Enumerating small quandles

David Stanovský

Charles University, Prague, Czech Republic
&
IITU, Almaty, Kazakhstan

based on joint research with
A. Hulpke, P. Jedlička, A. Pilitowska, P. Vojtěchovský, A. Zamojska-Dzienio

AAA Warsaw, June 2014
Enumerating small groups

<table>
<thead>
<tr>
<th>Size</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1..10</td>
<td>1 1 1 2 1 2 1 5 2 2</td>
</tr>
<tr>
<td>11..20</td>
<td>1 5 1 2 1 14 1 5 1 5</td>
</tr>
<tr>
<td>21..30</td>
<td>2 2 1 15 2 2 5 4 1 4</td>
</tr>
<tr>
<td>31..40</td>
<td>1 51 1 2 1 14 1 2 2 14</td>
</tr>
<tr>
<td>41..50</td>
<td>1 6 1 4 2 2 1 52 2 5</td>
</tr>
<tr>
<td>51..60</td>
<td>1 5 1 15 2 13 2 2 1 13</td>
</tr>
<tr>
<td>61..70</td>
<td>1 2 4 267 1 4 1 5 1 4</td>
</tr>
<tr>
<td>71..80</td>
<td>1 50 1 2 3 4 1 6 1 52</td>
</tr>
<tr>
<td>81..90</td>
<td>15 2 1 15 1 2 1 12 1 10</td>
</tr>
<tr>
<td>91..100</td>
<td>1 4 2 2 1 231 1 5 2 16</td>
</tr>
</tbody>
</table>

(Besche, Eick, O'Brien around 2000: a table up to 2047)

- **size** p: \mathbb{Z}_p
- **size** p^2: $\mathbb{Z}_{p^2}, \mathbb{Z}_p^2$
- **size** $2p$: \mathbb{Z}_{2p}, D_{2p}

Methods: deep structure theory and efficient programming
Enumerating small quasigroups

quasigroup = latin square
loop = quasigroup with a unit

<table>
<thead>
<tr>
<th></th>
<th>loops</th>
<th>quasigroups</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1411</td>
</tr>
<tr>
<td>6</td>
<td>109</td>
<td>1130531</td>
</tr>
<tr>
<td>7</td>
<td>23746</td>
<td>12198455835</td>
</tr>
<tr>
<td>8</td>
<td>106228849</td>
<td>2697818331680661</td>
</tr>
<tr>
<td>9</td>
<td>9365022303540</td>
<td>15224734061438247321497</td>
</tr>
<tr>
<td>10</td>
<td>20890436195945769617</td>
<td>2750892211809150446995735533513</td>
</tr>
</tbody>
</table>

(McKay, Meynert, Myrvold 2007)

Methods: smart combinatorics and efficient programming
Quandles

Quandle is an algebra $Q = (Q, *)$ such that for every $x, y, z \in Q$

- $x \ast x = x$ (*idempotent*)
- there is a unique u such that $x \ast u = y$ (*unique left division*)
- $x \ast (y \ast z) = (x \ast y) \ast (x \ast z)$ (*selfdistributivity*)

Observe:

- *translations* $L_x(y) = x \ast y$ are permutations
- *multiplication group* $\text{LMlt}(Q) = \langle L_x : x \in Q \rangle$ is a permutation group
- quandles = idempotent binary algebras with $\text{LMlt}(Q) \leq \text{Aut}(Q)$.
Quandles

Quandle is an algebra $Q = (Q, \ast)$ such that for every $x, y, z \in Q$

- $x \ast x = x$ (*idempotent*)
- there is a unique u such that $x \ast u = y$ (*unique left division*)
- $x \ast (y \ast z) = (x \ast y) \ast (x \ast z)$ (*selfdistributivity*)

Observe:

- **translations** $L_x(y) = x \ast y$ are permutations
- **multiplication group** $\text{LMlt}(Q) = \langle L_x : x \in Q \rangle$ is a permutation group
- quandles $=$ idempotent binary algebras with $\text{LMlt}(Q) \leq \text{Aut}(Q)$.

