome nome  high none high nonme none
6 Altractive Sector none none  high low med. none none
7 Step Ellipsoidal none none  high low high none none
8 Rosenbrock low  none  none none med. low low

9 Rosenbrock rotated low  none  none none med. low low

10 Ellipsoidal high-cond.  none  none  none high high none none
11 Discus none  mnone  nome high  high  nome nonme
12 Bent Cigar nonc none  nonc high high nonc none
13 Sharp Ridge nome none  nome low  med. nonme none
14 Different Powers none none  none low  med. none none

15 Rastrigin multi-modal  high  strong  none low  high  low  low

16 Weierstrass high med.  none med high med. low
17 Schaffer F7 high med.  none low med. med. high
18 Schaffer F7 mod. ill-cond. high ~ med.  none high med. med. high
19 Griewank-Rosenbrock ~ high  strong  none none high  low  low
20 Schwefel med.  deceptivenone none high  low  low
21 Gallagher 101 Peaks ~ med.  none  none med. high  med. low
22 Gallagher 21 Peaks low  nome  none med. high med. med
23 Katsuura high none  nome none high low  low
24 Lunacek bi-Rastrigin -~ high ~ weak  none low  high low low

Figure 11: Classification of the noiseless BBOB functions based on their properties
(multi-modality, global structure, separability, variable scaling, homogeneity, basin-sizes, global
to local contrast). Predefined groups are separated by horizontal lines. [Mersmann et al; 2011]
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Exploratory landscape analysis

Exploaratory landscape analysis

Search space
homogeneity

Variable scaling
Basin size
homogeneity

Figure 12: Relationships between high-level features (grey) and low-level feature classes (white)
[Mersmann et al., 2011]
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Exploaratory landscape analysis

Feature Group Cost of selected bits
convex S & 411000
Is L (3 +50-d-lspp(si))
numderiv.grad S & +1-100-d?
numderivhessian  3°!_ & +1-100 - d?
all others S &
Figure 13: Cost (i.e. NFE) of the selected bits. The vector § = (51, ..., 5;)contains the

different initial design sizes within the selected features; lspp reflects the mean number of FE
of all local searches for the respective initial design; d equals the dimensionality of the test
function. [Mersmann et al., 2011]
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Exploratory landscape analysis

Problem 1

Feature selection for BBOB groups

e Random Forest (RF) classification algorithm

@ 5-fold cross-validation

@ Target: 5 predefined BBOB groups based

@ 24 x 5 x 5 x 5 = 3000 function instances (# functions x # instances x #
dimensions x F# repetitions)

o s = {5000, 2500, 1250, 625, 500, 400, 300, 200, 100}

e Multi-objective optimization using SMS-GA (based on SMS-EMOA)

e minimize misclassification rate (MCE)
e minimize cost of calculating active features (NSF)
e minimize total number of feature groups used (NFE)
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Problem 2

Feature selection for high-level features

@ Problem 1 extension
o MCE is computed for each of 7 classification problems

@ maximum of these errors (MaxMCE) is used
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Exploratory landscape analysis

Problem 1
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Figure 14: Plot of the hypervolume dominated by the active population after each function
evaluation for the two optimization problems (10D). The colors denote the different runs of the
SMSGA. [Mersmann et al., 2011]
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Results
Problem 1
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Figure 15: Scatter plot of two features, selected via forward selection and cross-validation on
the function instances (10D). [Mersmann et al., 2011]
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Exploratory landscape analysis

Problem leave-onefunction-out problem

@ Preliminary work in this direction
@ 4-class problem: accuracy 73%

@ 2-class problem: accuracy > 96%
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Further research

Further research

Ref.  Year Task Dimension n

[25] 2011 HP n € {5, 10, 20 }

[32] 2012 PP n € {2,3,510,20}
[5] 2012 AS n € {5,10,20}

16] 2014 HP n=2

17] 2015 HP ne {23,510}

33] 2015 HP n € {2,5,10,20}
18] 2016 HP n e {23,510}
[2] 2016 PIAC ne€{23,510}

train: n € {2, 4, 5, 8, 10, 16, 20, 32, 40, 64}

4] 2017 PIAC e (2, 4,8, 10, 16, 20, 32, 40, 50, 66, 100}
[71 2019 HP,AS ne€ {235}

