M. K. Aouf

NEIGHBOURHOODS OF CERTAIN p-VALENTLY ANALYTIC FUNCTIONS DEFINED BY USING SALAGEAN OPERATOR

Abstract. By making use of the familiar concept of neighbourhood of analytic and p-valent functions, the author prove coefficient bounds and distortion inequalities and associated inclusion relations for the \((j, \theta)\)-neighbourhoods of a family of p-valent functions with negative coefficients and defined by using Salagean operator which is defined by means of a certain non-homogenous Cauchy–Euler differential equation.

1. Introduction

Let \(T(j, p)\) denote the class of functions of the form :

\[
f(z) = z^p - \sum_{k=j+p}^{\infty} a_k z^k \quad (a_k \geq 0; \ p, j \in N = \{1, 2, \ldots \}),
\]

which are analytic and p-valent in the open unit disc \(U = \{z : |z| < 1\}\).

A function \(f(z) \in T(j, p)\), is said to be p-valently starlike of order \(\alpha\) if it satisfies the inequality :

\[
\text{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha \quad (z \in U; \ 0 \leq \alpha < p; \ p \in N).
\]

We denote by \(T^*_j(p, \alpha)\) the class of all p-valently starlike functions of order \(\alpha\). Also a function \(f(z) \in T(j, p)\) is said to be p-valently convex of order \(\alpha\) if it satisfies the inequality :

\[
\text{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \alpha \quad (z \in U; \ 0 \leq \alpha < p; \ p \in N).
\]

Key words and phrases: p-valently analytic function, Salagean operator, non-homogenous differential equation, neighbourhood.

2000 Mathematics Subject Classification: 30C45.
We denote by $C_j(p, \alpha)$ the class of all p-valently convex functions of order α. We note that (see for example Duren [10])

$$f(z) \in C_j(p, \alpha) \iff \frac{zf'(z)}{p} \in T_j^*(p, \alpha) \quad (0 \leq \alpha < p; \ p \in \mathbb{N}).$$

The classes $T_j^*(p, \alpha)$ and $C_j(p, \alpha)$ are studied by Owa [15].

For a function $f(z)$ in $T(j, p)$, we have

$$D_0^f(z) = f(z),$$
$$D_1^f(z) = Df(z) = \frac{z}{p} f'(z) = z^p - \sum_{k=j+p}^{\infty} \left(\frac{k}{p} \right) a_k z^k,$$
$$D_2^f(z) = D(D_1^f(z)) = \frac{z}{p} \left(\frac{z}{p} f'(z) \right)' = z^p - \sum_{k=j+p}^{\infty} \left(\frac{k}{p} \right)^2 a_k z^k,$$
and

$$D_n^f(z) = D(D_{n-1}^f(z)) \quad (n \in \mathbb{N}).$$

It is easy to see that

$$D_n^f(z) = z^p - \sum_{k=j+p}^{\infty} \left(\frac{k}{p} \right)^n a_k z^k \quad (n \in N_0 = N \cup \{0\}).$$

For $j = p = 1$, the differential operator D^n was introduced by Salagean [19].

Now, making use of the differential operator $D_n^f(z)$ given by (1.5), we introduce a new class $S_n(j, p, \lambda, b, \beta)$ of the p-valently analytic functions $f(z) \in T(j, p)$ satisfying the following inequality:

$$\left| \frac{1}{b} \left(\frac{zF_{n,p,\lambda}(z)}{F_{n,p,\lambda}(z)} - p \right) \right| < \beta$$

(1.6) $(z \in U; \ p, j \in \mathbb{N}; \ n \in N_0; 0 \leq \lambda \leq 1; \ b \in C\backslash\{0\}; \ 0 < \beta \leq 1)$,

where

$$F_{n,p,\lambda}(z) = (1 - \lambda)D_p^n f(z) + \lambda z(D_p^n f(z))'.$$

We note that:

(i) $S_0(j, p, \lambda, p - \alpha, 1) = T_j(p, \alpha, \lambda)$ $(0 \leq \alpha < p)$ (Altintas et al. [3] and [7]);

(ii) $S_0(j, 1, \lambda, 1 - \alpha, 1) = P(j, \lambda, \alpha)$ $(j \in \mathbb{N}; 0 \leq \alpha < 1; 0 \leq \lambda \leq 1)$ (Altintas [1]);

(iii) $S_n(j, 1, 0, 1 - \alpha, 1) = P(j, \alpha, n)$ $(j \in \mathbb{N}; n \in N_0; 0 \leq \alpha < 1)$ (Aouf and Srivastava [9]);

