S.S. Shukla, Akhilesh Yadav

RADICAL TRANSVERSAL LIGHTLIKE SUBMANIFOLDS
OF INDEFINITE PARA-SASAKIAN MANIFOLDS

Abstract. In this paper, we study radical transversal lightlike submanifolds and screen slant radical transversal lightlike submanifolds of indefinite para-Sasakian manifolds giving some non-trivial examples of these submanifolds. Integrability conditions of distributions D and $RadTM$ on radical transversal lightlike submanifolds and screen slant radical transversal lightlike submanifolds of indefinite para-Sasakian manifolds, have been obtained. We also study totally contact umbilical radical transversal lightlike submanifolds of indefinite para-Sasakian manifolds.

1. Introduction

The theory of lightlike submanifolds of a semi-Riemannian manifold was introduced by Duggal and Bejancu [2]. A submanifold M of a semi-Riemannian manifold \mathcal{M} is said to be lightlike submanifold if the induced metric g on M is degenerate, i.e. there exists a non-zero $X \in \Gamma(TM)$ such that $g(X,Y) = 0$, $\forall Y \in \Gamma(TM)$. In 2003, Duggal and Jin [3] studied the geometry of totally umbilical lightlike submanifolds of a semi-Riemannian manifold. The notion of totally contact umbilical lightlike submanifolds of a semi-Riemannian manifold was considered by several geometers ([7], [8], [15]).

In 2006, Duggal and Sahin [5] studied invariant lightlike submanifolds of an indefinite Sasakian manifold. In 2009, Sahin [10] studied screen slant lightlike submanifolds. In 2010, Yildirim and Sahin [15] defined and studied radical transversal lightlike submanifolds of an indefinite Sasakian manifold. In [12], authors introduced the concept of an ϵ-para-Sasakian structure with some examples. The value of ϵ is not definite, it is either 1 or -1, according as the structure vector field V on \overline{M} is spacelike or timelike.

2010 Mathematics Subject Classification: 53C15, 53C40, 53C50.

Key words and phrases: semi-Riemannian manifold, degenerate metric, radical distribution, screen distribution, screen transversal vector bundle, lightlike transversal vector bundle, Gauss and Weingarten formulae.
In this paper, we study radical transversal lightlike submanifolds of an indefinite para-Sasakian manifold. The paper is arranged as follows. There are some basic results in section 2. In section 3, we study radical transversal lightlike submanifolds of an indefinite para-Sasakian manifold, giving some examples. Section 4 is devoted to the study of totally contact umbilical radical transversal lightlike submanifolds of an indefinite para-Sasakian manifold. In section 5, we study screen slant radical transversal lightlike submanifolds of an indefinite para-Sasakian manifold and obtain integrability conditions of distributions D and $RadTM$.

2. Preliminaries

A submanifold (M^m, g) immersed in a semi-Riemannian manifold $(\overline{M}^{m+n}, \overline{g})$ is called a lightlike submanifold [2] if the metric g induced from \overline{g} is degenerate and the radical distribution $RadTM$ is of rank r, where $1 \leq r \leq m$. Let $S(TM)$ be a screen distribution which is a semi-Riemannian complementary distribution of $RadTM$ in TM, that is

$$TM = RadTM \oplus_{orth} S(TM).$$

Now consider a screen transversal vector bundle $S(TM^{\perp})$, which is a semi-Riemannian complementary vector bundle of $RadTM$ in TM^{\perp}. Since for any local basis $\{\xi_i\}$ of $RadTM$, there exists a local null frame $\{N_i\}$ of sections with values in the orthogonal complement of $S(TM^{\perp})$ in $[S(TM)]^{\perp}$ such that $\overline{g}(\xi_i, N_j) = \delta_{ij}$ and $\overline{g}(N_i, N_j) = 0$, it follows that there exists a lightlike transversal vector bundle $ltr(TM)$ locally spanned by $\{N_i\}$. Let $tr(TM)$ be complementary (but not orthogonal) vector bundle to TM in $T\overline{M}|_M$. Then

$$tr(TM) = ltr(TM) \oplus_{orth} S(TM^{\perp}),$$

$$T\overline{M}|_M = TM \oplus tr(TM),$$

$$T\overline{M}|_M = S(TM) \oplus_{orth} [RadTM \oplus ltr(TM)] \oplus_{orth} S(TM).$$

Following are four cases of a lightlike submanifold $(M, g, S(TM), S(TM^{\perp}))$:

Case.1 r-lightlike if $r < \min (m, n)$,

Case.2 co-isotropic if $r = n < m$, $S(TM^{\perp}) = \{0\}$,

Case.3 isotropic if $r = m < n$, $S(TM) = \{0\}$,

Case.4 totally lightlike if $r = m = n$, $S(TM) = S(TM^{\perp}) = \{0\}$.

The Gauss and Weingarten formulae are given as

$$\nabla_X Y = \nabla_X Y + h(X, Y), \quad \forall X, Y \in \Gamma(TM),$$

$$\nabla_X V = -A_V X + \nabla^*_X V, \quad \forall V \in \Gamma(tr(TM)), $$
where \(\{\nabla_X Y, A_V X\} \) and \(\{h(X, Y), \nabla_X^V\} \) belong to \(\Gamma(TM) \) and \(\Gamma(tr(TM)) \) respectively. \(\nabla \) and \(\nabla^t \) are linear connections on \(M \) and on the vector bundle \(tr(TM) \) respectively. The second fundamental form \(h \) is a symmetric \(F(M) \)-bilinear form on \(\Gamma(TM) \) with values in \(\Gamma(tr(TM)) \) and the shape operator \(A_V \) is a linear endomorphism of \(\Gamma(TM) \).

From (2.5) and (2.6), we have

\[
(2.7) \quad \nabla_X Y = \nabla_X Y + h^l(X, Y) + h^s(X, Y), \quad \forall X, Y \in \Gamma(TM),
\]
\[
(2.8) \quad \nabla_X N = -A_N X + \nabla^l_X (N) + D^s(X, N), \quad \forall N \in \Gamma(ltr(TM)),
\]
\[
(2.9) \quad \nabla_X W = -A_W X + \nabla^s_X (W) + D^l(X, W), \quad \forall W \in \Gamma(S(TM^\perp)),
\]

where \(h^l(X, Y) = L(h(X, Y)), h^s(X, Y) = S(h(X, Y)), D^l(X, V) = L(\nabla^l_X V), D^s(X, V) = S(\nabla^s_X V) \). \(L \) and \(S \) are the projection morphisms of \(tr(TM) \) on \(ltr(TM) \) and \(S(TM^\perp) \) respectively. \(\nabla^l \) and \(\nabla^s \) are linear connections on \(ltr(TM) \) and \(S(TM^\perp) \) called the lightlike connection and screen transversal connection on \(M \) respectively.

