Learning from few examples
One-shot learning with memory-augmented neural networks

Maciej Żelaszczyk
March 21, 2018
PhD Student in Computer Science
Division of Artificial Intelligence and Computational Methods
Faculty of Mathematics and Information Science
m.zelaszczyk@mini.pw.edu.pl

Warsaw University of Technology
Traditional deep learning

- Network design: feedforward nets, CNNs, LSTMs, etc.
Traditional deep learning

- Network design: feedforward nets, CNNs, LSTMs, etc.
- Computational resources: GPUs.

Sometimes the net is not as important as the data.
Traditional deep learning

- Network design: feedforward nets, CNNs, LSTMs, etc.
- Computational resources: GPUs.
- Data: search engines, social networks.
Traditional deep learning

- Network design: feedforward nets, CNNs, LSTMs, etc.
- Computational resources: GPUs.
- Data: search engines, social networks.
- Conditions: combination of the above.

Success: image recognition, games, speech recognition, translation, etc.

Learning relies heavily on extensive datasets.

Sometimes the net is not as important as the data.
Traditional deep learning

- Network design: feedforward nets, CNNs, LSTMs, etc.
- Computational resources: GPUs.
- Data: search engines, social networks.
- Conditions: combination of the above.
- Success: image recognition, games, speech recognition, translation, etc.
Traditional deep learning

- Network design: feedforward nets, CNNs, LSTMs, etc.
- Computational resources: GPUs.
- Data: search engines, social networks.
- Conditions: combination of the above.
- Success: image recognition, games, speech recognition, translation, etc.
- Learning relies heavily on extensive datasets.
Traditional deep learning

- Network design: feedforward nets, CNNs, LSTMs, etc.
- Computational resources: GPUs.
- Data: search engines, social networks.
- Conditions: combination of the above.
- Success: image recognition, games, speech recognition, translation, etc.
- Learning relies heavily on extensive datasets.
- Sometimes the net is not as important as the data.
Traditional deep learning

- Backpropagation, stochastic gradient descent.
Traditional deep learning

- Backpropagation, stochastic gradient descent.
- Extensive, incremental learning.
Traditional deep learning

- Backpropagation, stochastic gradient descent.
- Extensive, incremental learning.
- Weights updated slowly.
Traditional deep learning

- Backpropagation, stochastic gradient descent.
- Extensive, incremental learning.
- Weights updated slowly.
- Gradual changes in network behavior.
Traditional deep learning

- Backpropagation, stochastic gradient descent.
- Extensive, incremental learning.
- Weights updated slowly.
- Gradual changes in network behavior.
- Possibility to freeze network, show new classes and retrain.
Traditional deep learning

- Backpropagation, stochastic gradient descent.
- Extensive, incremental learning.
- Weights updated slowly.
- Gradual changes in network behavior.
- Possibility to freeze network, show new classes and retrain.
- Substantial number of new instances needed.
Traditional deep learning

- Backpropagation, stochastic gradient descent.
- Extensive, incremental learning.
- Weights updated slowly.
- Gradual changes in network behavior.
- Possibility to freeze network, show new classes and retrain.
- Substantial number of new instances needed.
- Possibly inefficient with respect to data.
Different learning paradigm

- Generalize from very few examples.
Different learning paradigm

- Generalize from very few examples.
- Network has a degree of general knowledge.
Different learning paradigm

- Generalize from very few examples.
- Network has a degree of general knowledge.
- Quickly adapts to new instances.
Different learning paradigm

- Generalize from very few examples.
- Network has a degree of general knowledge.
- Quickly adapts to new instances.
- Single observations shift network behavior dramatically.
Different learning paradigm

- Generalize from very few examples.
- Network has a degree of general knowledge.
- Quickly adapts to new instances.
- Single observations shift network behavior dramatically.
- Rapid inference.
Different learning paradigm

- Generalize from very few examples.
- Network has a degree of general knowledge.
- Quickly adapts to new instances.
- Single observations shift network behavior dramatically.
- Rapid inference.
- Data efficient to add new classes.
Different learning paradigm

- Generalize from very few examples.
- Network has a degree of general knowledge.
- Quickly adapts to new instances.
- Single observations shift network behavior dramatically.
- Rapid inference.
- Data efficient to add new classes.
- Modular design.
Learning to learn

- Meta-learning [Schmidhuber et al., 1997].
Learning to learn

- Meta-learning [Schmidhuber et al., 1997].
- Various incarnations of the idea.
• Meta-learning [Schmidhuber et al., 1997].
• Various incarnations of the idea.
• General premise - learning occurs on two levels:
Learning to learn