(iv) $S_0(j, p, 0, p - \alpha, 1) = T_j^*(p, \alpha)$ $(p, j \in \mathbb{N}; 0 \leq \alpha < p)$ (Owa [15] and Yamakawa [22]);
Certain \(p \)-valently analytic functions

\[S_0(j, p, 1, p - \alpha, 1) = C_j(p, \alpha) \ (p, j \in N; 0 \leq \alpha < p) \ \text{(Owa [15] and Yamakawa [22])}. \]

Now, following the earlier investigation by Goodman [11], Ruscheweyh [18], and others including Altintas and Owa [5], Altintas et al. ([6] and [7]), Murgusundaramoorthy and Srivastava [12], Raina and Srivastava [17], Aouf [8], Prajapat et al. [16] and Srivastava and Orhan [20] (see also [13], [14] and [21]), we define the \((j, \delta)\)-neighbourhood of a function \(f(z) \in T_p(n) \) by (see, for example, [7, p. 1668])

\[
N_{j, \theta}(f; g) = \left\{ g : g \in T(j, p), \ g(z) = z^p - \sum_{k=j+p}^{\infty} b_k z^k \right. \\
\left. \quad \text{and} \quad \sum_{k=j+p}^{\infty} k|a_k - b_k| \leq \theta \right\}.
\]

In particular, if

\[
h(z) = z^p \quad (p \in N),
\]

we immediately have

\[
N_{j, \theta}(h; g) = \left\{ g : g \in T(j, p), \ g(z) = z^p - \sum_{k=j+1}^{\infty} b_k z^k \right. \\
\left. \quad \text{and} \quad \sum_{k=j+p}^{\infty} k|b_k| \leq \theta \right\}.
\]

The main object of this paper is to derive several coefficient bounds, distortion inequalities and associated inclusion relations for the \((j, \theta)\)-neighbourhood of function in the class \(H_n(j, p, \lambda, b, \beta; \delta) \) which consists of functions \(f(z) \in T(j, p) \) satisfying the following non-homogenous Cauchy-Euler differential equation :

\[
\frac{d^2 w}{dz^2} + 2(\delta + 1) \frac{dw}{dz} + \delta(\delta + 1)w = (p + \delta)(p + \delta + 1)g(z) \\
(w = f(z) \in T(j, p); g \in S_n(j, p, \lambda, b, \beta); \delta > -p \ (\delta \in R)).
\]

2. Coefficient bounds and distortion inequalities

In our present investigation of the class \(S_n(j, p, \lambda, b, \beta) \) we shall require Lemmas 1 and 2 below.

Lemma 1. Let the function \(f(z) \in T(j, p) \) be defined by (1.1). Then \(f(z) \) is in the class \(S_n(j, p, \lambda, b, \beta) \) if and only if

\[
\sum_{k=j+p}^{\infty} \left(\frac{k}{p} \right)^n (k + \beta|b| - p)[1 + \lambda(k - 1)]a_k \leq \beta|b|[1 + \lambda(p - 1)].
\]
Proof. Let a function \(f(z) \) of the form (1.1) belong to the class \(S_n(j, p, \lambda, b, \beta) \). Then, in view of (1.5) and (1.6), we obtain the following inequality:

\[
(2.2) \quad \text{Re} \left\{ \frac{zF'_{n,p,\lambda}(z)}{F_{n,p,\lambda}(z)} - p \right\} > -\beta|b| \quad (z \in U),
\]

or, equivalently,

\[
(2.3) \quad \text{Re} \left\{ \frac{-\sum_{k=j+p}^{\infty} \left(\frac{k}{p} \right)^n (k-p)[1 + \lambda(k-1)]a_k z^{k-p}}{[1 + \lambda(p-1)] - \sum_{k=j+p}^{\infty} \left(\frac{k}{p} \right)^n [1 + \lambda(k-1)]a_k z^{k-p}} \right\} > -\beta|b|,
\]

\((z \in U) \).

Setting \(z = r \) \((0 \leq r < 1)\) in (2.3), we observe that the expression in the denominator of the left-hand side of (2.3) is positive for \(r = 0 \) and also for \(0 < r < 1 \). Thus, by letting \(r \to 1^- \) through real values, (2.3) leads us to the desired assertion of Lemma 1.

