Abstract. MV-algebras were introduced by Chang as an algebraic counterpart of the Lukasiewicz infinite-valued logic. D. Mundici proved that the category of MV-algebras is equivalent to the category of abelian ℓ-groups with strong unit. A. Di Nola and A. Lettieri established a categorical equivalence between the category of perfect MV-algebras and the category of abelian ℓ-groups. In this paper we investigate the convergence with a fixed regulator in perfect MV-algebras using Di Nola-Lettieri functors. The main result of the paper states that every locally Archimedean MV-algebra has a unique υ-Cauchy completion.

Introduction
MV-algebras were defined by C.C. Chang in 1958 as algebraic models for the Lukasiewicz infinite-valued logic ([7]). Due to D. Mundici, MV-algebras can be viewed as intervals of abelian ℓ-groups ([14]). A special subcategory of the category of MV-algebras is the class of perfect MV-algebras which are directly connected with the incompleteness of Lukasiewicz first order logic. A. Di Nola and A. Lettieri proved in [10] that the category of perfect MV-algebras is equivalent to the category of abelian ℓ-groups.

The order convergence in abelian ℓ-groups is studied in [15] and [16], while α-convergence is presented in [1]. Š. Černák studied the convergence with a fixed regulator for abelian ℓ-groups in [4] and for Archimedean ℓ-groups in [5]. In the case of MV-algebras, the order convergence is presented in [12], α-convergence was investigated in [13] and various kinds of Cauchy completions are studied in [2]. Using the Mundici functor Γ, Š. Černák extended the convergence with a fixed regulator from abelian ℓ-groups to MV-algebras ([6]). Order convergence in perfect MV-algebras has been presented in [11]. Using methods similar to those from [11], in this paper we...
investigate the convergence with a fixed regulator in the case of perfect MV-algebras. The main result states that every locally Archimedean MV-algebra has a unique \(\nu \)-Cauchy completion. The exposition there is based on the Di Nola-Lettieri functors \(D \) and \(\Delta \). Based on the isomorphism between an arbitrary MV-algebra and some subalgebra of a perfect MV-algebra established by L.P. Belluce and A. Di Nola in [3], we investigate how some results in perfect MV-algebras can be transferred to an arbitrary MV-algebra.

1. Preliminaries

In this section we recall some definitions and results regarding MV-algebras and the convergence with fixed regulator in \(\ell \)-groups. For more details on the subject we refer the reader to [8] and respectively [4].

On an MV-algebra \(A \), the distance function \(d : A \times A \to A \) is defined by:

\[
d(x, y) = (x \odot y^-) \oplus (x^- \odot y).
\]

Among the properties of the distance function (see [11]), we will use the following:

1. \(d(x, y) = 0 \) iff \(x = y \),
2. \(d(x, y) = d(y, x) \),
3. \(d(x, 0) = x \),
4. \(d(x, z) \leq d(x, y) \oplus d(y, z) \),
5. \(x \leq y \) implies \(y = x \oplus d(x, y) \).

An element \(x \) in an MV-algebra is said to be finitely small or infinitesimal if \(x \neq 0 \) and \(nx \leq x^- \) for all \(n \in \mathbb{N} \). The set of all infinitesimals in \(A \) is denoted by \(\text{Infinit}(A) \).

The radical \(\text{Rad}(A) \) of an MV-algebra \(A \) is the intersection of all maximal ideals of \(A \). The MV-algebra \(A \) is called perfect if \(A = \text{Rad}(A) \cup (\text{Rad}(A))^- \), where

\[
(\text{Rad}(A))^- = \{ x^- \mid x \in \text{Rad}(A) \}.
\]

For any MV-algebra \(A \), \(\text{Rad}(A) = \text{Infinit}(A) \cup \{0\} \).

An MV-algebra \(A \) is said to be Archimedean or semisimple if \(nx \leq x^- \) for all \(n \in \mathbb{N} \) implies \(x = 0 \) (see [8]).

According to [9], a perfect MV-algebra \(A \) is called locally Archimedean whenever \(x, y \in \text{Rad}(A) \) are such that \(nx \leq y \) for all \(n \in \mathbb{N} \), it follows that \(x = 0 \).