Example: group conjugation $x \ast y = y^x = xyx^{-1}$

Motivation:

- coloring knots, braids
- Hopf algebras, discrete solutions to the Yang-Baxter equation
- combinatorial algebra: a natural generalization of selfdistributive quasigroups
Enumerating quandles: elementary approach

1 1 3 7 22 73 298 1581 11079

- exhaustive search over all tables: Mace4 up to size 7
- exhaustive search over all permutations: Ho, Nelson up to size 8
- smarter elementary approach: McCarron up to size 9
Enumerating quandles: elementary approach

1 1 3 7 22 73 298 1581 11079

- exhaustive search over all tables: Mace4 up to size 7
- exhaustive search over all permutations: Ho, Nelson up to size 8
- smarter elementary approach: McCarron up to size 9

Our idea:
- think about the orbit decomposition of Q by $L\text{Mlt}(Q)$
- find a representation theorem
- count the configurations

Our results: two special cases
- algebraically connected quandles \equiv with a single orbit, up to size 35
- medial quandles (in a sense the abelian case), up to size 13
Connected quandles

\(= \text{LMlt}(Q) \) is transitive on \(Q \)

Galkin quandles: \(\text{Gal}(G, H, \varphi) = (G/H, \ast) \), \(xH \ast yH = x\varphi(x^{-1})\varphi(y)H \),
- \(G \) is a group, \(H \) its subgroup
- \(\varphi \in \text{Aut}(G) \), \(\varphi|_H = id \)

Canonical representation: \(Q \simeq \text{Gal}(\text{LMlt}(Q), \text{LMlt}(Q)_e, -^{L_e}) \)
Connected quandles

\[= \text{LMlt}(Q) \text{ is transitive on } Q \]

Galkin quandles: \(\text{Gal}(G, H, \varphi) = (G/H, \ast), \ xH \ast yH = x\varphi(x^{-1})\varphi(y)H, \)
- \(G \) is a group, \(H \) its subgroup
- \(\varphi \in \text{Aut}(G), \varphi|_H = id \)

Canonical representation: \(Q \simeq \text{Gal}(\text{LMlt}(Q), \text{LMlt}(Q)_e, -L_e) \)

Quandle envelope = \((G, \zeta)\) such that
- \(G \) a transitive group,
- \(\zeta \in Z(G_e) \) such that \(\langle \zeta^G \rangle = G \)

Theorem (HSV)

There is 1-1 correspondence connected quandles \(\leftrightarrow \) quandle envelopes

- **quandles to envelopes:** \(Q \mapsto (\text{LMlt}(Q), L_e) \)
- **envelopes to quandles:** \((G, \zeta) \mapsto \text{Gal}(G, G_e, -\zeta) \)
We count all quandle envelopes, using the full list of transitive groups of degree \(n \leq 35 \) (Hulpke 2005).

Important trick: we have an efficient isomorphism theorem for envelopes.

Using deep theory of transitive groups:

- size \(p \): only affine, \(p - 2 \) (Etingof, Soloviev, Guralnick 2001)
- size \(p^2 \): only affine, \(2p^2 - 3p - 1 \) (Graña 2004)
- size \(2p \): no none for \(p > 5 \) (McCarron / HSV)
Theorem (Etingof-Soloviev-Guralnik)

Connected quandles of prime size are affine.

Proof using envelopes.

\(\text{LMlt}(Q)\) is a transitive group acting on a prime number of elements, hence \(\text{LMlt}(Q)\) is primitive.

A theorem of Kazarin says that if \(G\) is a group, \(a \in G\), \(|a^G|\) is a prime power, then \(\langle a^G \rangle\) is solvable. In our case \(|L_{e}^{\text{LMlt}(Q)}| = |Q|\) is prime, hence \(\text{LMlt}(Q) = \langle L_{e}^{\hat{\cdot}} \rangle\) is solvable.

A theorem attributed to Galois says that primitive solvable groups are affine, hence \(\text{LMlt}(Q)\) is affine, and so is \(Q\).
Medial quandles

= satisfying $(x * y) * (u * v) = (x * u) * (y * v)$ for every x, y, u, v

= $\langle L_x L_y^{-1} : x, y \in Q \rangle \leq \text{LMlt}(Q)$ is an abelian group

Example: affine quandles

$\text{Aff}(G, \varphi) = (G, *)$ with $x * y = (1 - \varphi)(x) + \varphi(y)$,
where G is an abelian group, $\varphi \in \text{Aut}(G)$

Fact

A connected quandle is medial iff affine.

Connected quandles of prime size: $\text{Aff}(\mathbb{Z}_p, k)$ with $k = 2, \ldots, p - 1$.
(Classification of affine quandles up to p^4 by Hou 2011.)
Medial quandles

\[\text{satisfying} \quad (x \ast y) \ast (u \ast v) = (x \ast u) \ast (y \ast v) \quad \text{for every} \quad x, y, u, v \]
\[\langle L_x L_y^{-1} : x, y \in Q \rangle \leq \text{LMlt}(Q) \quad \text{is an abelian group} \]

Example: affine quandles

\[\text{Aff}(G, \varphi) = (G, \ast) \quad \text{with} \quad x \ast y = (1 - \varphi)(x) + \varphi(y), \]
\[\text{where} \quad G \text{is an abelian group,} \quad \varphi \in \text{Aut}(G) \]

Fact

A connected quandle is medial iff affine.