Conversely, by applying the hypothesis (2.1) and letting \(|z| = 1 \), we find from (1.6) that

\[
(2.4) \quad \left| \frac{zF'_{n,p,\lambda}(z)}{F_{n,p,\lambda}(z)} - p \right| = \left| \frac{\sum_{k=j+p}^{\infty} \left(\frac{k}{p} \right)^n (k-p)[1 + \lambda(k-1)]a_k z^{k-p}}{[1 + \lambda(p-1)] - \sum_{k=j+p}^{\infty} \left(\frac{k}{p} \right)^n [1 + \lambda(k-1)]a_k z^{k-p}} \right| \leq \frac{\beta|b| \{[1 + \lambda(p-1)] - \sum_{k=j+p}^{\infty} \left(\frac{k}{p} \right)^n [1 + \lambda(k-1)]a_k \}}{[1 + \lambda(p-1)] - \sum_{k=j+p}^{\infty} \left(\frac{k}{p} \right)^n [1 + \lambda(k-1)]a_k} = \beta|b|.
\]

Hence, by the maximum modulus theorem, we have \(f(z) \in S_n(j, p, \lambda, b, \beta) \), which evidently completes the proof of Lemma 1.

Lemma 2. Let the function \(f(z) \) given by (1.1) be in the class \(S_n(j, p, \lambda, b, \beta) \). Then

\[
(2.4) \quad \sum_{k=j+p}^{\infty} a_k \leq \frac{\beta|b|[1 + \lambda(p-1)]}{(j+p)^n (j + \beta|b|)[1 + \lambda(j + p - 1)]}
\]

and

\[
(2.5) \quad \sum_{k=j+p}^{\infty} k a_k \leq \frac{(j + p)\beta|b|[1 + \lambda(p-1)]}{(j+p)^n (j + \beta|b|)[1 + \lambda(j + p - 1)]} \quad (p > |b|).
\]
Proof. By using Lemma 1, we find from (2.1) that
\[
\left(\frac{j + p}{p}\right)^n (j + \beta |b|)[1 + \lambda(j + p - 1)] \sum_{k=j+p}^\infty a_k
\leq \sum_{k=j+p}^\infty \left(\frac{k}{p}\right)^n [k + \beta |b| - p][1 + \lambda(k - 1)]a_k
\leq \beta |b|[1 + \lambda(p - 1)],
\]
which immediately yields the first assertion (2.4).

For the proof of the second assertion, by appealing to (2.1), we have
\[
\left(\frac{j + p}{p}\right)^n [1 + \lambda(j + p - 1)] \sum_{k=j+p}^\infty ka_k
\leq \beta |b|[1 + \lambda(p - 1)] + \left(\frac{j + p}{p}\right)^n (p - \beta |b|)[1 + \lambda(j + p - 1)] \sum_{k=j+p}^\infty a_k
\leq \beta |b|[1 + \lambda(p - 1)] + (p - \beta |b|)\frac{\beta |b|[1 + \lambda(p - 1)]}{(j + \beta |b|)}
= \frac{(j + p)\beta |b|[1 + \lambda(p - 1)]}{(j + \beta |b|)}.
\]
Hence
\[
\sum_{k=j+p}^\infty ka_k \leq \frac{(j + p)\beta |b|[1 + \lambda(p - 1)]}{(j + \beta |b|)[1 + \lambda(j + p - 1)]} \quad (p > |b|),
\]
which implies the second assertion (2.5). □

Our main distortion inequalities for functions in the class $H_n(j, p, \lambda, b, \beta, \delta)$ are given by Theorem 1 below.

Theorem 1. Let a function $f(z) \in T(j, p)$ be in the class $H_n(j, p, \lambda, b, \beta; \delta)$. then for $z \in U$ we have
\[
|f(z)| \leq |z|^p + \frac{\beta |b|[1 + \lambda(p - 1)](p + \delta)(p + \delta + 1)}{(j + \beta |b|)[1 + \lambda(j + p - 1)](j + p + \delta)}|z|^{j+p},
\]
\[
|f(z)| \geq |z|^p - \frac{\beta |b|[1 + \lambda(p - 1)](p + \delta)(p + \delta + 1)}{(j + \beta |b|)[1 + \lambda(j + p - 1)](j + p + \delta)}|z|^{j+p},
\]
\[
|f^{(m)}(z)| \leq \begin{cases}
\frac{p!}{(p-m)!} + \\
\frac{\beta |b|[1 + \lambda(p - 1)](p + \delta)(p + \delta + 1)(j + p)!}{(j + \beta |b|)[1 + \lambda(j + p - 1)](j + p + \delta)(j + p - m)!}|z|^j
\end{cases} |z|^{p-m}
\]
and

\[|f^{(m)}(z)| \geq \left\{ \frac{p!}{(p-m)!} - \frac{\beta|b|[1 + \lambda(p-1)](p+\delta)(p+\delta+1)(j+p)!}{(\frac{j+p}{p})^n(j + \beta|b|)(1 + \lambda(j+p-1))(j+p+\delta)(j+p-m)!} |z|^j \right\} |z|^{p-m}. \]