- Meta-learning [Schmidhuber et al., 1997].
- Various incarnations of the idea.
- General premise - learning occurs on two levels:
 1. Within a task, e.g. bind input data to class in a particular dataset.
Learning to learn

- Meta-learning [Schmidhuber et al., 1997].
- Various incarnations of the idea.
- General premise - learning occurs on two levels:
 1. Within a task, e.g. bind input data to class in a particular dataset.
 2. Across tasks - how task structure varies across target domains.
• Meta-learning [Schmidhuber et al., 1997].
• Various incarnations of the idea.
• General premise - learning occurs on two levels:
 1. Within a task, e.g. bind input data to class in a particular dataset.
 2. Across tasks - how task structure varies across target domains.
• Several neural net structures seem fit to meta-learn.
Long-short term memory

- Introduced to circumvent the vanishing gradient problem [Hochreiter and Schmidhuber, 1997].

Source: Olah, C., Understanding LSTM Networks
Long-short term memory

- Introduced to circumvent the vanishing gradient problem [Hochreiter and Schmidhuber, 1997].
- Architecture consists of:

Source: Olah, C., *Understanding LSTM Networks*
Long-short term memory

- Introduced to circumvent the vanishing gradient problem [Hochreiter and Schmidhuber, 1997].
- Architecture consists of:
 1. Network weights and activation functions.

Source: Olah, C., *Understanding LSTM Networks*
Long-short term memory

• Introduced to circumvent the vanishing gradient problem [Hochreiter and Schmidhuber, 1997].
• Architecture consists of:
 1. Network weights and activation functions.
 2. State cell.

Source: Olah, C., *Understanding LSTM Networks*
Dichotomy in design can accommodate two-tier learning.
Long-short term memory

- Dichotomy in design can accommodate two-tier learning.
- Weights used to learn across datasets, memory cell used to cache representations.

Source: Olah, C., *Understanding LSTM Networks*
Long-short term memory

- Dichotomy in design can accommodate two-tier learning.
- Weights used to learn across datasets, memory cell used to cache representations.
- Learns never-before-seen quadratic functions with low number of data samples [Hochreiter et al., 2001].

Source: Olah, C., *Understanding LSTM Networks*
A scalable solution needs to meet several requirements:
A scalable solution needs to meet several requirements:

1. Stable memory.
Limits of LSTMs

A scalable solution needs to meet several requirements:

1. Stable memory.
2. Addressable content.
A scalable solution needs to meet several requirements:

1. Stable memory.
2. Addressable content.
3. No. of parameters independent of size of memory.
Limits of LSTMs

LSTMs don’t satisfy these conditions:

1. In practice, hidden state h_t is modified at each time step.
2. Increasing the size of memory is equivalent to expanding the vector h_t and the whole network. No. of weights grows at least linearly with required memory.
3. Location and content are intertwined. Not easy to extract content.

Source: Graves, A., *IJCNN 2017 Plenary Talk: Frontiers in Recurrent Neural Network Research*
LSTMs don’t satisfy these conditions:

1. In practice, hidden state h_t is modified at each time step.

Source: Graves, A., IJCNN 2017 Plenary Talk: Frontiers in Recurrent Neural Network Research
Limits of LSTMs

LSTMs don’t satisfy these conditions:

1. In practice, hidden state h_t is modified at each time step.
2. Increasing the size of memory is equivalent to expanding the vector h_t and the whole network. No. of weights grows at least linearly with required memory.

Source: Graves, A., IJCNN 2017 Plenary Talk: Frontiers in Recurrent Neural Network Research
Limits of LSTMs

LSTMs don’t satisfy these conditions:

1. In practice, hidden state h_t is modified at each time step.
2. Increasing the size of memory is equivalent to expanding the vector h_t and the whole network. No. of weights grows at least linearly with required memory.
3. Location and content are intertwined. Not easy to extract content.