Now for any vector field \(X \) tangent to \(M \), we put

\[
(2.10) \quad \phi X = PX + FX,
\]

where \(PX \) and \(FX \) are tangential and transversal parts of \(\phi X \) respectively.

By using (2.5), (2.7)–(2.9) and metric connection \(\nabla \), we obtain

\[
(2.11) \quad \bar{g}(h^s(X, Y), W) + \bar{g}(Y, D^l(X, W)) = g(A_W X, Y),
\]
\[
(2.12) \quad \bar{g}(D^s(X, N), W) = \bar{g}(N, A_W X).
\]

Denote the projection of \(TM \) on \(S(TM) \) by \(\bar{P} \). Then from the decomposition of the tangent bundle of a lightlike submanifold, we have

\[
(2.13) \quad \nabla_X \bar{P}Y = \nabla^s_X \bar{P}Y + h^*(X, \bar{P}Y), \quad \forall X, Y \in \Gamma(TM),
\]
\[
(2.14) \quad \nabla_X \xi = -A^{*}_\xi X + \nabla^t_X \xi, \quad \xi \in \Gamma(RadTM).
\]

By using above equations, we obtain

\[
(2.15) \quad \bar{g}(h^l(X, \bar{P}Y), \xi) = g(A^{*}_\xi X, \bar{P}Y),
\]
\[
(2.16) \quad \bar{g}(h^*(X, \bar{P}Y), N) = g(A_N X, \bar{P}Y),
\]
\[
(2.17) \quad \bar{g}(h^l(X, \xi), \xi) = 0, \quad A^{*}_\xi \xi = 0.
\]

It is important to note that in general \(\nabla \) is not a metric connection. Since \(\nabla \) is metric connection, by using (2.7), we get

\[
(2.18) \quad (\nabla_X g)(Y, Z) = \bar{g}(h^l(X, Y), Z) + \bar{g}(h^l(X, Z), Y).
\]

A semi-Riemannian manifold \((M, \bar{g})\) is called an \(\epsilon \)-almost paracontact metric manifold \([12]\) if there exists a \((1, 1)\) tensor field \(\phi \), a vector field \(V \) called
characteristic vector field and a 1-form η, satisfying
\begin{align}
\phi^2 X &= X - \eta(X)V, \quad \eta(V) = \epsilon, \quad \eta \circ \phi = 0, \quad \phi(V) = 0, \\
\overline{g}(\phi X, \phi Y) &= \overline{g}(X, Y) - \epsilon \eta(X)\eta(Y), \quad \forall X, Y \in \Gamma(T\overline{M}),
\end{align}
where $\epsilon = 1$ or -1.

It follows that
\begin{align}
\overline{g}(V, V) &= \epsilon, \\
\overline{g}(X, V) &= \eta(X), \\
\overline{g}(X, \phi Y) &= \overline{g}(\phi X, Y), \quad \forall X, Y \in \Gamma(T\overline{M}).
\end{align}

Then $(\phi, V, \eta, \overline{g})$ is called an ϵ-almost paracontact metric structure on \overline{M}.

An ϵ-almost paracontact metric structure $(\phi, V, \eta, \overline{g})$ is called an indefinite para-Sasakian structure [12] if
\begin{align}
(\nabla_X \phi)Y &= -\overline{g}(\phi X, \phi Y)V - \epsilon \eta(Y)\phi^2 X, \quad \forall X, Y \in \Gamma(T\overline{M}),
\end{align}
where ∇ is Levi-Civita connection with respect to \overline{g}.

A semi-Riemannian manifold endowed with an indefinite para-Sasakian structure is called an indefinite para-Sasakian manifold.

From (2.24), we get
\begin{align}
(\nabla_X V) &= \phi X, \quad \forall X \in \Gamma(T\overline{M}).
\end{align}

Let $(\overline{M}, \overline{g}, \phi, V, \eta)$ be an ϵ-almost paracontact metric manifold. If $\epsilon = 1$, then \overline{M} is said to be a spacelike almost paracontact metric manifold and if $\epsilon = -1$, then \overline{M} is called a timelike almost paracontact metric manifold. In this paper we consider indefinite para-Sasakian manifolds with spacelike characteristic vector field V.

3. Radical transversal lightlike submanifolds

Definition 3.1. Let $(M, g, S(TM), S(TM^\perp))$ be a lightlike submanifold, tangent to the structure vector field V, immersed in an indefinite para-Sasakian manifold $(\overline{M}, \overline{g})$. We say that M is radical transversal lightlike submanifold of \overline{M} if the following conditions are satisfied:
\begin{align}
\phi(Rad TM) &= ltr(TM), \\
\phi(D) &= D,
\end{align}
where $S(TM) = D \perp \{V\}$ and D is complementary non-degenerate distribution to $\{V\}$ in $S(TM)$.

Let $(\mathbb{R}^{2m+1}_q, \overline{g}, \phi, \eta, V)$ denote the manifold \mathbb{R}^{2m+1}_q with its usual para-Sasakian structure given by
\[\eta = \frac{1}{2} \left(dz - \sum_{i=1}^{m} y^i dx^i \right), \quad V = 2 \partial z, \]
\[\bar{g} = \eta \otimes \eta + \frac{1}{4} \left(- \sum_{i=1}^{q} dx^i \otimes dx^i + dy^i \otimes dy^i + \sum_{i=q+1}^{m} dx^i \otimes dx^i + dy^i \otimes dy^i \right), \]
\[\phi \left(\sum_{i=1}^{m} (X_i \partial x_i + Y_i \partial y_i) + Z \partial z \right) = \sum_{i=1}^{m} (Y_i \partial x_i + X_i \partial y_i) + \sum_{i=1}^{m} Y_i y^i \partial z, \]

where \((x^i, y^i, z)\) are the cartesian coordinates on \(\mathbb{R}^{2m+1}_p\).