Mundici proved in [14] that for any MV-algebra \(A \) there is an abelian \(\ell \)-group \((G, +, u) \) with strong unit \(u \) such that \(A \) is isomorphic to \(\Gamma(G, u) = [0, u] \) endowed with a canonical structure of MV-algebra:

\[
x \oplus y = (x + y) \wedge u, \ x^- = u - x, \ x \odot y = (x + y - u) \vee 0.
\]

The Mundici functor \(\Gamma \) is a categorical equivalence between the category of abelian \(\ell \)-groups with strong unit and the category of MV-algebras.
In the case of perfect MV-algebras a crucial result is the categorical equivalence between the category of perfect MV-algebras and the category of abelian ℓ-groups established by A. Di Nola and A. Lettieri ([10]).

For each abelian ℓ-group \((G, +)\), consider the lexicographic product \(\mathbb{Z} \times_{lex} G\) and define the perfect MV-algebra \(\Delta(G) = \Gamma(\mathbb{Z} \times_{lex} G, (1, 0))\) with the operations:

\[
\begin{align*}
(x, y) \oplus (u, v) &= (1, 0) \land (x + u, y + v) \\
(x, y)^- &= (1, 0) - (x, y) = (1 - x, -y) \\
(x, y) \odot (u, v) &= (0, 0) \lor (x + u - 1, y + v).
\end{align*}
\]

An element of \(\Delta(G)\) has either the form \((0, g)\) with \(g \geq 0\) or the form \((1, g)\) with \(g \leq 0\) \((g \in G)\). According to [11]) we have:

(1) \((1, 0)\) is a strong unit of \(\mathbb{Z} \times_{lex} G\);
(2) If \(A\) is a perfect MV-algebra, then \((\text{Rad}(A), \oplus, 0)\) is a cancellative abelian monoid;
(3) \(\text{Rad}(\Delta(G)) = \{(0, x) \mid x \geq 0\}; (\text{Rad}(\Delta(G)))^- = \{(1, x) \mid x \leq 0\}.

On \(\text{Rad}(A) \times \text{Rad}(A)\) we define the congruence \(\approx\) by

\[
(x, y) \approx (u, v) \text{ if } x \oplus v = y \oplus u
\]

and denote by \([x, y]\) the congruence class of \((x, y) \in \text{Rad}(A) \times \text{Rad}(A)\).

Denote \(\mathcal{D}(A) = \text{Rad}(A) \times \text{Rad}(A)/\approx\) and define:

\[
[x, y] + [u, v] = [x \oplus u, y \oplus v] \\
[x, y] \leq [u, v] \text{ if } x \oplus v \leq y \oplus u.
\]

With these operations \(\mathcal{D}(A)\) becomes an abelian ℓ-group such that:

\[
[x, y] \land [u, v] = [(x \oplus v) \land (y \oplus u), y \oplus v] \\
[x, y] \lor [u, v] = [x \oplus u, (x \oplus v) \land (y \oplus u)].
\]

Di Nola-Lettieri functors \(\mathcal{D} : \mathcal{P} \to \mathcal{A}\) and \(\Delta : \mathcal{A} \to \mathcal{P}\) realize a categorical equivalence between the category \(\mathcal{P}\) of perfect MV-algebras and the category \(\mathcal{A}\) of abelian ℓ-groups([10]).

Proposition 1.1 ([11]). In \(\mathcal{D}(A)\) we have:

(1) \(\mathcal{D}(A)^+ = \{(x, 0) \mid x \in \text{Rad}(A)\}\);
(2) \(-[x, y] = [y, x]\);
Proof. (1) Since $p \in x$, we have $x \in P$.

(2) If $x \in \ell$-subgroup of H.

(3) Every element of H is an v-limit of some sequence in G.

If every v-Cauchy sequence is convergent in G, then G is said to be v-Cauchy complete.

Definition 1.2 ([4]). If G is Archimedean, then an Archimedean ℓ-group H is called a v-Cauchy completion of G if the following conditions are satisfied:

(1) G is an ℓ-subgroup of H;

(2) H is v-Cauchy complete;

(3) Every element of H is a v-limit of some sequence in G.

The v-Cauchy completion for an arbitrary ℓ-group G is constructed in [4].

2. Convergence with a fixed regulator in perfect MV-algebras

The functor Γ was used in [6] to obtain the v-convergence for MV-algebras from the theory of v-convergence in ℓ-groups. Using the functors D and Δ we will investigate the v-convergence in perfect MV-algebras.