Proof. Suppose that \(f(z) \in T(j, p) \) is given by (1.11). Also let the function \(g(z) \in S_n(j, p, \lambda, b, \beta) \), occurring in the non-homogenous Cauchy-Euler differential equation (1.11), be given as in the definitions (1.8) and (1.10) with

\[b_k \geq 0 \quad (k = j + p, j + p + 1, \ldots). \]

Then we easily see from (1.11) that

\[a_k = \frac{(p+\delta)(p+\delta+1)}{(k+\delta)(k+\delta+1)} b_k \quad (k = j + p, j + p + 1, \ldots), \]

so that

\[f(z) = z^p - \sum_{k=j+p}^{\infty} a_k z^k = z^p - \sum_{k=j+p}^{\infty} \frac{(p+\delta)(p+\delta+1)}{(k+\delta)(k+\delta+1)} b_k z^k, \]

\[|f(z)| \leq |z|^p + |z|^{j+p} \sum_{k=j+p}^{\infty} \frac{(p+\delta)(p+\delta+1)}{(k+\delta)(k+\delta+1)} b_k \]

and

\[|f(z)| \geq |z|^p - |z|^{j+p} \sum_{k=j+p}^{\infty} \frac{(p+\delta)(p+\delta+1)}{(k+\delta)(k+\delta+1)} b_k. \]

Since \(g(z) \in S_n(j, p, \lambda, b, \beta) \), the first assertion (2.4) of Lemma 2 yields the following inequality:

\[b_k \leq \frac{\beta|b|[1 + \lambda(p-1)]}{(\frac{j+p}{p})^n(j + \beta|b|)(1 + \lambda(j+p-1))} \frac{(p+\delta)(p+\delta+1)}{(k+\delta)(k+\delta+1)} \quad (k = j + p, j + p + 1, j + p + 2, \ldots). \]

This, in conjunction with (2.12) gives

\[|f(z)| \leq |z|^p + \frac{\beta|b|[1 + \lambda(p-1)](p+\delta)(p+\delta+1)}{(\frac{j+p}{p})^n(j + \beta|b|)(1 + \lambda(j+p-1))} |z|^{j+p} \times \sum_{k=j+p}^{\infty} \frac{1}{(k+\delta)(k+\delta+1)} \quad (z \in U). \]
Observe that also the following identity holds:

\[
(2.16) \quad \sum_{k=j+\delta}^{\infty} \frac{1}{(k+\delta)(k+\delta+1)} = \sum_{k=j+\delta}^{\infty} \left(\frac{1}{(k+\delta)} - \frac{1}{(k+\delta+1)} \right) = \frac{1}{j+p+\delta} \quad (\delta \in R\{-j-p, -j-p-1, -j-p-2, \ldots\}).
\]

Now the assertion (2.6) of Theorem 1 follows at once from (2.15) together with (2.16). The second assertion (2.7) of Theorem 1 can be proven by, similarly applying (2.13), (2.14) and (2.16).

Remark 1. (i) Putting \(n = 0, \beta = 1 \) and \(b = p - \alpha, 0 \leq \alpha < p \), in Theorem 1, we obtain the result obtained by Altintas et al. [7, Theorem 1];

(ii) Putting \(n = 0, \beta = 1 \) and \(b = p - \alpha, 0 \leq \alpha < p \), in Theorem 1, we obtain the result obtained by Altintas [2, Theorem 1 with \(q = 0 \)];

(iii) Putting \(n = 0 \), in Theorem 1, we obtain the result obtained by Altintas et al. [4, Theorem 1 with \(q = 0 \)].

3. Neighborhoods for the classes \(S_n(j, p, \lambda, b, \beta) \) and \(H_n(j, p, \lambda, b, \beta; \delta) \)

In this section, we determine inclusion relations for the classes \(S_n(j, p, \lambda, b, \beta) \) and \(H_n(j, p, \lambda, b, \beta; \delta) \) involving the \((j, \delta)\)-neighbourhoods defined by (1.8) and (1.10).