Example 1. Let \((\mathbb{R}^7, \bar{g}, \phi, \eta, V)\) be an indefinite para-Sasakian manifold, where \(\bar{g}\) is of signature \((-+, +, -, +, +, +, +)\) with respect to the canonical basis
\{\partial x_1, \partial x_2, \partial x_3, \partial y_1, \partial y_2, \partial y_3, \partial z\}. Suppose \(M\) is a submanifold of \(\mathbb{R}^7\) given by
\[-x^1 = y^2 = u_1, \quad x^2 = y^1 = u_2, \quad x^3 = u_3, \quad y^3 = u_4 \quad \text{and} \quad z = u_5.\]

The local frame of \(TM\) is given by \(\{Z_1, Z_2, Z_3, Z_4, Z_5\}\), where
\[Z_1 = 2(\partial x_1 + \partial y_2 - y^1 \partial z), \quad Z_2 = 2(\partial x_2 + \partial y_1 + y^2 \partial z), \]
\[Z_3 = 2(\partial x_3 + y^3 \partial z), \quad Z_4 = 2\partial y_3 \quad \text{and} \quad Z_5 = V = 2\partial z. \]

Hence \(\text{Rad}TM = \text{span} \{Z_1, Z_2\}, \; S(TM) = \text{span} \{Z_3, Z_4, V\} \) and \(\text{ltr}(TM)\) is spanned by \(N_1 = \partial x_1 - \partial y_2 + y^1 \partial z, \; N_2 = \partial x_2 - \partial y_1 + y^2 \partial z.\)

It follows that \(\phi Z_1 = 2N_2, \; \phi Z_2 = 2N_1, \; \phi Z_3 = Z_4, \; \phi Z_4 = Z_3. \) Thus \(\phi \text{Rad}TM = \text{ltr}(TM)\) and \(\phi D = D. \) Hence \(M\) is a radical transversal 2-lightlike submanifold of \(\mathbb{R}^7\).

Example 2. Let \((\mathbb{R}^9, \bar{g}, \phi, \eta, V)\) be an indefinite para-Sasakian manifold, where \(\bar{g}\) is of signature \((-+, +, +, -, +, +, +, +, +)\) with respect to the canonical basis
\{\partial x_1, \partial x_2, \partial x_3, \partial x_4, \partial y_1, \partial y_2, \partial y_3, \partial y_4, \partial z\}. Suppose \(M\) is a submanifold of \(\mathbb{R}^9\) given by
\[x^1 = y^2 = u_1, \quad -x^2 = y^1 = u_2, \quad x^3 = y^4 = u_3, \quad x^4 = y^3 = u_4 \quad \text{and} \quad z = u_5. \]

The local frame of \(TM\) is given by \(\{Z_1, Z_2, Z_3, Z_4, Z_5\}\), where
\[Z_1 = 2(\partial x_1 + \partial y_2 + y^1 \partial z), \quad Z_2 = 2(-\partial x_2 + \partial y_1 - y^2 \partial z) \]
\[Z_3 = 2(\partial x_3 + \partial y_4 + y^3 \partial z), \quad Z_4 = 2(\partial x_4 + \partial y_3 + y^4 \partial z), \]
\[Z_5 = V = 2\partial z. \]

Hence \(\text{Rad}TM = \text{span} \{Z_1, Z_2\} \) and \(S(TM) = \text{span} \{Z_3, Z_4, V\}. \)

Now \(\text{ltr}(TM)\) is spanned by \(N_1 = \partial x_1 - \partial y_2 + y^1 \partial z, \; N_2 = \partial x_2 + \partial y_1 + y^2 \partial z \) and \(S(TM^\perp)\) is spanned by \(W_1 = 2(\partial x_3 - \partial y_4 + y^3 \partial z), W_2 = 2(-\partial x_4 + \partial y_3 - y^4 \partial z)\).
It follows that \(\phi Z_1 = 2N_2, \phi Z_2 = 2N_1, \phi Z_3 = Z_4, \phi Z_4 = Z_3, \phi W_1 = W_2 \) and \(\phi W_2 = W_1 \). Thus \(\phi \text{RadTM} = \text{ltr}(TM), \phi D = D \) and \(\phi S(TM^\perp) = S(TM^\perp) \). Hence \(M \) is a radical transversal 2-lightlike submanifold of \(\mathbb{R}^2 \).

Theorem 3.1. Let \(M \) be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \(\overline{M} \). Then the distribution \(S(TM^\perp) \) is invariant with respect to \(\phi \), i.e. \(\phi(S(TM^\perp)) \subseteq S(TM^\perp) \).

Proof. Let \(M \) be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \(\overline{M} \). Then from (2.23), we have

\[
(3.3) \quad g(\phi W, \xi) = g(W, \phi \xi) = 0, \quad \forall W \in \Gamma(S(TM^\perp)) \text{ and } \forall \xi \in \Gamma(\text{RadTM}),
\]

\[
(3.4) \quad g(\phi W, N) = g(W, \phi N) = 0, \quad \forall W \in \Gamma(S(TM^\perp)) \text{ and } \forall N \in \text{ltr}(TM).
\]

From (3.3) and (3.4), we get

\[
\phi(S(TM^\perp)) \cap \text{RadTM} = \{0\} \quad \text{and} \quad \phi(S(TM^\perp)) \cap \text{ltr}(TM) = \{0\}.
\]

From (3.2), we have

\[
(3.5) \quad g(\phi W, X) = g(W, \phi X) = 0, \quad \forall X \in (S(TM)),
\]

which shows that \(\phi(S(TM^\perp)) \cap S(TM) = \{0\} \). Therefore the distribution \(S(TM^\perp) \) is invariant with respect to \(\phi \). This completes the proof.

Let \(M \) be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \(\overline{M} \). Let \(P_1 \) and \(P_2 \) be the projection morphisms on \(\text{RadTM} \) and \(D \) respectively. Then, for \(X \in \Gamma(TM) \), we have

\[
(3.6) \quad X = P_1 X + P_2 X + \eta(X)V;
\]

where \(P_1 X \in \Gamma(\text{RadTM}) \) and \(P_2 X \in \Gamma(D) \).

Applying \(\phi \) to (3.6), we obtain

\[
(3.7) \quad \phi X = \phi P_1 X + \phi P_2 X,
\]

where \(\phi P_1 X \in \Gamma(\text{ltr}(TM)) \) and \(\phi P_2 X \in \Gamma(D) \).

From (2.24), we have

\[
(3.8) \quad \nabla_X \phi Y - \phi \nabla_X Y = -g(\phi X, \phi Y)V - \eta(Y)\phi^2 X.
\]

In view of (2.7), (2.8), (3.7) and (3.8), we obtain

\[
(3.9) \quad -g(\phi X, \phi Y)V - \eta(Y)\phi^2 X
= \nabla_X \phi P_2 Y + h^l(X, \phi P_2 Y) + h^s(X, \phi P_2 Y)
- A_{\phi P_2 Y} X + \nabla_Y (\phi P_1 Y) + D^s(X, \phi P_1 Y)
- \phi P_2 (\nabla_X Y) - \phi P_1 (\nabla_X Y) - \phi h^l(X, Y) - \phi h^s(X, Y).
\]
Now equating tangential, screen transversal and lightlike transversal components in both sides in equation (3.9) respectively, we obtain

\begin{align}
(3.10) & \quad g(\phi X, \phi Y)V + \eta(Y)\phi^2 X = \phi P_2(\nabla_X Y) + \phi h^l(X, Y) \\
& \quad \quad \quad \quad \quad + A_\phi p_1 Y X - \nabla_X \phi P_2 Y, \\
(3.11) & \quad h^l(X, \phi P_2 Y) + \nabla^l_X (\phi P_1 Y) + \phi P_1 (\nabla_X Y) = 0, \\
(3.12) & \quad h^s(X, \phi P_2 Y) + D^s(X, \phi P_1 Y) - \phi h^s(X, Y) = 0.
\end{align}