19] 2019 AS n 2 3,5 10}

13] 2020 PP n
39] 2020 HP n
[8] 2020 HP n

I m
(SRS RS, PO

Figure 16: Dimension n of the BBOB functions in selected previous studies for the following
four tasks: high-level property classification (HP), algorithm selection (AS), performance
prediction (PP), and per-instance algorithm configuration (PIAC). [Tanabe, 2021]
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Further research

Automated Algorithm Selection - ELA + ML
[Kerschke and Trautmann, 2019]

Automated Algorithm Selection on Continuous
Black-Box Problems By Combining Exploratory
Landscape Analysis and Machine Learning

Pascal Kerschke kerschke@uni-muenster.de
nformation Systems and Statistics, University of Miinster, 48149 Miinster, Germany
Heike Trautmann trautmann@uni-muenster.de

nformation Systems and Statistics, University of Miinster, 48149 Miinster, Germany
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Further research

Automated Algorithm Selection - ELA + ML

[Kerschke and Trautmann, 2019]

Problem
Instances

ELA

Landscape
Features

Optimization Performance Algorithm
:l orithms \ of Selection
& Algorithms Model

Figure 17: Schematic view of how Exploratory Landscape Analysis (ELA) can be used for
improving the automated algorithm selection process. [Kerschke and Trautmann, 2019]
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Further research

Automated Algorithm Selection - ELA + ML

Principle:
© COCO BBOB benchmark utilized
@ 129 optimization algorithms performance data gathered

© ERT computed per BBOB problem, dimension and instance
O ELA features set from improved latin hypercube design (50D) using flacco
R-package
o 102 features per problem instance (more than in [Mersmann et al., 2011])
@ 4 solvers sets (one per dimension)

e solvers that ranked within the “Top 3" of at least one of the 24 functions
e each set has 37 - 41 solvers
e 12 solvers finally (optimizers that belonged to each of 4 sets)

@ Choosing best algorithm using cross-validation
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Further research

Automated Algorithm Selection - ELA + ML

Algorithm selection:
@ 3 algorithm selection approaches:
o classification
o regression
o pairwise regression
@ 4 feature selection strategies:
Greedy forward-backward selection (sffs)
Greedy backward-forward selection (sfbs)
(10+5)-GA
(10+50)-GA
@ leave-one-(function)-out cross-validation
e 96 submodels (24 functions x 4 dimensions)
e 95 used for training + 1 for testing

@ average of the resulting 96 relative ERT



Further research

Automated Algorithm Selection - ELA + ML

Results

Final models (2 of 70 = 14 algorithms x 5 feature selections):
@ Model 1

o 8 features (greedy forward-backward)
e SVM as classification

o Model 2
o 2 feature groups added (10+50)-GA)
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Further research

Automated Algorithm Selection - ELA + ML

Results [Kerschke and Trautmann, 2019]

Relative Expected Runtime of the 12 Solvers from the Considered Algorithm Portfolio and the 2 Presented Algorithm Selection-Models

Dim  BBOB-
Group . . CMA- . o IPOP- « . 1p SMAC | ASModel

‘ BSqi  BSm Cpan fmincon fminunc HCMA  HMISL 'yOR Mcs  misL oonip SRR | ASMdE

FI-F5 12 13 548 110 118 L6 184 58 155 170 220149 | 166 203

F6 - F9 185167 9708.2 74 18.6 19.2 17 57 113 242 1.5 275186 3.1 35

2 F10- F14 7649.2 74815 8.3 Lo 62.7 1o 107 3227 10 49 293532 4.7 4.0
FI5-F19 | 74066 147103 147 73920 73677 81 155 7 7317 73512 293548 | 262 101

F20- 724 848 147685 73519 1 145 39 146793 114 21 27 20146 | 25 30

all | 62407 93184 15490 15465 15567 60 30684 743 15479 15369 259901 | 193 84

FI-F5 13 13 73679 852 121 68 14686 459 559 73476 220151 | 584 949

F6-F9 B2 954 47 85 91737 19 65 314 91734 25 366003 | 33 399

3 F10- F14 29356.3 147121 8.9 10 4.1 10 123 81327 10 93 293534 48 3.6
FI5-F1o | 146982 220262 16 147012 146995 y 14 73304 73169 147000 146862 36693 | 28 7.1