Definition 2.1 ([6]). Let A be an arbitrary MV-algebra and $0 < v \in A$. The sequence $(x_n)_n$ in A v-converges to an element $x \in A$ (or x is a v-limit of $(x_n)_n$), denoted $x_n \rightarrow_v x$, if for every $p \in \mathbb{N}$ there is $n_0 \in \mathbb{N}$ such that $p|d(x_n, x) \leq v$ for each $n \in \mathbb{N}$, $n \geq n_0$.

Proposition 2.2 ([6]). If $(x_n)_n$ and $(y_n)_n$ are sequences in an arbitrary MV-algebra A and $x, y \in A$ such that $x_n \rightarrow_v x$ and $y_n \rightarrow_v y$, then: $x_n \rightarrow_v x^$, $x_n \rightarrow_v y^$, $x_n \rightarrow_v x \oplus y$, $x_n \rightarrow_v x \odot y$, $x_n \rightarrow_v x \lor y$, $x_n \rightarrow_v x \land y$.

Proposition 2.3. In an arbitrary MV-algebra A the following hold:

(1) If $(x_n)_n \subseteq \text{Rad}(A)$, $0 < v \in \text{Rad}(A)$ and $x_n \rightarrow_v x$, then $x \in \text{Rad}(A)$;

(2) If $(x_n)_n \subseteq (\text{Rad}(A))^-$, $v \in (\text{Rad}(A))^-$, $v < 1$ and $x_n \rightarrow_{v^-} x$, then $x \in (\text{Rad}(A))^-$.

Proof. (1) Since $x_n \rightarrow_v x$, for each $p \in \mathbb{N}$ there is $n_0 \in \mathbb{N}$ such that $pd(x_n, x) \leq v$ for each $n \in \mathbb{N}$, $n \geq n_0$. Using the properties of the distance...
function on A we have:
\[x = d(x, 0) \leq d(x, x_n) + d(x_n, 0) = d(x_n, x) + x_n \leq v + x_n \]
Because $\text{Rad}(A)$ is an ideal and $v, x_n \in \text{Rad}(A)$ it follows that $v + x_n \in \text{Rad}(A)$ and then $x \in \text{Rad}(A)$.

(2) We have $(x_n^-)_n \subseteq \text{Rad}(A), 0 < v^- \in \text{Rad}(A)$ and apply (1). \hfill \Box

Proposition 2.4. Let A be a locally Archimedean MV-algebra. Then:

(1) A sequence $(x_n)_n \subseteq \text{Rad}(A)$ has a unique v-limit for any $0 < v \in \text{Rad}(A)$;

(2) If $(x_n)_n, (y_n)_n \subseteq \text{Rad}(A)$ and $0 < v \in \text{Rad}(A)$ such that $x_n \rightarrow_v x$, $y_n \rightarrow_v y$ and $x_n \leq y_n$ for any $n \in \mathbb{N}$, then $x \leq y$.

Proof. (1) Consider $x_1, x_2 \in A$ such that $x_n \rightarrow_v x_1$ and $x_n \rightarrow_v x_2$. Then, by the above proposition we have $x_1, x_2 \in \text{Rad}(A)$ and by the properties of distance:

\[\text{pd}(x_1, x_2) \leq \text{pd}(x_1, x_n) + \text{d}(x_n, x_2) \leq 2v \text{ for all } p \in \mathbb{N}. \]

Since A is locally Archimedean, we get $d(x_1, x_2) = 0$, hence $x_1 = x_2$.

(2) Since $x_n \leq y_n$, we have $x_n^- \oplus y_n = 1 \rightarrow_v 1$. By Proposition 2.2 it follows that $x_n^- \oplus y \rightarrow_v x^- \oplus y$ and by (1) we get $x^- \oplus y = 1$. Thus $x \leq y$. \hfill \Box

Proposition 2.5. If A is a perfect MV-algebra, then the following are equivalent:

(i) A is locally Archimedean;

(ii) $\mathcal{D}(A)$ is an Archimedean ℓ-group.

Proof. (i)⇒(ii) Consider $[x, y], [u, v] \in \mathcal{D}(A)$ such that $n[x, y] \leq [u, v]$ for any $n \in \mathbb{N}$. Using the operations defined in $\mathcal{D}(A)$ and properties of MV-algebras, for any $n \in \mathbb{N}$ we have $n[x, y] \leq [u, v] \iff n(x, ny) \leq [u, v] \iff nx \oplus v \leq ny \oplus u \iff nx \oplus (ny)^- \leq u \oplus v^-$. Hence, $nx \leq nx \oplus (ny)^- \leq u \oplus v^-$ for any $n \in \mathbb{N}$. Since A is locally Archimedean, it follows that $x = 0$, and therefore $\mathcal{D}(A)$ is an Archimedean ℓ-group.