Lemma 3.2. Let M be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \overline{M}. Then we have

(i) $g(\nabla_X Y, V) = \overline{g}(Y, \phi X), \forall X, Y \in \Gamma(TM) - \{V\},$

(ii) $g([X, Y], V) = 0, \forall X, Y \in \Gamma(TM) - \{V\}.$

Proof. Let M be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \overline{M}. Then (2.7), we have

\begin{align}
(3.13) & \quad g(\nabla_X Y, V) = \overline{g}(\nabla_X Y, V), \quad \forall X, Y \in \Gamma(TM) - \{V\}.
\end{align}

Since ∇ is a metric connection, from (3.13) we get

\begin{align}
(3.14) & \quad g(\nabla_X Y, V) = \nabla_X g(Y, V) - \overline{g}(Y, \nabla_X V),
\end{align}

which implies

\begin{align}
(3.15) & \quad g(\nabla_X Y, V) = -\overline{g}(Y, \nabla_X V), \quad \forall X, Y \in \Gamma(TM) - \{V\}.
\end{align}

From (2.25) and (3.15), we obtain

\begin{align}
(3.16) & \quad g(\nabla_X Y, V) = -\overline{g}(Y, \phi X), \quad \forall X, Y \in \Gamma(TM) - \{V\}.
\end{align}

On interchanging X and Y in (3.16), we get

\begin{align}
(3.17) & \quad g(\nabla_Y X, V) = -\overline{g}(X, \phi Y), \quad \forall X, Y \in \Gamma(TM) - \{V\}.
\end{align}

From (2.23), (3.16) and (3.17), we have

$$g([X, Y], V) = 0, \forall X, Y \in \Gamma(TM) - \{V\}.$$ \hfill \blacksquare

Theorem 3.3. Let M be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \overline{M}. Then D is integrable if and only if $h^l(X, \phi Y) = h^l(Y, \phi X), \forall X, Y \in \Gamma(D)$.

Proof. Let M be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \overline{M}. On interchanging the role of X and Y in equation (3.11), we obtain

\begin{align}
(3.18) & \quad h^l(Y, \phi P_2 X) + \nabla^l_Y (\phi P_1 X) + \phi P_1 (\nabla_Y X) = 0, \quad \forall X, Y \in \Gamma(D).
\end{align}
Then from (3.11) and (3.18), we get
\begin{equation}
(3.19) \quad h^l(X, \phi Y) - h^l(Y, \phi X) = \phi P_1[X, Y], \quad \forall X, Y \in \Gamma(D).
\end{equation}

Since \(D \) is integrable if and only if \([X, Y] \in \Gamma(D), \forall X, Y \in \Gamma(D)\).

The proof follows from (3.19) and Lemma (3.2). \(\blacksquare \)

Theorem 3.4. Let \(M \) be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \(\overline{M} \). Then \(\text{Rad}TM \) is integrable if and only if \(A_{\phi X}Y = A_{\phi Y}X, \forall X, Y \in \Gamma(\text{Rad}TM) \).

Proof. Let \(M \) be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \(\overline{M} \). Then from (3.10), we have
\begin{equation}
(3.20) \quad A_{\phi Y}X + \phi P_2(\nabla_X Y) + \phi h^l(X, Y) = 0, \quad \forall X, Y \in \Gamma(\text{Rad}TM).
\end{equation}
Interchanging the role of \(X \) and \(Y \) in (3.20), we obtain
\begin{equation}
(3.21) \quad A_{\phi X}Y + \phi P_2(\nabla_Y X) + \phi h^l(Y, X) = 0, \quad \forall X, Y \in \Gamma(\text{Rad}TM).
\end{equation}

Now from (3.20) and (3.21), we get
\[\phi P_2(\nabla_X Y) - \phi P_2(\nabla_Y X) + \phi h^l(X, Y) - \phi h^l(Y, X) = A_{\phi X}Y - A_{\phi Y}X. \]
Since \(h^l \) is symmetric, from above equation, we obtain
\begin{equation}
(3.22) \quad \phi P_2[X, Y] = A_{\phi X}Y - A_{\phi Y}X, \quad \forall X, Y \in \Gamma(\text{Rad}TM).
\end{equation}

Since \(\text{Rad}(TM) \) is integrable if and only if \([X, Y] \in \Gamma(\text{Rad}TM), \forall X, Y \in \Gamma(\text{Rad}TM)\).

The proof follows from (3.22) and lemma (3.2). \(\blacksquare \)

Theorem 3.5. Let \(M \) be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \(\overline{M} \). Then \(\text{Rad}TM \oplus \{V\} \) defines a totally geodesic foliation on \(M \) if and only if \(\overline{g}(\phi Y, X)\eta(Z) = -\overline{g}(A_{\phi Y}X, \phi Z), \forall X, Y \in \Gamma(\text{Rad}TM) \oplus \{V\} \) and \(Z \in \Gamma(D) \).

Proof. Let \(M \) be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \(\overline{M} \). By definition of radical transversal lightlike submanifold, \(\text{Rad}TM \oplus \{V\} \) defines a totally geodesic foliation if and only if \(\overline{g}(\nabla_X Y, Z) = 0, \forall X, Y \in \Gamma(\text{Rad}TM) \oplus \{V\} \) and \(Z \in \Gamma(S(TM)) \).

Since \(\nabla \) is a metric connection, using (2.7), we have
\begin{equation}
(3.23) \quad \overline{g}(\nabla_X Y, Z) = X\overline{g}(Z, X) - \overline{g}(Y, \nabla_X Z) = -\overline{g}(Y, \nabla_X Z), \quad \forall Z \in \Gamma(D) \) and \(\forall X, Y \in \Gamma(\text{Rad}TM) \oplus \{V\} \).
\end{equation}

Using (2.7), (2.20), (2.24) and (3.23), we get
\begin{equation}
(3.24) \quad \overline{g}(\nabla_X Y, Z) = -\overline{g}(\phi Y, X)\eta(Z) - \overline{g}(\phi Y, \nabla_X \phi Z), \quad \forall Z \in \Gamma(D) \) and \(\forall X, Y \in \Gamma(\text{Rad}TM) \oplus \{V\} \).
\end{equation}
From (2.13), (2.16) and (3.24), we have

\[(3.25) \quad g(\nabla_X Y, Z) = -g(\phi Y, X)\eta(Z) - g(A_{\phi Y} X, \phi Z), \]
\[\forall Z \in \Gamma(D) \text{ and } \forall X, Y \in \Gamma(RadTM) \oplus \{V\}. \]

