MISSING DATA AND IMPUTATION IN PERIODICALLY CORRELATED HEAVY TAILED PROCESSES

Christiana Drake¹, Jacek Leskow², Aldo Garay³

¹Department of Statistics, University of California, Davis, CA 95616, USA
²Institute of Mathematics, Polytechnika, Krakow, Poland
³Departmento de Estatistica, Universidade Estadual de Campinas, Brazil

Email: cmdrake@ucdavis.edu

We consider periodically correlated or cyclostationary processes with data that is missing at random and errors that belong to a class of heavy tailed distributions. The processes we model are mean zero and periodic in the variance structure. In particular we model these processes as a K-dependent process \(\{X(t)\} \) with a multivariate t-distribution and the covariance matrix \(\Sigma \) of order \(2(K-1) \times 2(K-1) \). Moreover, we assume that the number of degrees of freedom \(\nu \) is fixed and \(2 < \nu \leq 6 \). We use the periodic sequence \(\{c(t)\} \) with the period H as the periodic amplitude imposed over the stationary background process \(\{X(t)\} \). We propose four imputation algorithms for the missing data based on properties of the multivariate t-distribution. The performance of the imputation algorithms is compared using simulations. Periodic phenomena are observed in modeling climate data and electrical signals in muscles during movement among others.

Keywords: Cyclostationary process, missing data, heavy tailed errors