(ii)⇒(i) Consider $x, y \in A$ such that $nx \leq y$ for any $n \in \mathbb{N}$. It follows that $n[x, 0] \leq [y, 0]$ for any $n \in \mathbb{N}$. Since $\mathcal{D}(A)$ is Archimedean, it follows that $x = 0$, hence A is locally Archimedean. \hfill \Box

Proposition 2.6. If A is a perfect MV-algebra, $(x_n)_n \subseteq \text{Rad}(A)$ and $0 < v \in \text{Rad}(A)$ then the following are equivalent:

(i) $x_n \rightarrow_v x$ in A;

(ii) $[x_n, 0] \rightarrow_{[v, 0]} [x, 0]$ in $\mathcal{D}(A)$.

Proof. (i)⇒(ii) Assume that for each $p \in \mathbb{N}$ there is $n_0 \in \mathbb{N}$ such that $\text{pd}(x_n, x) \leq v$ for each $n \in \mathbb{N}, n \geq n_0$. Then, for each $p \in \mathbb{N}$ and $n \in \mathbb{N}, n \geq n_0$.

\[\text{pd}(x_n, x) \leq v \]

Convergence with a fixed regulator
Proof. Because \((x_n)_n \) is a Cauchy sequence in \(A \) and 0 < \(v \in A \). The sequence \((x_n)_n \) in \(A \) is said to be \(v \)-fundamental or \(v \)-Cauchy if for each \(p \in \mathbb{N} \) there is \(n_0 \in \mathbb{N} \) such that \(p d(x_n, x_m) \leq v \) for each \(m, n \in \mathbb{N} \), \(m \geq n \geq n_0 \).

Definition 2.7 ([6]). Let \(A \) be an arbitrary MV-algebra and 0 < \(v \in A \). The sequence \((x_n)_n \) in \(A \) is said to be \(v \)-fundamental or \(v \)-Cauchy if for each \(p \in \mathbb{N} \) there is \(n_0 \in \mathbb{N} \) such that \(pd(x_n, x_m) \leq v \) for each \(m, n \in \mathbb{N} \), \(m \geq n \geq n_0 \).

Proposition 2.8 ([6]). Let \(A \) be an arbitrary MV-algebra and 0 < \(v \in A \). If the sequence \((x_n)_n \) in \(A \) is \(v \)-convergent in \(A \), then \((x_n)_n \) is \(v \)-Cauchy in \(A \).

Proposition 2.9 ([6]). Let \(A \) be an arbitrary MV-algebra and 0 < \(v \in A \). If the sequence \((x_n)_n \) is \(v \)-Cauchy in \(A \), then the sequences \(x_n \oplus y_n \), \(x_n \odot y_n \), \(x_n \lor y_n \), \(x_n \land y_n \), \(x_n \) are \(v \)-Cauchy in \(A \).

Corollary 2.10. Let \(A \) be a perfect MV-algebra, \((x_n)_n \subseteq \text{Rad}(A) \) and 0 < \(v \in \text{Rad}(A) \). If \(([x_n, y_n])_n \) is a \([v, 0]\)-Cauchy sequence in \(D(A) \), then \(([x_n, y_n])_n \) and \(([x_n, y_n])_n \) are also \([v, 0]\)-Cauchy sequences in \(D(A) \).

Proposition 2.11. Let \((x_n)_n \) be a \(v \)-Cauchy sequence in the perfect MV-algebra \(A \) with 0 < \(v \in \text{Rad}(A) \). Then there is \(n_0 \in \mathbb{N} \) such that \(\{x_n \mid n \geq n_0\} \subseteq \text{Rad}(A) \) or \(\{x_n \mid n \geq n_0\} \subseteq (\text{Rad}(A))^\perp \).