Connected quandles of prime size: \(\text{Aff}(\mathbb{Z}_p, k) \) with \(k = 2, \ldots, p - 1. \)
(Classification of affine quandles up to \(p^4 \) by Hou 2011.)

Fact

Orbits in medial quandles are affine quandles.
The structure of medial quandles

affine mesh = triple \(((A_i)_{i \in I}, (\varphi_{i,j})_{i,j \in I}, (c_{i,j})_{i,j \in I})\) indexed by \(I\) where

- \(A_i\) are abelian groups
- \(\varphi_{i,j} : A_i \to A_j\) homomorphisms
- \(c_{i,j} \in A_j\) constants

such that for every \(i, j, j', k \in I\)

- \(1 - \varphi_{i,i}\) is an automorphism of \(A_i\)
- \(c_{i,i} = 0\)
- \(\varphi_{j,k}\varphi_{i,j} = \varphi_{j',k}\varphi_{i,j'}\) (they commute naturally)
- \(\varphi_{j,k}(c_{i,j}) = \varphi_{k,k}(c_{i,k} - c_{j,k})\)

sum of an affine mesh = disjoint union of \(A_i\), for \(a \in A_i, b \in A_j\)

\[
a \ast b = c_{i,j} + \varphi_{i,j}(a) + (1 - \varphi_{j,j})(b)
\]

Theorem (JPSZ)

An algebra is a medial quandle if and only if it is the sum of an affine mesh.
Enumerating medial quandles

<table>
<thead>
<tr>
<th></th>
<th>medial quandles</th>
<th>quandles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>58</td>
<td>73</td>
</tr>
<tr>
<td>7</td>
<td>251</td>
<td>298</td>
</tr>
<tr>
<td>8</td>
<td>1410</td>
<td>1581</td>
</tr>
<tr>
<td>9</td>
<td>10311</td>
<td>11079</td>
</tr>
<tr>
<td>10</td>
<td>98577</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1246488</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>20837449</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>466087635</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>13943042???</td>
<td></td>
</tr>
</tbody>
</table>

We count all affine meshes, using an efficient isomorphism theorem.
Reductive medial quandles

Surprizingly, there is an important special case.

A medial quandle is called 2-reductive if following equivalent cond’s hold:

- \((x \ast y) \ast y = y\)
- all compositions of right translations \(R_u R_v\) are constant
- in the mesh representation, \(\varphi_{i,j} = 0\) for every \(i, j\)

2-reductive medial quandles have very combinatorial character, they are merely just tables of numbers (operation \(a \ast b = b + c_{i,j}\), no conditions upon \(c_{i,j}\) except \(c_{i,i} = 0\)).

We count them by Burnside’s theorem.

"Almost every" medial quandle is 2-reductive.

The numbers of non-2-reductive, and non-\(n\)-reductive (for any \(n\)) ones:

\[
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
0 & 0 & 0 & 1 & 1 & 3 & 3 & 5 & 12 & 10 & 45 & 9 & 278 & ? \\
0 & 0 & 1 & 1 & 3 & 1 & 5 & 3 & 10 & 3 & 9 & 8 & 11 & ?
\end{array}
\]
Enumerating assymptotically

Theorem (Blackburn 2013)

For every $c_1 < \frac{1}{4}$ and every $c_2 > \frac{1}{6} \log_2 24 + \frac{1}{2} \log_2 3 \approx 1.5566$

$$2^{c_1 n^2} < \text{the number of quandles} < 2^{c_2 n^2}.$$

Lower bound: take $n/2$ copies of \mathbb{Z}_2, think about all $\frac{n}{2} \times \frac{n}{2}$ 0,1-matrices $(c_{i,j})$ with $c_{i,i} = 0$: there is $2^{\frac{1}{4}(n^2-n)}$ of them, hence at least

$$2^{\frac{1}{4}(n^2-n)}/n! = 2^{\frac{1}{4}n^2-O(n \log n)}$$

isomorphism classes of 2-reductive (involutory) medial quandles

Upper bound: we can prove there is at most $2^{(\frac{1}{4}+o(1))n^2}$ 2-reductive m.q.

Conjecture

The upper bound (in medial case) is $c_2 = \frac{1}{4} + o(1)$.

David Stanovský (Prague/Almaty) Enumerating quandles 13 / 13