Source: Graves, A., *IJCNN 2017 Plenary Talk: Frontiers in Recurrent Neural Network Research*
We could use memory-augmented neural networks (MANNs). One example would be a Neural Turing machine (NTM) / Differentiable neural computer (DNC) architecture:
We could use memory-augmented neural networks (MANNs). One example would be a Neural Turing machine (NTM) / Differentiable neural computer (DNC) architecture:

1. External memory matrix is relatively stable.
We could use memory-augmented neural networks (MANNs). One example would be a Neural Turing machine (NTM) / Differentiable neural computer (DNC) architecture:

1. External memory matrix is relatively stable.
2. Size of memory not directly related to size of network.
We could use memory-augmented neural networks (MANNs). One example would be a Neural Turing machine (NTM) / Differentiable neural computer (DNC) architecture:

1. External memory matrix is relatively stable.
2. Size of memory not directly related to size of network.
3. Content-based and usage-based addressing.
Differentiable neural computer

Source: [Graves et al., 2016]
• Network architecture supports meta-learning.
Differentiable neural computer

- Network architecture supports meta-learning.
- Weights of the controller updated to learn structure across datasets.
Differentiable neural computer

- Network architecture supports meta-learning.
- Weights of the controller updated to learn structure across datasets.
- Input stored in external memory matrix, recalled to make dataset-specific predictions.
Differentiable neural computer

- Network architecture supports meta-learning.
- Weights of the controller updated to learn structure across datasets.
- Input stored in external memory matrix, recalled to make dataset-specific predictions.
- Weight updates allow us to extract representations of data, memory enables rapid binding of information.
Meta-learning setup

- Traditional approach: choose parameters θ to minimize cost \mathcal{L} on dataset D.

- Meta-learning approach: choose parameters θ^* to minimize expected cost \mathcal{L} across a distribution of datasets $p(D)$:

$$\theta^* = \arg\min_{\theta} \mathbb{E}_{D \sim p(D)}[\mathcal{L}(D; \theta)]$$

- An episode is a presentation of dataset $D = \{d_t\}_{t=1}^T = \{(x_t, y_t)\}_{t=1}^T$.

- For classification, x_t is the input data, y_t is the label.

- Data is presented to the network as follows: $(x_1, \text{null}), (x_2, y_1), \ldots, (x_T, y_{T-1})$.

- At time t, the correct label for the previous sample y_{t-1} is provided along with a new query x_t.
Meta-learning setup

- Traditional approach: choose parameters θ to minimize cost \mathcal{L} on dataset D.
- Meta-learning approach: choose parameters θ^* to minimize expected cost \mathcal{L} across a distribution of datasets $p(D)$:

$$
\theta^* = \arg\min_{\theta} \mathbb{E}_{D \sim p(D)} [\mathcal{L}(D; \theta)]
$$
Meta-learning setup

- Traditional approach: choose parameters θ to minimize cost \mathcal{L} on dataset D.
- Meta-learning approach: choose parameters θ^* to minimize expected cost \mathcal{L} across a distribution of datasets $p(D)$:

$$
\theta^* = \arg\min_{\theta} E_{D \sim p(D)} [\mathcal{L}(D; \theta)]
$$

- An episode is a presentation of dataset

$$
D = \{d_t\}_{t=1}^T = \{(x_t, y_t)\}_{t=1}^T
$$
Meta-learning setup

- Traditional approach: choose parameters θ to minimize cost \mathcal{L} on dataset D.
- Meta-learning approach: choose parameters θ^* to minimize expected cost \mathcal{L} across a distribution of datasets $p(D)$:
 \[
 \theta^* = \arg\min_{\theta} E_{D \sim p(D)} [\mathcal{L}(D; \theta)]
 \]
- An episode is a presentation of dataset
 \[
 D = \{d_t\}_{t=1}^T = \{(x_t, y_t)\}_{t=1}^T
 \]
- For classification, x_t is the input data, y_t is the label.
Meta-learning setup

- Traditional approach: choose parameters θ to minimize cost \mathcal{L} on dataset D.
- Meta-learning approach: choose parameters θ^* to minimize expected cost \mathcal{L} across a distribution of datasets $p(D)$:
 \[
 \theta^* = \arg\min_\theta E_{D \sim p(D)} [\mathcal{L}(D; \theta)]
 \]
- An episode is a presentation of dataset
 \[
 D = \{d_t\}_{t=1}^T = \{(x_t, y_t)\}_{t=1}^T
 \]
- For classification, x_t is the input data, y_t is the label.
- Data is presented to the network as follows:
 \[
 (x_1, \text{null}), (x_2, y_1), \ldots, (x_T, y_{T-1})
 \]
Meta-learning setup