Proof. Because \((x_n)_n \) is a \(v \)-Cauchy sequence, for each \(p \in \mathbb{N} \) there is \(n_0 \in \mathbb{N} \) such that \(p d(x_n, x_{n+k}) \leq v \) for each \(n, k \in \mathbb{N}, n \geq n_0 \). Thus \(d(x_n, x_{n+k}) \in \text{Rad}(A) \). Assume there are \(n \in \mathbb{N} \) and \(k \in \mathbb{N} \) such that \(x_n \in (\text{Rad}(A))^\perp \) and \(x_{n+k} \in \text{Rad}(A) \), so \(x_{n+k} \leq x_n \). It follows that \(x_n = x_{n+k} \oplus d(x_n, x_{n+k}) \), with \(x_{n+k}, d(x_n, x_{n+k}) \in \text{Rad}(A) \). It follows that \(x_n \in \text{Rad}(A) \), which is a contradiction. Similarly, if \(x_n \in \text{Rad}(A) \) and \(x_{n+k} \in (\text{Rad}(A))^\perp \), then \(x_{n+k} \leq x_n \) and \(x_n = x_{n+k} \oplus d(x_n, x_{n+k}) \), with \(x_n, d(x_n, x_{n+k}) \in \text{Rad}(A) \). It follows that \(x_n \in \text{Rad}(A) \), which is again a contradiction.

Generally, a \(v \)-Cauchy sequence in \(A \) is not convergent (see [6]). If every \(v \)-Cauchy sequence in \(A \) is convergent, then \(A \) is said to be \(v \)-Cauchy complete.

Similar to the proof of Proposition 2.6 we can prove the following result.

Proposition 2.12. If \(A \) is perfect MV-algebra, \((x_n)_n \subseteq \text{Rad}(A) \) and 0 < \(v \in \text{Rad}(A) \), then the following are equivalent:

(i) \((x_n)_n \) is a \(v \)-Cauchy sequence in \(A \);
(ii) \(([x_n, 0])_n \) is a \([v, 0]\)-Cauchy sequence in \(D(A) \).

Theorem 2.13. If \(A \) is a perfect MV-algebra and 0 < \(v \in \text{Rad}(A) \), then the following are equivalent:
Proof. (i) Suppose that \(([x_n, y_n])_n \) is a \([v, 0]\)-Cauchy sequence in \(\mathcal{D}(A) \). It follows that \(([x_n, y_n]^+)_n \) and \(([x_n, y_n]^−)_n \) are also \([v, 0]\)-Cauchy sequences. By Proposition 1.1 and Proposition 2.12, \(x_n ⊕ y_n^− \) and \(x_n^− ⊕ y_n \) are \(v \)-Cauchy sequences in \(A \). Since \(A \) is \(v \)-Cauchy complete, it follows that \(x_n \circ y_n^− \to_v z_1 \) and \(x_n^− \circ y_n \to_v z_2 \), with \(z_1, z_2 \in A \). By Proposition 2.3 we have \(z_1, z_2 \in \text{Rad}(A) \). By Proposition 1.1 and Proposition 2.6 we get \([x_n, y_n]_1 \to_v [v, 0] [z_1, 0] \) and \([x_n, y_n]_2 \to_v [v, 0] [z_2, 0] \). Since \([z_1, z_2] = [z_1, 0] − [z_2, 0] \), we get \([x_n, y_n] \to_v [v, 0] [z_1, z_2] \). Thus \(\mathcal{D}(A) \) is a \([v, 0]\)-Cauchy complete group.

(ii)⇒(i) Consider the \(v \)-Cauchy sequence \((x_n)_n \) in \(A \). Since \((x_n)_n \subseteq \text{Rad}(A) \) and \(0 < v \in \text{Rad}(A) \), the sequence \(([x_n, 0])_n \) is \([v, 0]\)-Cauchy in \(\mathcal{D}(A) \). Therefore there is \(x \in \text{Rad}(A) \) such that \([x_n, 0] \to_v [v, 0] [x, 0] \). From Proposition 2.12 it follows that \(x_n \to_v x \) in \(A \), so \(A \) is \(v \)-Cauchy complete.

Definition 2.14. Let \(A \) be a locally Archimedean MV-algebra and \(0 < v \in \text{Rad}(A) \). A locally Archimedean MV-algebra \(B \) is called a \(v \)-Cauchy completion of \(A \) if the following are satisfied:

1. \(A \) is a subalgebra of \(B \);
2. \(B \) is \(v \)-Cauchy complete;
3. Every element of \(\text{Rad}(B) \) is a \(v \)-limit of some sequence in \(\text{Rad}(A) \).