Theorem 2. If \(f(z) \in T(j, p) \) is in the class \(S_n(j, p, \lambda, b, \beta) \), then

\[
S_n(j, p, \lambda, b, \beta) \subset N_{j,\theta}(h; f),
\]

where \(h(z) \) is given by (1.9) and

\[
\theta = \frac{(j+p)\beta|b|[1+\lambda(p-1)]}{(j+\delta)^n(j+\beta|b|)[1+\lambda(j+p-1)]}. \tag{3.2}
\]

Proof. Assertion (3.1) follows easily from the definition of \(N_{j,\theta}(h; f) \), which is given by (1.10) with \(g(z) \) replaced by \(f(z) \), and the second assertion (2.5) of Lemma 2.

Theorem 3. Let the function \(f(z) \in T(j, p) \) be in the class \(H_n(j, p, \lambda, b, \beta; \delta) \). Then

\[
H_n(j, p, \lambda, b, \beta; \delta) \subset N_{j,\theta}(g; f),
\]

where \(g(z) \) is given by (1.11) and

\[
\theta = \frac{(j+p)\beta|b|[1+\lambda(p-1)][j+(p+\delta)(p+\delta+2)]}{(j+\delta)^n(j+\beta|b|)[1+\lambda(j+p-1)](j+p+\delta)} \quad (p > |b|). \tag{3.4}
\]
Proof. Suppose that \(f(z) \in H_n(j, p, \lambda, b, \beta; \delta) \). Then we obtain

\[
(3.6) \quad \sum_{k=j+p}^{\infty} k|b_k - a_k| \leq \sum_{k=j+p}^{\infty} k b_k + \sum_{k=j+p}^{\infty} \frac{(p+\delta)(p+\delta+1)}{(k+\delta)(k+\delta+1)} k b_k.
\]

Next, since \(g(z) \in S_n(j, p, \lambda, b, \beta) \), the second assertion (2.5) of Lemma 2 yields

\[
(3.7) \quad k b_k \leq \frac{(j+p)\beta|b|[1+\lambda(p-1)]}{(\frac{j+p}{p})^n(j+\beta|b|)[1+\lambda(j+p-1)]} \times \left(1 + \sum_{k=j+p}^{\infty} \frac{(p+\delta)(p+\delta+1)}{(k+\delta)(k+\delta+1)}\right),
\]

which, by virtue of the identity (2.16), immediately yields that

\[
(3.8) \quad \sum_{k=j+p}^{\infty} k|b_k - a_k| \leq \frac{(j+p)\beta|b|[1+\lambda(p-1)]}{(\frac{j+p}{p})^n(j+\beta|b|)[1+\lambda(j+p-1)]} \times \left(1 + \sum_{k=j+p}^{\infty} \frac{(p+\delta)(p+\delta+1)}{(k+\delta)(k+\delta+1)}\right),
\]

Finally, by making use of (2.5) as well as (3.7) on the right-hand side of (3.6), we find that

\[
(3.9) \quad \sum_{k=j+p}^{\infty} k|b_k - a_k| \leq \frac{(j+p)\beta|b|[1+\lambda(p-1)]}{(\frac{j+p}{p})^n(j+\beta|b|)[1+\lambda(j+p-1)]} \times \left(1 + \sum_{k=j+p}^{\infty} \frac{(p+\delta)(p+\delta+1)}{(k+\delta)(k+\delta+1)}\right) = \theta \quad (p > |b|).
\]

Thus, by definition (1.8) with \(g(z) \) interchanged by \(f(z) \), \(f(z) \in N_{j,\theta}(g; f) \). This evidently completes the proof of Theorem 3.

Remark 2. (i) Putting \(n = 0 \), \(\beta = 1 \) and \(b = p - \alpha, 0 \leq \alpha < p \), in Theorem 3, we obtain the result obtained by Altintas et al. [7, Theorem 3];

(ii) Putting \(n = 0 \), \(\beta = 1 \) and \(b = p - \alpha, 0 \leq \alpha < p \), in Theorem 3, we obtain the result obtained by Altintas [2, Theorem 3 with \(q = 0 \)];

(iii) Putting \(n = 0 \), in Theorem 3, we obtain the result obtained by Altintas et al. [4, Theorem 3 with \(q = 0 \)].

References

Certain p-valently analytic functions

FACULTY OF SCIENCE
MANSOURA UNIVERSITY
MANSOURA 35516, EGYPT
e-mail: mkaouf127@yahoo.com

Received October 10, 2007.