- Traditional approach: choose parameters θ to minimize cost \mathcal{L} on dataset D.
- Meta-learning approach: choose parameters θ^* to minimize expected cost \mathcal{L} across a distribution of datasets $p(D)$:
 $$\theta^* = \arg\min_{\theta} \mathbb{E}_{D \sim p(D)} [\mathcal{L}(D; \theta)]$$
- An episode is a presentation of dataset
 $$D = \{d_t\}_{t=1}^T = \{(x_t, y_t)\}_{t=1}^T$$
- For classification, x_t is the input data, y_t is the label.
- Data is presented to the network as follows:
 $$(x_1, \text{null}), (x_2, y_1), \ldots, (x_T, y_{T-1})$$
- At time t the correct label for the previous sample y_{t-1} is provided along with a new query x_t.
Meta-learning setup

- At time t the network is asked to output label y_t for query x_t.
 - Labels shuffled from dataset to dataset.
 - Network has to store representations in memory until class labels are presented, bind them and store for later use.
 - Ideal performance: guess for first-seen class, use of memory to perfectly classify this class going forward.
 - System models the predictive distribution $p(y_t | x_t, D_{1:t-1}; \theta)$.
 - There is exploitable structure: a meta-learning model would learn to bind input to appropriate class regardless of particular input data or label.
Meta-learning setup

- At time t the network is asked to output label y_t for query x_t.
- Labels shuffled from dataset to dataset.
Meta-learning setup

- At time t the network is asked to output label y_t for query x_t.
- Labels shuffled from dataset to dataset.
- Network has to store representations in memory until class labels are presented, bind them and store for later use.
Meta-learning setup

- At time t the network is asked to output label y_t for query x_t.
- Labels shuffled from dataset to dataset.
- Network has to store representations in memory until class labels are presented, bind them and store for later use.
- Ideal performance: guess for first-seen class, use of memory to perfectly classify this class going forward.
Meta-learning setup

- At time t the network is asked to output label y_t for query x_t.
- Labels shuffled from dataset to dataset.
- Network has to store representations in memory until class labels are presented, bind them and store for later use.
- Ideal performance: guess for first-seen class, use of memory to perfectly classify this class going forward.
- System models the predictive distribution $p(y_t|x_t, D_{1:t-1}; \theta)$.
Meta-learning setup

- At time t the network is asked to output label y_t for query x_t.
- Labels shuffled from dataset to dataset.
- Network has to store representations in memory until class labels are presented, bind them and store for later use.
- Ideal performance: guess for first-seen class, use of memory to perfectly classify this class going forward.
- System models the predictive distribution $p(y_t | x_t, D_{1:t-1}; \theta)$.
- There is exploitable structure: a meta-learning model would learn to bind input to appropriate class regardless of particular input data or label.
Meta-learning setup

Source: [Santoro et al., 2016]
Meta-learning setup

Source: [Santoro et al., 2016]
Dataset

Omniglot dataset:

- Image classification dataset.
Dataset

Omniglot dataset:

- Image classification dataset.
- 1,623 classes.
Omniglot dataset:

• Image classification dataset.
• 1,623 classes.
• Few examples per class.
Omniglot dataset:

- Image classification dataset.
- 1,623 classes.
- Few examples per class.
- "Transpose of MNIST."
Dataset

Omniglot dataset:

- Image classification dataset.
- 1,623 classes.
- Few examples per class.
- "Transpose of MNIST."

Source: [Lake et al., 2015]
Experimental setup

• DNC/NTM parametrized by θ.

• Choose parameters θ^* to minimize expected cost L across samples from the Omniglot dataset.

• For classification, x_t is the raw pixel input, y_t is the label.

• Data is presented to the network as follows: $(x_1, \text{null}), (x_2, y_1), \ldots, (x_T, y_{T-1})$.

• Network output is a softmax layer producing p_t with elements:

$$p_t(i) = \exp \left(W_{op}(i) \right) / \sum_j \exp \left(W_{op}(j) \right)$$

• For one-hot labels, episode loss is $L(\theta) = -\sum_t y_t \log p_t$.

• Expected cost L is the average over episodes.

• The DNC/NTM is trained using L.

• θ is the vector of collected parameters after training.
Experimental setup

• DNC/NTM parametrized by θ.
• Choose parameters θ^* to minimize expected cost \mathcal{L} across samples from the Omniglot dataset.
Experimental setup

- DNC/NTM parametrized by θ.
- Choose parameters θ^* to minimize expected cost \mathcal{L} across samples from the Omniglot dataset.
- For classification, x_t is the raw pixel input, y_t is the label.
Experimental setup

- DNC/NTM parametrized by θ.
- Choose parameters θ^* to minimize expected cost \mathcal{L} across samples from the Omniglot dataset.
- For classification, x_t is the raw pixel input, y_t is the label.
- Data is presented to the network as follows:
 $$\{(x_1, \text{null}), (x_2, y_1), \ldots, (x_T, y_{T-1})\}$$
Experimental setup