The proof follows from (3.25) and lemma (3.2). □

Theorem 3.6. Let \(M \) be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \(\overline{M} \). Then screen distribution defines a totally geodesic foliation if and only if \(A^*_{\phi N} X \) has no components in \(D \), \(\forall N \in \Gamma(ltr(TM)) \) and \(\forall X \in \Gamma(S(TM)). \)

Proof. Let \(M \) be a radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \(\overline{M} \). By definition of radical transversal lightlike submanifold, \(S(TM) \) defines a totally geodesic foliation if and only if \(g(\nabla_X Y, N) = 0, \forall X, Y \in \Gamma(S(TM)) \) and \(N \in \Gamma(ltr(TM)). \) From (2.7), we have

\[(3.26) \quad g(\nabla_X Y, N) = g(\nabla_X Y, N), \]
\[\forall X, Y \in \Gamma(S(TM)) \text{ and } N \in \Gamma(ltr(TM)). \]

From (2.20), (2.24) and (3.26), we get

\[(3.27) \quad g(\nabla_X Y, N) = g(\nabla_X \phi Y, \phi N), \]
\[\forall X, Y \in \Gamma(S(TM)) \text{ and } N \in \Gamma(ltr(TM)). \]

In view of equations (2.7), (2.15) and (3.27), we obtain

\[(3.28) \quad g(\nabla_X Y, N) = g(A^*_{\phi N} X, \phi Y), \]
\[\forall X, Y \in \Gamma(S(TM)) \text{ and } N \in \Gamma(ltr(TM)). \]

The proof follows from (3.28) and lemma (3.2). □

4. Totally contact umbilical radical transversal lightlike submanifolds

Definition 4.1. A lightlike submanifold \(M \), tangent to the structure vector field \(V \), of an indefinite para-Sasakian manifold \(\overline{M} \) is said to be totally contact umbilical radical transversal lightlike submanifold if the second fundamental form \(h \) of \(M \) satisfies:

\[(4.1) \quad h^l(X, Y) = [g(X, Y) - \eta(X)\eta(Y)]\alpha_L + \eta(X)h^l(Y, V) + \eta(Y)h^l(X, V), \]
\[\forall X, Y \in \Gamma(TM) \text{ and } \alpha_L \in \Gamma(ltr(TM)). \]

\[(4.2) \quad h^s(X, Y) = [g(X, Y) - \eta(X)\eta(Y)]\alpha_S + \eta(X)h^s(Y, V) + \eta(Y)h^s(X, V), \]
\[\forall X, Y \in \Gamma(TM) \text{ and } \alpha_S \in \Gamma(S(TM^\perp)). \]
Theorem 4.1. Let M be a totally contact umbilical radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \overline{M}. Then distribution D is integrable.

Proof. Let M be a totally contact umbilical radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \overline{M}. Then for any $X, Y \in \Gamma(D)$ and $N \in \Gamma(ltr(TM))$, we have

\begin{equation}
\mathcal{g}([X, Y], N) = \mathcal{g}(\nabla_X Y, N) - \mathcal{g}(\nabla_Y X, N).
\end{equation}

Now from (2.7), (2.20) and (4.3), we have

\begin{equation}
\mathcal{g}([X, Y], N) = \mathcal{g}(h^l(X, \phi Y), \phi N) - \mathcal{g}(h^l(Y, \phi X), \phi N).
\end{equation}

Replacing Y by ϕY in (4.1), we get

\begin{equation}
h^l(X, \phi Y) = [g(X, \phi Y)]\alpha_L + \eta(X)h^l(\phi Y, V), \quad \forall X, Y \in \Gamma(D).
\end{equation}

Similarly, we have

\begin{equation}
h^l(Y, \phi X) = [g(Y, \phi X)]\alpha_L, \quad \forall X, Y \in \Gamma(D).
\end{equation}

Now, from (4.4), (4.5) and (4.6), we get

\begin{equation}
\mathcal{g}([X, Y], N) = \mathcal{g}(g(X, \phi Y)\alpha_L, \phi N) - \mathcal{g}(g(Y, \phi X)\alpha_L, \phi N),
\end{equation}

which implies

\begin{equation}
\mathcal{g}([X, Y], N) = g(Y, \phi X)(\mathcal{g}(\alpha_L, \phi N) - \mathcal{g}(\alpha_L, \phi N)) = 0,
\end{equation}

\begin{equation}
\forall X, Y \in \Gamma(D) \text{ and } N \in \Gamma(ltr(TM)).
\end{equation}

The proof follows from (4.8) and lemma (3.2).

Theorem 4.2. Let M be a totally contact umbilical radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \overline{M}. Then $\alpha_L = 0$ if and only if $h^*(X, \phi Y) = 0$, $\forall X, Y \in \Gamma(D)$.

Proof. Let M be a totally contact umbilical radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \overline{M}. Then from (3.9), we have

\begin{equation}
-g(\phi X, \phi Y)V - \eta(Y)\phi^2 X = \nabla_X \phi Y + h^l(X, \phi Y) + h^s(X, \phi Y)
- \phi P_2(\nabla X Y) - \phi P_1(\nabla X Y) - \phi h^l(X, Y)
- \phi h^s(X, Y), \quad \forall X, Y \in \Gamma(D).
\end{equation}

Now, from (4.9), we get

\begin{equation}
\mathcal{g}(\nabla_X \phi Y, \phi Z) - \mathcal{g}(\phi h^l(X, Y), \phi Z) = 0,
\end{equation}

\begin{equation}
\forall X, Y \in \Gamma(D) \text{ and } \forall Z \in \Gamma(Rad(TM)).
\end{equation}
From (2.13), (2.20) and (4.10), we have

\[g(h^*(X, \phi Y), \phi Z) - g(h^l(X, Y), Z) = 0, \]
\[\forall X, Y \in \Gamma(D) \text{ and } \forall Z \in \Gamma(\text{Rad}(TM)). \]

Now using (4.1) in (4.11), we get

\[g(h^*(X, \phi Y), \phi Z) - g(g(X, Y) \alpha_L, Z) = 0, \]
\[\forall X, Y \in \Gamma(D) \text{ and } \forall Z \in \Gamma(\text{Rad}(TM)). \]

This completes the proof. \(\blacksquare \)

Theorem 4.3. Let \(M \) be a totally contact umbilical radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \(\overline{M} \). Then the induced connection \(\nabla \) on \(M \) is a metric connection if and only if \(A_{\phi Y}X = -\eta(X)Y \), for \(X \in \Gamma(TM) \) and \(Y \in \Gamma(\text{RadTM}) \).

