Mizar

Piotr Rudnicki

Department of Computing Science
University of Alberta
piotr@cs.ualberta.ca
The name

MIZAR, ζ Ursae Majoris, distance 78.2 ± 1.1 light years, the first binary star imaged telescopically, Riccioli (1650). Mizar A – the first star discovered to be spectroscopically binary, Pickering (1889). MIZAR B is at least binary.
The MIZAR project

Goal: A data base of computer verified mathematics

Language: Close to mathematical vernacular yet allowing mechanical checking of correctness

Leader: Andrzej Trybulec, University of Białystok, Poland.

Authors: Software: Currently 8 developers
 MIZAR texts: 200+

Since: 1973

Stable: since 1989 a data base has been maintained

Motto: Proving is a pleasure

Thus: No stress on automated theorem proving (ATP)
Why? – Pure mathematics

Gaussian integers: \(a + bi : a, b \in \mathbb{Z} \)

Generalized: \(a + b\sqrt{-d} \) where \(d \in \mathbb{Z}^+ \)

\[
a, b \in \frac{1}{2}\mathbb{Z} \quad \text{when } d \mod 4 = 3
\]
\[
a, b \in \mathbb{Z} \quad \text{otherwise}.
\]

For which \(d \) do we have unique factorization? Not for 5:

\[
6 = 2 \times 3 \quad \text{but also} \quad 6 = \left(1 + \sqrt{-5}\right) \times \left(1 - \sqrt{-5}\right)
\]

1855: At Gauss’s death: \(d = 1, 2, 3, 7, 11, 19, 43, 67, 163 \)

1934: Heilbronn and Linfoot: there could be at most one more.

1952: Heegner: no more.

Nobody believed him—he was not a mathematician.

1967: Stark and Baker: no tenth \(d \).

Then they confirmed that Heegner was correct.
Why? – Specification and verification

Ricky W. Butler (NASA)
Airplane Seat Reservation System

seat_assignment: TYPE [# seat : [row, position], pass : passenger #]
flight_assignments: TYPE = set[seat_assignment]
flt_db: TYPE = [flight -> flight_assignments]
Next_seat: [flt_db, flight, preference -> [row, position]]

AXIOM (FORALL a: a in db(flt) -> seat(a) /= Next_seat(db, flt, pref)

Next_seat(db, flt, pref) returns a seat even when a flight is full. Which seat? Contradiction.

I now avoid axioms like the plague. It is surprisingly easy to get them wrong! – RWB

In MIZAR, one must construct things, no additional axioms. The technology of mathematics is robust. Let us follow it.
Why? – Proof correctness

Theorem There does not exist \(r \) in \(\mathbb{Q} \) such that \(r^2 = 2 \).

Assume:
1. \(r \in \mathbb{Q} \)
2. \(r^2 = 2 \)

\(<1>\) 1. Choose \(m, n \) in \(\mathbb{Z} \) such that \(\cdots \)
\(<2>\) 4. \(\gcd(m, n) = 1 \)

Proof: By the definition of \(\gcd \), it suffices to:

Assume:
1. \(s \) divides \(m \)
2. \(s \) divides \(n \)

Prove: \(s = 1 \) \(\cdots \)

LL manages to prove it without even saying where \(s \) is from!

Anecdotal evidence suggests that as many as a third of all papers published in mathematical journals contain mistakes—not just minor errors, but incorrect theorems and proofs. ibidem, p. 311.
Some relatives

HOL interactive theorem proving in a higher-order logic, widely used for hardware verification

Coq calculus of constructions, enables extraction of programs from proofs

PVS support for formal specification and verification based on higher order logic, applications in industry

Isabelle generic theorem proving environment, attempts at applications in protocol design and cryptography

ACL2 logic is a subset of applicative Common Lisp, tailored for modeling computing machines

- 100s more

The above offer more automation than MIZAR, are geared toward some specific applications, do not build a comprehensive data base of mathematics and use a language far removed from mathematical practice.
MIZAR: points of interest

- The MIZAR language
- MML – MIZAR Mathematical Library
 - axioms of the Tarski-Grothendieck set theory
 - library articles: user interface and internals
- MIZAR article and its processing
- MIZAR processor
- MIZAR on the web
- How to become a MIZAR author?

(Mathematical Knowledge) Management

emerging field dealing with math presence on the web.