Theorem 2.15. Let \(A, B \) be two locally Archimedean MV-algebras, \(A \subseteq B \) and \(0 < v \in \text{Rad}(A) \). The following are equivalent:

(i) \(B \) is a \(v \)-Cauchy completion of \(A \);
(ii) \(\mathcal{D}(B) \) is a \([v, 0]\)-Cauchy completion of \(\mathcal{D}(A) \).

Proof. (i)⇒(ii) We prove the conditions (1)-(3) from Definition 1.2:

1. \(A \subseteq B \Rightarrow \mathcal{D}(A) \subseteq \mathcal{D}(B) \);
2. follows by Theorem 2.13;
3. Take \([x, y] \in \mathcal{D}(B) \). Then there are two sequences \((x_n)_n, (y_n)_n \subseteq \text{Rad}(A) \) such that \(x_n \to_v x \) and \(y_n \to_v y \). Thus, \([x_n, y_n] \to_v [v, 0] [x, y] \), hence \(\mathcal{D}(B) \) is a \([v, 0]\)-Cauchy completion of \(\mathcal{D}(A) \).

(ii)⇒(i) We show that conditions (1)-(3) from Definition 2.14 hold:

1. holds by hypothesis and (2) holds by Theorem 2.13;
2. Take \(x \in \text{Rad}(B) \). There is a sequence \(([x_n, 0])_n \) in \(\mathcal{D}(A) \) such that \([x_n, 0] \to_v [v, 0] [x, 0] \). Thus \(x_n \to_v x \) and therefore \(B \) is a \(v \)-Cauchy completion of \(A \).

Theorem 2.16. Any locally Archimedean MV-algebra has a unique \(v \)-Cauchy completion.
Proof. Let A be a locally Archimedean MV-algebra. By Proposition 2.5, $D(A)$ is an Archimedean ℓ-group. By Theorems 3.16 and 3.17 from [4], there is a unique v-Cauchy completion G of the abelian ℓ-group $D(A)$. But $G = D(B)$ for some $B = \Delta(G)$, so $D(B)$ is the unique v-Cauchy completion of $D(A)$. By Theorem 2.15 it follows that B is the unique v-Cauchy completion of $D(A)$.

\[\Box\]

3. The connection with interval MV-algebras

L.P. Belluce and A. Di Nola [3] established an isomorphism between an arbitrary MV-algebra and some subalgebra of a perfect MV-algebra, so it is interesting to investigate how some results in perfect MV-algebras can be transferred to an arbitrary MV-algebra.

Consider an arbitrary MV-algebra $(A, \oplus, \odot, -, 0, 1)$, $a \in A$ and the set $A_a = \{x \in A \mid 0 \leq x \leq a\}$. On A_a we define the operations

\[
x \odot_a y = a \land (x \oplus y)
\]

\[
x^{-a} = a \lor x^-
\]

\[
x \odot_a y = (x^{-a} \oplus_a y^-)^-
\]

The structure $(A_a, \oplus_a, \odot_a, -, 0, 1)$ becomes an MV-algebra called an interval MV-algebra. In [3] it is proven that for any MV-algebra B there is a perfect MV-algebra A and an element $a \in A$ such that a is a generator for $Rad(A)$ and B is isomorphic to A_a.

We also define the join and the meet on A_a as follows:

\[
x \lor_a y = (x \odot_a y^-) \oplus_a y
\]

\[
x \land_a y = (x \oplus_a y^-) \odot_a y
\]

In this section we will investigate the connections between the v-convergence on A and v-convergence on A_a.

Proposition 3.1. [11] If A is an arbitrary MV-algebra, then the following hold in A_a:

1. $x \odot_a y = a \odot (a^- \oplus x) \odot (a^- \oplus y)$;
2. $x \lor_a y = x \lor y$; $x \land_a y = x \land y$;
3. $x \leq_a y$ iff $x \leq y$;
4. $d_a(x, y) = d(x, y)$ where d is the distance on A and d_a is the distance on A_a.

Corollary 3.2. In the MV-algebra A the following hold:

1. $Rad(A_a) \subseteq Rad(A)$;
2. If A is locally Archimedean, then A_a is locally Archimedean.
Denote by \(\rightarrow_v^{\oplus} \) the \(v \)-convergence in \(A_a \). Applying the fact that \(d_a(x, y) = d(x, y) \), it follows that the inequalities \(pd(x, y) \leq v \) and \(pd_a(x, y) \leq v \) are equivalent.