Proof. Let \(M \) be a totally contact umbilical radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \(\overline{M} \). It is known that the induced connection is metric connection if and only if \(\nabla_X Y \in \Gamma(\text{RadTM}) \), for \(X \in \Gamma(TM) \) and \(Y \in \Gamma(\text{RadTM}) \).

From (3.9), we have

\[\phi P_2(\nabla_X Y) + \phi P_1(\nabla_X Y) + \phi h^l(X, Y) + \phi h^s(X, Y) = \nabla_X (\phi P_1 Y) - A_{\phi P_1 Y} X + D^s(X, \phi P_1 Y), \forall X \in \Gamma(TM) \text{ and } Y \in \Gamma(\text{RadTM}). \]

Now, using (4.1) and (4.2) in (4.13), we obtain

\[\phi P_2(\nabla_X Y) + \phi P_1(\nabla_X Y) + \eta(X)\phi h^l(Y, V) + \eta(X)\phi h^s(Y, V) = \nabla_X (\phi P_1 Y) - A_{\phi P_1 Y} X + D^s(X, \phi P_1 Y), \forall X \in \Gamma(TM) \text{ and } Y \in \Gamma(\text{RadTM}). \]

Taking tangential component of above equation, we get

\[\phi P_2(\nabla_X Y) + \eta(X)\phi h^l(Y, V) = -A_{\phi Y} X, \]
\[\forall X \in \Gamma(TM) \text{ and } Y \in \Gamma(\text{RadTM}). \]

Also from (2.7) and (2.25), we have

\[\phi Y = h^l(Y, V), \forall Y \in \Gamma(\text{RadTM}). \]

Now, from (4.15) and (4.16), we get

\[\phi P_2(\nabla_X Y) = -\eta(X) Y - A_{\phi Y} X, \]
\[\forall X \in \Gamma(TM) \text{ and } Y \in \Gamma(\text{RadTM}). \]

The proof follows from (4.17) and lemma (3.2). \(\blacksquare \)
5. Screen slant radical transversal lightlike submanifolds

At first, we state the following Lemma for later use:

Lemma 5.1. Let \(M \) be a \(2q \)-lightlike submanifold of an indefinite para-Sasakian manifold \(\overline{M} \), of index \(2q \) such that \(2q < \dim(M) \) with structure vector field tangent to \(M \). Then the screen distribution \(S(TM) \) of lightlike submanifold \(M \) is Riemannian.

The proof of above Lemma follows as in Lemma (4.1) of [11], so we omit it.

Definition 5.1. Let \(M \) be a \(2q \)-lightlike submanifold of an indefinite para-Sasakian manifold \(\overline{M} \) of index \(2q \) such that \(2q < \dim(M) \) with structure vector field tangent to \(M \). Then we say that \(M \) is screen slant radical transversal lightlike submanifold of \(\overline{M} \) if following conditions are satisfied:

(i) \(\phi(RadTM) = ltr(TM) \),
(ii) For each non-zero vector field \(X \) tangent to \(D \) at \(x \in U \subset M \), the angle \(\theta(X) \) between \(\phi X \) and the vector space \(D_x \) is constant, i.e. it is independent of the choice of \(x \in U \subset M \) and \(X \in D_x \), where \(D \) is complementary non-degenerate distribution to \(\{V\} \) in \(S(TM) \) such that \(S(TM) = D \perp \{V\} \).

This constant angle \(\theta(X) \) is called slant angle of distribution \(D \). A screen slant lightlike submanifold is said to be proper if \(D \neq \{0\} \) and \(\theta \neq 0, \frac{\pi}{2} \).

From the above definition, we have the following decomposition

\[
(5.1) \quad TM = RadTM \perp D \perp \{V\}.
\]

Theorem 5.2. Let \(M \) be a screen slant radical transversal lightlike submanifold of \(\overline{M} \). Then \(M \) is radical transversal lightlike submanifold (resp. transversal lightlike submanifold) if and only if \(\theta = 0 \) (resp. \(\theta = \frac{\pi}{2} \)).

The proof of above theorem follows from definitions of radical transversal lightlike submanifolds and transversal lightlike submanifolds.

Example 3. Let \((\mathbb{R}^9_2, \overline{g}, \phi, \eta, V)\) be an indefinite para-Sasakian manifold, where \(\overline{g} \) is of signature \((-+-+-+-+-+)\) with respect to the canonical basis \(\{\partial x_1, \partial x_2, \partial x_3, \partial x_4, \partial y_1, \partial y_2, \partial y_3, \partial y_4, \partial z\} \). Suppose \(M \) is a submanifold of \(\mathbb{R}^9_2 \) given by

\[
x^1 = y^2 = u_1, \quad x^2 = -y^1 = u_2, \quad x^3 = u_3 \cos \theta, \quad x^4 = -u_3 \sin \theta, \\
y^3 = u_4 \cos \theta, \quad y^4 = u_4 \sin \theta, \quad z = u_5.
\]
The local frame of TM is given by \{\(Z_1, Z_2, Z_3, Z_4, Z_5\)\}, where
\[
\begin{align*}
Z_1 &= 2(\partial x_1 + \partial y_2 + y^1 \partial z), \\
Z_2 &= 2(\partial x_2 - \partial y_1 + y^2 \partial z), \\
Z_3 &= 2(\cos \theta \partial x_3 - \sin \theta \partial x_4 + y^3 \cos \theta \partial z - y^4 \sin \theta \partial z), \\
Z_4 &= 2(\cos \theta \partial y_3 + \sin \theta \partial y_4), \\
Z_5 &= V = 2\partial z. \\
\end{align*}
\]
Hence $RadTM = \text{span} \{Z_1, Z_2\}$ and $S(TM) = \text{span} \{Z_3, Z_4, V\}$.

Now $ltr(TM)$ is spanned by $N_1 = \partial x_1 - \partial y_2 + y^1 \partial z$, $N_2 = \partial x_2 + \partial y_1 + y^2 \partial z$ and $S(TM^\perp)$ is spanned by
\[
\begin{align*}
W_1 &= 2(\sin \theta \partial x_3 + \cos \theta \partial x_4 + y^3 \sin \theta \partial z + y^4 \cos \theta \partial z), \\
W_2 &= 2(\sin \theta \partial y_3 - \cos \theta \partial y_4). \\
\end{align*}
\]
It follows that $\phi Z_1 = N_2$, $\phi Z_2 = -N_1$, which implies that $\phi RadTM = ltr(TM)$. On otherhand, we can see that $D = \text{span} \{Z_3, Z_4\}$ is a slant distribution with slant angle 2θ. Hence M is screen slant radical transversal 2-lightlike submanifold of \mathbb{R}^3_2.