Not: Mathematical (Knowledge Management)
Theorem: an example

Prove that for all natural n, $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$

MIZAR: for n being Nat holds Sum idseq $n = n\times(n+1)/2$

Local environment: imports from MML 4.181.1147

environ

vocabulary RLVECT_1, FINSEQ_2, FINSEQ_1, ARYTM_3, RELAT_1, RVSUM_1, XBOOLE_0, SQUARE_1, NAT_1, CARD_1, NUMBERS, CARD_3, ORDINAL4, NEWTON, VALUED_0;
notations NUMBERS, XBOOLE_0, REAL_1, NAT_1, FINSEQ_1, FINSEQ_2, SQUARE_1, ORDINAL1, RVSUM_1;
constructors REAL_1, RVSUM_1, SQUARE_1, BINOP_2;
registrations NUMBERS, RELSET_1, VALUED_0, MEMBERED, FINSEQ_2, NEWTON, RVSUM_1;
requirements NUMERALS, BOOLE, SUBSET, ARITHM;
definitions FINSEQ_1;
theorems FINSEQ_2, RVSUM_1, RELAT_1, TOPREAL7, SQUARE_1, VALUED_1;
schemes NAT_1;

begin

and now we can continue our proof
defpred P[Nat] means Sum idseq $1 = $1*($1+1)/2;

Basis: P[0] by RVSUM_1:72;
IndStep:
for n being Nat st P[n] holds P[n+1]
proof let n be Nat such that
 IndHyp: Sum idseq n = n*(n+1)/2;
 thus Sum idseq(n+1)
 = Sum((idseq n)^<*n+1*>) by FINSEQ_2:51
 .= Sum(idseq n) + (n+1) by RVSUM_1:74
 .= (n+1)*(n+1+1)/2 by IndHyp;
end;

for n being Nat holds P[n] from NAT_1:sch 2(Basis, IndStep);
then for n being Nat holds Sum idseq n = n*(n+1)/2;
Theorem: another example

defpred S[Nat] means \(\text{Sum } \text{sqr idseq } 1 = 1 \times (1+1) \times (2 \times 1+1)/6; \)

Basis: \(S[0] \) proof
 \(\text{dom } \text{sqr idseq } 0 = \text{dom idseq } 0 \) by VALUED_1:11 \(= \{\} \) by RELAT_1:38;
 hence \(\text{Sum } \text{sqr idseq } 0 = 0 \) by RELAT_1:41, RVSUM_1:72
 \(= 0 \times (0+1) \times (2 \times 0+1)/6; \)

IndStep: for \(n \) being Nat st \(S[n] \) holds \(S[n+1] \) proof
 let \(n \) be Nat such that \(\text{IndHyp: } S[n] \);
 Aux: \(\text{idseq } n \) is FinSequence of REAL by RVSUM_1:145;
 thus \(\text{Sum } \text{sqr idseq } (n+1) \)
 \(= \text{Sum } \text{sqr } ((\text{idseq } n)^{<n+1>}) \) by FINSEQ_2:51
 \(= \text{Sum } ((\text{sqr idseq } n)^{\text{sqr } <n+1>}) \) by Aux, RVSUM_1:144
 \(= \text{Sum } ((\text{sqr idseq } n)^{<*(n+1)^2>}) \) by RVSUM_1:55
 \(= \text{Sum } \text{sqr idseq } n + (n+1)^2 \) by RVSUM_1:74
 \(= n \times (n+1) \times (2 \times n+1)/6 + (n+1) \times (n+1) \) by IndHyp, SQUARE_1:def 1
 \(= (n+1) \times (n+1+1) \times (2 \times (n+1)+1)/6; \)

for \(n \) being Nat holds \(S[n] \) from NAT_1:sch 2(Basis, IndStep);
then for \(n \) being Nat holds \(\text{Sum } \text{sqr idseq } n = n \times (n+1) \times (2 \times n+1)/6; \)
The Mizar language

- The language mimics traditional mathematics.
- Based on classical, typed, first order logic with equality. The natural deduction system of Jaśkowski (Fitch).
- Definitions of constructors:

<table>
<thead>
<tr>
<th>Constructor</th>
<th>Construction</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicate</td>
<td>Atomic formula</td>
<td>x is_a_fixpoint_of f</td>
</tr>
<tr>
<td>Functor</td>
<td>Term</td>
<td>lfp (X, f)</td>
</tr>
<tr>
<td>Mode</td>
<td>Type</td>
<td>Relation of X, Y</td>
</tr>
<tr>
<td>Attribute</td>
<td>Adjective</td>
<td>n is even</td>
</tr>
<tr>
<td>Structure</td>
<td>Type</td>
<td>struct DB-Rel (# fields #)</td>
</tr>
</tbody>
</table>