Corollary 3.3. If \((x_n)_n \subseteq A_a\) and \(x, y \in A_a\) the following are equivalent:

(i) \(x_n \rightarrow_v x \);
(ii) \(x \rightarrow_v^{\oplus} x \).

Corollary 3.4. If \((x_n)_n \subseteq A\) and \(v \in A_a\) the following are equivalent:

(i) \((x_n)_n\) is a \(v \)-Cauchy sequence in \(A \);
(ii) \((x_n)_n\) is a \(v \)-Cauchy sequence in \(A_a \).

Corollary 3.5. If the locally Archimedean MV-algebra \(A \) is \(v \)-Cauchy complete, then \(A_a \) is \(v \)-Cauchy complete.

Theorem 3.6. Let \(A \) be a locally Archimedean MV-algebra, \(a \in A \) and \(v \in \text{Rad}(A) \). If \(B \) is the \(v \)-Cauchy completion of \(A \), then \(B_a \) is the \(v \)-Cauchy completion of \(A_a \).

Proof. We check the conditions (1)-(3) from Definition 2.14:

1. \(A \subseteq B \) implies \(A_a \subseteq B_a \);
2. Since \(B \) is \(v \)-Cauchy complete, by Corollary 3.5 it follows that \(B_a \) is \(v \)-Cauchy complete;
3. Let \(x \in B_a \). Since \(x \in B \) and \(B \) is the \(v \)-Cauchy completion of \(A \), there is a sequence \((x_n)_n \subseteq \text{Rad}(A)\) such that \(x_n \rightarrow_v x \). Consider \(x'_n = x_n \land a \) for every \(n \in \mathbb{N}, n \geq 1 \). We prove that \((x'_n)_n \subseteq \text{Rad}(A_a)\). Indeed, since \((x_n)_n \subseteq \text{Rad}(A) = \text{Infinit}(A) \cup \{0\}\), we have \(nx_n \leq x_n' \) for any \(n \in \mathbb{N} \). Thus \(nx'_n = n(x_n \land a) \leq nx_n \leq x_n \leq (x_n \land a)^{\rightarrow} \) for any \(n \in \mathbb{N} \), so \((x'_n)_n \subseteq \text{Rad}(A_a)\).

Finally, we prove that \(x'_n \rightarrow_v x \). As \(x \leq a \) we have \(a^{\rightarrow} \land x = 0 \) and then

\[
d(x'_n, x) = d(x_n \land a, x) = (x_n \land a)^{\rightarrow} \land x \lor (x_n \land a) \land x^{\rightarrow} =
\]

\[
= (x_n^{\rightarrow} \lor a^{\rightarrow}) \land x \lor (x_n \land a) \land x^{\rightarrow} =
\]

\[
= (x_n^{\rightarrow} \lor x \lor a^{\rightarrow} \lor x) \lor (x_n \land a \land a \land x^{\rightarrow} =
\]

\[
= (x_n^{\rightarrow} \lor x \lor x_n \land x^{\rightarrow} \lor (x_n^{\rightarrow} \lor x \lor a \land x^{\rightarrow} =
\]

\[
= d(x_n, x) \land (x_n^{\rightarrow} \lor x \lor a \land x^{\rightarrow}.
\]

Since \(x_n^{\rightarrow} \land x \leq x \leq a \) and \(a \land x^{\rightarrow} \leq a \), we get \(d(x'_n, x) \leq d(x_n, x) \land a \). But \(x_n \rightarrow_v x \) which means that for each \(p \in \mathbb{N} \) there is \(n_0 \in \mathbb{N} \) such that \(pd(x_n, x) \leq v \) for each \(n \in \mathbb{N}, n \geq n_0 \). Thus, \(pd(x'_n, x) \leq v \land a \leq v \) for each \(n \in \mathbb{N}, n \geq n_0 \), so \(x'_n \rightarrow_v x \). We conclude that \(B_a \) is the \(v \)-Cauchy completion of \(A_a \). \(\square \)
Acknowledgment
The author wishes to thank her Ph.D adviser, Professor George Georgescu for his useful remarks on the subject.

References

DEPARTMENT OF MATHEMATICS, POLYTECHNICAL UNIVERSITY OF BUCHAREST
Splaiul Independenţei 313
BUCHAREST, ROMANIA
E-mail: lavinia.ciungu@math.pub.ro

Received July 27, 2006; revised version June 28, 2007.