Now, we denote the projections on $RadTM$ and D in TM by P_1 and P_2 respectively. Similarly, we denote the projections on $ltr(TM)$ and $S(TM^\perp)$ in $tr(TM)$ by Q_1 and Q_2 respectively. Then, we get
\[
(5.2) \quad X = P_1 X + P_2 X + \eta(X)V, \quad \forall X \in \Gamma(TM).
\]
On applying ϕ to (5.2), we have
\[
(5.3) \quad \phi X = \phi P_1 X + \phi P_2 X,
\]
which gives
\[
(5.4) \quad \phi X = \phi P_1 X + f P_2 X + F P_2 X, \quad \forall X \in \Gamma(TM),
\]
where $f P_2 X$ (resp. $F P_2 X$) denotes the tangential (resp. transversal) component of $\phi P_2 X$. Thus we get $\phi P_1 X \in ltr(TM), f P_2 X \in \Gamma(D)$ and $F P_2 X \in \Gamma(S(TM^\perp))$. Also, we have
\[
(5.5) \quad W = Q_1 W + Q_2 W, \quad \forall W \in \Gamma(tr(TM)).
\]
Applying ϕ to (5.5), we obtain
\[
(5.6) \quad \phi W = \phi Q_1 W + \phi Q_2 W,
\]
which gives
\[
(5.7) \quad \phi W = \phi Q_1 W + BQ_2 W + CQ_2 W,
\]
where $BQ_2 W$ (resp. $CQ_2 W$) denote the tangential (resp. transversal) component of $\phi Q_2 W$. Thus we get $\phi Q_1 W \in RadTM, BQ_2 W \in \Gamma(D)$ and $CQ_2 W \in \Gamma(S(TM^\perp))$.

Now, by using (2.7), (2.8), (2.9), (2.24), (5.4) and (5.7) and equating tangential, lightlike transversal and screen transversal components, we obtain
\[\dot{g}(\phi X, \phi Y)V - \eta(Y)\phi^2 X = \nabla_X fP_2 Y - A_{FP_2 Y} X - A_{\phi P_1 Y} X \]
\[- fP_2 \nabla_X Y + Bh^s(X, Y) + \phi h^l(X, Y), \]
(5.8)
\[h^l(X, fP_2 Y) + D^l(X, FP_2 Y) + \nabla^l_X \phi P_1 Y = \phi P_1 \nabla_X Y, \]
(5.9)
\[D^s(X, \phi P_1 Y) + h^s(X, fP_2 Y) = Ch^s(X, Y) - \nabla^s_X FP_2 Y + FP_2 \nabla_X Y. \]

Theorem 5.3. Let \(M \) be a 2q-lightlike submanifold of an indefinite para-Sasakian manifold \(\overline{M} \) with structure vector field tangent to \(M \) such that \(\phi \text{Rad} TM = ltr(TM) \). Then \(M \) is screen slant radical transversal lightlike submanifold if and only if there exists a constant \(\lambda \in [0, 1] \) such that \(P^2 X = \lambda(X - \eta(X)V), \forall X \in \Gamma(D). \)

Proof. Let \(M \) be a 2q-lightlike submanifold of an indefinite para-Sasakian manifold \(\overline{M} \) with structure vector field tangent to \(M \) such that \(\phi \text{Rad} TM = ltr(TM) \). Suppose there exists a constant \(\lambda \), such that \(P^2 X = \lambda(X - \eta(X)V) = \lambda \phi^2 X, \forall X \in \Gamma(D). \)

Now \(\cos \theta(X) = \frac{g(\phi X, PX)}{|\phi X||PX|} = \frac{g(X, \phi PX)}{|\phi X||PX|} = \frac{g(X, P^2 X)}{|\phi X||PX|} \)
\[= \lambda \frac{g(X, \phi^2 X)}{|\phi X||PX|} = \lambda \frac{g(\phi X, \phi X)}{|\phi X||PX|}. \]
From above equation, we get
\[(5.11) \cos \theta(X) = \lambda \frac{|\phi X|}{|PX|}. \]
Also \(|PX| = |\phi X| \cos \theta(X) \), which implies
\[(5.12) \cos \theta(X) = \frac{|PX|}{|\phi X|}. \]
From (5.11) and (5.12), we get \(\cos^2 \theta(X) = \lambda(\text{constant}) \).

Hence \(M \) is a screen slant radical transversal lightlike submanifold.

Conversely, suppose that \(M \) is a screen slant radical transversal lightlike submanifold. Then \(\cos^2 \theta(X) = \lambda \), where \(\lambda \) is a constant. From (5.12), we have
\[(5.13) \frac{|PX|^2}{|\phi X|^2} = \lambda. \]
Now \(g(PX, PX) = \lambda g(\phi X, \phi X) \), which gives \(g(X, P^2 X) = \lambda g(X, \phi^2 X) \).
Thus \(g(X, (P^2 - \lambda \phi^2)X) = 0 \). Since \(X \) is non-null vector, we have
\[(P^2 - \lambda \phi^2)X = 0.\] Hence
\[P^2 X = \lambda \phi^2 X = \lambda (X - \eta(X)V), \quad \forall X \in \Gamma(D).\]

Corollary 5.1. Let \(M\) be a screen slant radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \(\overline{M}\) with slant angle \(\theta\), then

\[
g(PX, PY) = \cos^2 \theta (g(X, Y) - \eta(X)\eta(Y)), \quad \forall X, Y \in \Gamma(D),
\]

\[
g(FX, FY) = \sin^2 \theta (g(X, Y) - \eta(X)\eta(Y)), \quad \forall X, Y \in \Gamma(D).
\]

The proof of above corollary follows using the steps as in proof of corollary (3.2) of [10].