- Propositional schemes with free second order variables.
MML: MIZAR Mathematical Library: foundations

Unit HIDDEN: primitive notions set, in, =
Unit TARSKI: Tarski-Grothendieck set theory axioms

- Axiom of extensionality
 equality of sets
- Axiom of singleton and pair
 existence
- Axiom of union
 existence
- Axiom of regularity
 no infinite descending ϵ chains
- Axioms of replacement
 functional image of a set
- Tarski’s axiom of strongly inaccessible cardinals

TG = ZF - { some existence axioms } - { AC } + { large cardinals }

Operational built-ins:

BOOLE, SUBSET, ARITHM, REAL, NUMERALS
MML – MIZAR Mathematical Library

MML is a collection of articles.
What is a MIZAR article?

Analogy to *What is a published paper?*

What is in MML?
- March 2003: 765 articles
- September 2008: 1033 articles
- May 2012: 1147 articles

Basic mathematical toolkit: relations, functions, ...

How many of these?

On top of the toolkit (some examples)

- Set theory
- Meta-logic
- Algebra
- Analysis
- Topology
- Number theory
- Graph theory

Reflection lemma
Gödel completeness theorem
FTA, Wedderburn theorem
l’Hôpital theorem
Jordan curve theorem
Bertrand’s postulate, CRT
Chordal graphs recognition
Some efforts focused in narrower areas

- Continuous lattices
- Algebra of polynomials
- Real and complex analysis
- Modeling computations
- Graph algorithms

The blow-up factor for the number of words (tokens) is ≈ 10 when translating mathematical monographs into MIZAR
MML: Some Numbers

<table>
<thead>
<tr>
<th></th>
<th>3.46.767</th>
<th>4.100.1011</th>
<th>4.187.1147</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Apr '03</td>
<td>Apr '08</td>
<td>May '12</td>
</tr>
<tr>
<td>Theorems</td>
<td>33178</td>
<td>46506</td>
<td>51762</td>
</tr>
<tr>
<td>Definitions</td>
<td>6557</td>
<td>8804</td>
<td>10158</td>
</tr>
<tr>
<td>Schemes</td>
<td>684</td>
<td>756</td>
<td>787</td>
</tr>
<tr>
<td>Constructors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functor</td>
<td>5043</td>
<td>6823</td>
<td>7768</td>
</tr>
<tr>
<td>Mode</td>
<td>406</td>
<td>438</td>
<td>447</td>
</tr>
<tr>
<td>Predicate</td>
<td>684</td>
<td>878</td>
<td>1013</td>
</tr>
<tr>
<td>Attribute</td>
<td>1498</td>
<td>2043</td>
<td>2345</td>
</tr>
<tr>
<td>Structures</td>
<td>88</td>
<td>116</td>
<td>132</td>
</tr>
<tr>
<td>Registrations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existential</td>
<td>1416</td>
<td>1861</td>
<td>2219</td>
</tr>
<tr>
<td>Functorial</td>
<td>2796</td>
<td>4568</td>
<td>6598</td>
</tr>
<tr>
<td>Conditional</td>
<td>1025</td>
<td>1496</td>
<td>2044</td>
</tr>
</tbody>
</table>
Functor: example of a definition

From XBOOLE_0

definition let X,Y be set;
 func X \/ Y -> set means x in it iff x in X or x in Y;

existence proof
 take union \{X,Y\}; let x;
 thus x in union \{X,Y\} implies x in X or x in Y
 proof ... end;
 assume x in X or x in Y; ...
 hence x in union \{X,Y\} by ...
end;

uniqueness proof let A1, A2 be set such that
 A6: x in A1 iff x in X or x in Y and
 A7: x in A2 iff x in X or x in Y;
 ...
 hence A1 = A2 by TARSKI:2;
end;

commutativity;
idempotence;
end;
Predicate, attribute, cluster: examples

From ASYMPT_0

definition let f be Real_Sequence;
 attr f is eventually-nonnegative means :: ASYMPT_0:def 4
 ex N st for n st n >= N holds f.n >= 0;
end;

registration
cluster eventually-nonnegative eventually-nonzero positive
 eventually-positive eventually-nondecreasing Real_Sequence;
existence proof
 reconsider f = NAT-->1 as Function of NAT,REAL by FUNCOP_1:57;
 take f;
 thus f is eventually-nonnegative proof ... end;
 thus f is eventually-nonzero proof ... end;
 ...
end;
end;

definition
 let f be eventually-nonnegative Real_Sequence, b be Nat;
 pred f is_smooth_wrt b means :: ASYMPT_0:def 19
 f is eventually-nondecreasing & f taken_every b in Big_Oh(f);
end;
Clusters: examples

