On \textit{t}-filters on Residuated Lattices (AAA88)

Martin Víta, MU Brno

20.6.2014
Definition of a Residuated Lattice

Definition

A *bounded pointed commutative integral residuated lattice* is a structure

$$L = (L, \& , \rightarrow, \land, \lor, \overline{0}, \overline{1})$$

of type $(2, 2, 2, 2, 0, 0)$ which satisfies the following conditions:

(i) $(L, \land, \lor, \overline{0}, \overline{1})$ is a bounded lattice.

(ii) $(L, \& , \overline{1})$ is a monoid.

(iii) $(\& , \rightarrow)$ form an adjoint pair, i.e. $x \& z \leq y$ if and only if $z \leq x \rightarrow y$ for all $x, y, z \in L$.
Definition of a Filter

Definition

A non-empty subset F of L is called a *filter* on L if following conditions hold for all $x, y \in L$:

(i) if $x, y \in F$, then $x \& y \in F$,

(ii) if $x \in F$, $x \leq y$, then $y \in F$.

Martin Víta, MU Brno

On t-filters on Residuated Lattices (AAA88)
Special Types of Filters

Definition

A nonempty subset F of a BL-algebra L called a *fantastic* filter if it satisfies:

1. $\overline{1} \in F$
2. $z \rightarrow (y \rightarrow x) \in F$ and $z \in F$ imply $((x \rightarrow y) \rightarrow y) \rightarrow x \in F$ for all $x, y, z \in A$.

Other types of filters such as implicative, positive implicative, ... filters are defined similarly by replacing the second condition by some different one.
Summary of Some Existing Results - Example I.

Theorem (Haveshki, Eslami, Saeid (2006))

On BL-algebra \mathbf{L}, the following statements are equivalent:

1. $\{1\}$ is a fantastic filter.
2. Every filter on \mathbf{L} is a fantastic filter.
3. \mathbf{L} is an MV-algebra.

MV-algebras are just BL-algebras satisfying $\neg\neg x = x$.
Theorem

On BL-algebra L, the following statements are equivalent:

1. $\overline{\{I\}}$ is an implicative filter.
2. Every filter on L is an implicative filter.
3. L is a Gödel algebra.

Gödel algebras are just BL-algebras satisfying $x \& x = x$.
Motivation – Example II

Theorem

Let F, G be filters on BL-algebra L such that $F \subseteq G$. If F is a fantastic filter, then G is a fantastic filter.
Motivation – Example II’

Theorem

Let F, G be filters on \mathbf{BL}-algebra L such that $F \subseteq G$. If F is an implicative filter, then G is an implicative filter.
Motivation – Example III

Theorem

Let F be a filter of (a BL-algebra) L. Then F is a fantastic filter if and only if every filter of the quotient algebra L/F is a fantastic filter.
Theorem

Let F be a filter of (a BL-algebra) L. Then F is an implicative filter if and only if every filter of the quotient algebra L/F is an implicative filter.
Alternative Definitions of Special Types of Filters

Theorem (Kondo and Dudek (2008))

Let L be a BL-algebra, $F \subseteq L$ a filter on L. Then F is a fantastic filter iff for all $x \in L$, $\neg\neg x \rightarrow x \in F$ and F is an implicative filter iff for all $x \in L$, $x \rightarrow x \& x \in F$.

Starting now, L is a residuated lattice.
Generalization: t-filters

Definition

Let t be an arbitrary term. A filter F on L is a t-filter if $t(\overline{x}) \in F$ for all $\overline{x} \in L$.

\overline{x} is an abbreviation for a list x, y, \ldots. Since now, t is a fixed term.
Theorem

Let F and G be filters on a residuated lattice L such that $F \subseteq G$. If F is a t-filter, then so is G.
Theorem

Let \mathcal{B} be a variety of residuated lattices and $L \in \mathcal{B}$. Moreover let \mathcal{C} be a subvariety of \mathcal{B} which we get by adding the equation in the form $t = \bar{1}$. Then the following statements are equivalent:

1. $\{\bar{1}\}$ is a t-filter.
2. Every filter on L is a t-filter.
3. L is in \mathcal{C}.
Let F be a filter on a residuated lattice L. Then F is a t-filter if and only if every filter of the quotient algebra A/F is a t-filter.
Simple Observations

- \(\overline{I} \)-filters are just filters on \(L \), \(x \)-filters are just trivial filters.
- If \(t_1(x) \leq t_2(x) \) for all \(x \in L \), then
 \[
 \{ F \subseteq L \mid F \text{ is a } t_1\text{-filter} \} \subseteq \{ F \subseteq L \mid F \text{ is a } t_2\text{-filter} \}.
 \]
t-filters and Extended Filters

Definition (Kondo (2013))

Let \(B \) be an arbitrary nonempty subset of \(L \), \(F \) filter on \(L \). The set \(E_F(B) = \{ x \in L \mid \forall b \in B(x \lor b \in F) \} \) is called **extended filter** associated with \(B \).

Theorem (Kondo (2013))

Let \(F \) be a filter on \(L \). Then:

- \(F \) is an implicative filter if and only if \(E_F(x \rightarrow x^2) = L \) for all \(x \in L \)
- \(F \) is a fantastic filter if and only if \(E_F(\neg \neg x \rightarrow x) = L \) for all \(x \in L \)
Theorem

Let F be a filter on L, t a term. Then F is a t-filter if and only if $E_F(t(x)) = L$ for all $x \in L$.

Proof.

Let x be an arbitrary element of L, F be a t-filter. Since F is a t-filter, then $t(x) \in F$, thus for every element y of L is $y \lor t(x) \in F$, thus $y \in E_F(t(x))$, i.e., $E_F(t(x)) = L$.

Conversely, if $E_F(t(x)) = L$, then $\bar{0} \in E_F(t(x))$, therefore $\bar{0} \lor t(x) = t(x) \in F$. QED
l-filters and Possible Generalizations

l-filters defined by Z. M. Ma and B. Q. Hu (2014) are just special cases of t-filters (…)

Possible Generalizations: replace the condition $t(\bar{x}) \in F$ by condition in form if $t_1(\bar{x}) \in F$ and $t_2(\bar{x}) \in F$ and …, then $t(\bar{x}) \in F$ and start dealing with quasivarieties.
Acknowledgement

Thank you for your attention!