F20- F24 14741.8 147587 7389.4 7339.6 14677.4 66.8 23 220151 73424 73398 19 220148 67.0 34

all ‘ 12304.7 123167 30774 4616.2 7677.5 90.4 48 91789 47694 61324 4593.1 29047.1 ‘ 28.3 294
F1-F5 . 14 75336 146784 14679.2 12.0 17.5 146887 14678.1 146785 146780 22015.1 227 22

F6 - F9 275974 36690.3 5.6 91735 24 49 288 91734 91735  36690.3 48 48

5 F10- F14 220328 293603 8.9 1.0 10 13.6 22019.2 10 107 36690.3 5.2 52

FI5-F19 | 366903 366903 31 366903 3 73461 203525 366%0.3 366%3 29325 366903 | 44 44

F20-F24 | 220536 220508 74000 146789 77 73398 20174 146810 220150 146768 220149 | 78 78

all | 214283 244698 31146 152890 168199 651 30638 137658 183524 168174 137618 305756 | 91 92

F1-F5 16 16 14691.0 14679.9 14682.7 27 73655 146988 14680.0 14679.9 146783 220157 163 16.3

Fo-FO | 366903 275639 43 91734 91738 22 41 91810 01881 01734 91739 36603 | 27 27

10 F10- F14 29359.3 29359.8 8.4 11 28 11 73525 220187 11 120 366903 37 7
FI5-F19 | 366903 36690.3 17 36693 366903 20 220285 293525 366903 366903 366903 36693 | 21 2

F20 - F24 36690.3 29367.0 14685.9 22015.2 22015.0 23.6 14677.1 293528 220189 22014.6 220149 366903 237 237

all | 275195 244729 61230 168178 168213 69 91524 183546 214080 168176 168197 336331 | 100 100

F1-F5 14 14 7363.6 7376.5 93.6 1851.1 11023.1 73524 73574 91802 220152 285 38.6

Fo-F9 | 207839 208724 16010 68%5.1 41 22098 23149 68861 45879 343974 | 35 127

mn F10- F14 22099.4 202284 1.0 235 4.6 1.0 18473 131233 1.0 33021.8 4.6 4.1

@ F15- F19 871.3 27529.3 5.2 23868.5 23861.9 8.6 73485 165150 20183.8 23868.1 220200 348564 89 59

F20-F24 | 183926 202363 92065 110094 146805 358 55058 220162 110134 128429 91741 256837 | 353 95

all ‘ 168733 176445 3466.0 9567.4 107189 304 30643 110919 11151.0 10328.8 91779 298115 ‘ 16.7 14.2
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Further research

Automated Algorithm Selection - ELA + ML

Results

True Best Solver ‘ Predicted Solver (Model 1 / Model 2)
Solver  # ‘ fmincon HCMA HMLSL MLSL

BSqi 6 3/ 2 3/ 2 0/ 2 0/ 0

BSrr 6 1/ 2 5/ 4 0/ 0 0/
CMA-CSA 7 0o/ 1 7/ 3 0/ 3 0/ 0
fmincon 12 0/ 4 8/ 4 0/ 1 4/ 3
fminunc 6 1/ 2 4/ 3 0o/ 0 1/ 1
HCMA 14 0/ 3 14/11 0/ 0 0/ 0
HMLSL 11 3/ 3 7/ 4 0/ 0 1/ 4
[POP400D 7 0o/ 0 7/ 3 0/ 3 0/ 1
MCs 4 2/ 1 2/ 0 0/ 3 0/ 0
MLSL 12 4/ 2 8/ 6 0/ 2 0/ 2
OQNLP 6 0/ 1 6/ 2 0/ 2 0/ 1
SMAC-BBOB 5 0/ 0 5/ 2 0/ 1 0/ 2

T 9| 14/21 76/44  0/17 6/14

Figure 18: Comparison of the predicted solvers. Each row shows how often the respective best
solver was predicted as fmincon, HCMA, HMLSL or MLSL by the selectors (Model 1 / Model
2). [Kerschke and Trautmann, 2019]
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Further research

Conclusions

@ ELA is effective in function class prediction
@ ELA is useful in Algorithm Selection

e Generalizability of ELA is unconvincing
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Further research
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