Theorem 5.4. Let \(M\) be a screen slant radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \(\overline{M}\) with structure vector field tangent to \(M\). Then

(i) the radical distribution \(\text{RadTM}\) is integrable if and only if
\[
D^s(Y, \phi X) = D^s(X, \phi Y) \quad \text{and} \quad A_\phi X Y = A_\phi Y X, \quad \forall X, Y \in \Gamma(\text{RadTM}),
\]

(ii) the distribution \(D\) is integrable if and only if
\[
h^l(X, fY) + D^l(X, FY) = h^l(Y, fX) + D^l(Y, FX), \quad \forall X, Y \in \Gamma(D).
\]

Proof. Let \(M\) be a screen slant radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \(\overline{M}\). From (5.10), we get

\[
D^s(X, \phi Y) = Ch^s(X, Y) + FP_2 \nabla X Y, \quad \forall X, Y \in \Gamma(\text{RadTM}).
\]

Interchanging \(X\) and \(Y\) in (5.16), we get

\[
D^s(Y, \phi X) = Ch^s(Y, X) + FP_2 \nabla Y X, \quad \forall X, Y \in \Gamma(\text{RadTM}).
\]

From (5.16) and (5.17), we get

\[
D^s(X, \phi Y) - D^s(Y, \phi X) = FP_2 (\nabla X Y - \nabla Y X) = FP_2 [X, Y].
\]

From (5.8), we have

\[
A_\phi Y X + fP_2 \nabla X Y = Bh^s(X, Y) + \phi h^l(X, Y), \quad \forall X, Y \in \Gamma(\text{RadTM}).
\]

Interchanging \(X\) and \(Y\) in (5.19), we get

\[
A_\phi X Y + fP_2 \nabla Y X = Bh^s(Y, X) + \phi h^l(Y, X), \quad \forall X, Y \in \Gamma(\text{RadTM}).
\]

From (5.19) and (5.20), we get

\[
A_\phi X Y - A_\phi Y X = fP_2 [X, Y], \quad \forall X, Y \in \Gamma(\text{RadTM}).
\]

The proof of (i) follows from (5.18) and (5.21).

From (5.9), we have

\[
h^l(X, fY) + D^l(X, FY) = \phi P_1 \nabla X Y, \quad \forall X, Y \in \Gamma(D).
\]
Interchanging X and Y in (5.20), we have

\[(5.23) \quad h^l(Y, fX) + D^l(Y, FX) = \phi P_1 \nabla_Y X, \quad \forall X, Y \in \Gamma(D).\]

From (5.22) and (5.23), we get

\[(5.24) \quad h^l(X, fY) - h^l(Y, fX) + D^l(X, FY) - D^l(Y, FX) = \phi P_1 [X, Y], \quad \forall X, Y \in \Gamma(D).\]

Now the proof of (ii) follows from (5.24) and lemma (3.2).

Theorem 5.5. Let M be a screen slant radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \overline{M} with structure vector field tangent to M. Then the screen distribution $\overline{S}(TM)$ defines a totally geodesic foliation if and only if $\overline{g}(A^*_{\phi N} X, fY) = -\overline{g}(D^l(X, FY), \phi N)$, $\forall X, Y \in \Gamma(\overline{S}(TM))$ and $N \in ltr(TM)$.

Proof. Let M be a screen slant radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \overline{M}. By definition of radical transversal lightlike submanifold, $\overline{S}(TM)$ defines a totally geodesic foliation if and only if $\overline{g}(\nabla_X Y, N) = 0$, $\forall X, Y \in \Gamma(\overline{S}(TM))$ and $N \in \Gamma(ltr(TM))$. From (2.7), we have

\[(5.25) \quad \overline{g}(\nabla_X Y, N) = \overline{g}(\nabla_X Y, N), \quad \forall X, Y \in \Gamma(\overline{S}(TM)) \text{ and } N \in ltr(TM).\]

From (2.20), (2.24) and (5.25), we obtain

\[(5.26) \quad \overline{g}(\nabla_X Y, N) = \overline{g}(\nabla_X \phi Y, \phi N), \quad \forall X, Y \in \Gamma(\overline{S}(TM)) \text{ and } N \in ltr(TM).\]

In view of equations (5.4), (2.7), (2.9) and (5.26), we get

\[(5.27) \quad \overline{g}(\nabla_X Y, N) = \overline{g}(h^l(X, fY) + D^l(X, FY), \phi N), \quad \forall X, Y \in \Gamma(\overline{S}(TM)) \text{ and } N \in ltr(TM).\]

From (2.15) and (5.27), we have

\[(5.28) \quad \overline{g}(\nabla_X Y, N) = \overline{g}(A^*_{\phi N} X, fY) + \overline{g}(D^l(X, FY), \phi N), \quad \forall X, Y \in \Gamma(\overline{S}(TM)) \text{ and } N \in ltr(TM).\]

The proof follows from (5.28) and lemma (3.2).

Theorem 5.6. Let M be a screen slant radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \overline{M}. Then $\text{Rad}TM \oplus \{V\}$ defines a totally geodesic foliation on M if and only if $A_{FZ} X = h^*(X, fZ) + \eta(Z)X$, $\forall X \in \Gamma(\text{Rad}TM) \oplus \{V\}$ and $Z \in \Gamma(D)$.

Proof. Let M be a screen slant radical transversal lightlike submanifold of an indefinite para-Sasakian manifold \overline{M}. By definition of radical transversal
lightlike submanifold, $RadTM \oplus \{V\}$ defines a totally geodesic foliation if and only if $\bar{g}(\nabla_X Y, Z) = 0$, $\forall X, Y \in \Gamma(RadTM) \oplus \{V\}$ and $Z \in \Gamma(S(TM))$.

Since ∇ is a metric connection, using (2.7), we have

(5.29) \[\bar{g}(\nabla_X Y, Z) = -\bar{g}(Y, \nabla_X Z), \quad Z \in \Gamma(D) \quad \text{and} \quad \forall X, Y \in \Gamma(RadTM) \oplus \{V\}. \]

In view of equations (2.7), (2.20), (2.24) and (5.29), we obtain

(5.30) \[\bar{g}(\nabla_X Y, Z) = -\bar{g}(\phi Y, X)\eta(Z) - \bar{g}(\phi Y, \nabla_X \phi Z), \quad Z \in \Gamma(D) \quad \text{and} \quad \forall X, Y \in \Gamma(RadTM) \oplus \{V\}. \]

From (2.7), (2.9), (2.13), (5.4) and (5.26), we have

(5.31) \[\bar{g}(\nabla_X Y, Z) = -\bar{g}(\phi Y, X)\eta(Z) - \bar{g}(\phi Y, h^*(X, fZ) + \bar{g}(\phi Y, A_{FZ} X), \quad Z \in \Gamma(D) \quad \text{and} \quad \forall X, Y \in \Gamma(RadTM) \oplus \{V\}. \]

(5.32) \[\bar{g}(\nabla_X Y, Z) = \bar{g}(\phi Y, A_{FZ} X - h^*(X, fZ) - \eta(Z)X), \quad Z \in \Gamma(D) \quad \text{and} \quad \forall X, Y \in \Gamma(RadTM) \oplus \{V\}. \]

The proof follows from (5.32) and lemma (3.2).

Acknowledgement: Akhilesh Yadav greatfully acknowledges the financial support provided by the Council of Scientific and Industrial Research (C.S.I.R.), India.

References

S. S. Shukla, A. Yadav
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ALLAHABAD
ALLAHABAD-211002, INDIA
E-mail: ssshukla_au@rediffmail.com,
akhlilesh_mathau@rediffmail.com

Received April 29, 2013.

Communicated by S. Izumiya.