From ASYMPT_0

registration
cluster eventually-nonnegative eventually-nonzero
 -> eventually-positive Real_Sequence;
coherence proof let f be Real_Sequence; assume
A3: f is eventually-nonnegative & f is eventually-nonzero;
then consider N such that
A4: for n st n >= N holds f.n >= 0 by Def4;
...
A8: n >= N & n >= M by A6,XXREAL_0:2;
f.n <> 0 by A5,A6,A7,XXREAL_0:2;
 hence thesis by A4,A8;
end;
end;

registration
let f, g be eventually-nonnegative Real_Sequence;
cluster f+g -> eventually-nonnegative;
coherence proof
 ... let n; ...
 hence (f + g).n >= 0 by SEQ_1:11;
end;
end;
Mode: example

From FINSEQ_1

definition let D be set;
 mode FinSequence of D -> FinSequence means
 rng it c= D;
 existence proof
 ...
 end;
end;

registration
 let D be set;
 cluster FinSequence-like PartFunc of NAT,D;
 existence
 proof {} is PartFunc of NAT,D by RELSET_1:25;
 hence thesis;
 end;
end;

definition let D be set;
 redefine mode FinSequence of D
 -> FinSequence-like PartFunc of NAT,D;
 coherence proof ... end;
end;
Hierarchy of notions: example

\[\text{FinSequence of } D \rightarrow \text{FinSequence} \]
\[\text{FinSequence is FinSequence-like Function} \]
\[\text{FinSequence-like attribute to Relation} \]
\[\text{Relation is Relation-like set} \]
\[\text{Relation-like attribute to set} \]
\[\text{Function is Function-like Relation-like set} \]
\[\text{Function-like attribute to set} \]

\[\text{FinSequence of } D \rightarrow \text{FinSequence-like PartFunc of } \text{NAT,D} \]

\[\text{NAT} \rightarrow \text{Subset of } \text{REAL} \]
\[\text{REAL} \rightarrow \text{set} \quad :: \text{a construction of reals is behind it} \]
\[\text{Subset of } X \text{ is Element of bool } X \]
\[\text{Element of } X \rightarrow \text{set} \]
\[\text{bool } X \rightarrow \text{set} \]

\[\text{PartFunc of } X,Y \text{ is Function-like Relation of } X,Y \]
\[\text{Relation of } X,Y \rightarrow \text{Subset of } [:X,Y:] \]
\[[:X,Y:] \rightarrow \text{set} \]
Concerns of (not only casual) authors

- Learning the system
- Knowing the library
- Searching the library
- Reading formal proofs
- Presentation of formal proofs
- Gaps in the library
- Algebraic manipulations
- Introducing new notations
- Theory vs examples
Article processing: batch

Mizar DB

Accommodator

Local environment

Verifier

Error−printer

environ

Directives

begin

Text Proper

Error file

Error−printer
Including a new article into MML

Finished article

environ

Directives

begin

Text Proper

Exporter

DB Files
defs thms schms

Accommodator

Local environment

Mizar DB

Text Proper Exporter
Presentation and distribution

- Source articles
- Library files (internal)
- \textsc{Mizar} \textbf{abstract} of an article — a text file of definitions and theorems but without proofs
- Abstracts and entire article available hyper-linked in html/xml for web browsing thanks to Josef Urban
- Abstracts automatically \textsc{TeX}ed and published and on paper \textit{Formalized Mathematics}
- Work on \textsc{Mizar} Encyclopedia: monographic articles
Applications

- Building a data base of formalized mathematics
- Exporting from Mizar to other systems
- Education: logic and mathematics
- Specification and verification
Josef Urban applies AI to play with MML

- Can an automated prover prove theorems from MML which have been proved by hand?
 - All premises are exported
 - Most provers choke on several thousand premises
- Machine learning to find the relevant premises for a theorem.
 - Assists humans when proving Well, not really. Too many false positives.
 - Assists theorem provers on simpler cases with spectacular results.
- Escape to ATP from MIZAR
- ATPs as a search engine for facts in MML

Jesse Alama translates ATP found proofs to MIZAR.
Lessons from MIZAR

- Any similar project should focus on building a data base.
- Any similar system will evolve: language, checker, ...
- The evolution will be driven by the growing data base.
- How to involve mathematicians?
- How to find authors?
- Who will pay for all this?
- What has happened to QED? A project to build a computer system that effectively represents all important mathematical knowledge and techniques.