- DNC/NTM parametrized by θ.
- Choose parameters θ^* to minimize expected cost \mathcal{L} across samples from the Omniglot dataset.
- For classification, x_t is the raw pixel input, y_t is the label.
- Data is presented to the network as follows:
 \[(x_1, \text{null}), (x_2, y_1), \ldots, (x_T, y_{T-1})\]
- Network output is a softmax layer producing p_t with elements:
 \[p_t(i) = \frac{\exp(W^{op}(i)o_t)}{\sum_j \exp(W^{op}(j)o_t)}\]
Experimental setup

- DNC/NTM parametrized by θ.
- Choose parameters θ^* to minimize expected cost \mathcal{L} across samples from the Omniglot dataset.
- For classification, x_t is the raw pixel input, y_t is the label.
- Data is presented to the network as follows:
 \[(x_1, \text{null}), (x_2, y_1), \ldots, (x_T, y_{T-1})\]
- Network output is a softmax layer producing p_t with elements:
 \[p_t(i) = \frac{\exp(W^{op}(i)o_t)}{\sum_j \exp(W^{op}(j)o_t)}\]
- For one-hot labels, episode loss is
 \[\mathcal{L}(\theta) = - \sum_t y_t^T \log p_t\]
Experimental results

(a) LSTM, five random classes/episode, one-hot vector labels

(b) MANN, five random classes/episode, one-hot vector labels

(c) LSTM, fifteen classes/episode, five-character string labels

(d) MANN, fifteen classes/episode, five-character string labels

Source: [Santoro et al., 2016]
Experimental results

<table>
<thead>
<tr>
<th>Model</th>
<th>Instance (% Correct)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1<sup>st</sup></td>
</tr>
<tr>
<td>HUMAN</td>
<td>34.5</td>
</tr>
<tr>
<td>FEEDFORWARD</td>
<td>24.4</td>
</tr>
<tr>
<td>LSTM</td>
<td>24.4</td>
</tr>
<tr>
<td>MANN</td>
<td>36.4</td>
</tr>
</tbody>
</table>

Source: [Santoro et al., 2016]
Experimental results

- Persistent memory interference.

Source: [Santoro et al., 2016]
Experimental results

| Model | Controller | # of Classes | 1st | 2nd | 3rd | 4th | 5th | 10th |
|------------------------|------------|--------------|----------------|---------------|---------------|---------------|---------------|----------------|------------------|
| KNN (raw pixels) | – | 5 | 4.0 | 36.7 | 41.9 | 45.7 | 48.1 | 57.0 |
| KNN (deep features) | – | 5 | 4.0 | 51.9 | 61.0 | 66.3 | 69.3 | 77.5 |
| Feedforward | – | 5 | 0.0 | 0.2 | 0.0 | 0.2 | 0.0 | 0.0 |
| LSTM | – | 5 | 0.0 | 9.0 | 14.2 | 16.9 | 21.8 | 25.5 |
| MANN | Feedforward| 5 | 0.0 | 8.0 | 16.2 | 25.2 | 30.9 | 46.8 |
| MANN | LSTM | 5 | 0.0 | 69.5 | 80.4 | 87.9 | 88.4 | 93.1 |
| KNN (raw pixels) | – | 15 | 0.5 | 18.7 | 23.3 | 26.5 | 29.1 | 37.0 |
| KNN (deep features) | – | 15 | 0.4 | 32.7 | 41.2 | 47.1 | 50.6 | 60.0 |
| Feedforward | – | 15 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 |
| LSTM | – | 15 | 0.0 | 2.2 | 2.9 | 4.3 | 5.6 | 12.7 |
| MANN (LRUA) | Feedforward| 15 | 0.1 | 12.8 | 22.3 | 28.8 | 32.2 | 43.4 |
| MANN (LRUA) | LSTM | 15 | 0.1 | 62.6 | 79.3 | 86.6 | 88.7 | 95.3 |
| MANN (NTM) | LSTM | 15 | 0.0 | 35.4 | 61.2 | 71.7 | 77.7 | 88.4 |

Source: [Santoro et al., 2016]
Experimental results

- It is possible to learn from very few instances.
Experimental results

- It is possible to learn from very few instances.
- Meta-learning can extract relevant task structure.
Experimental results

- It is possible to learn from very few instances.
- Meta-learning can extract relevant task structure.
- DNC/NTMs learn quicker than LSTMs.
Experimental results

- It is possible to learn from very few instances.
- Meta-learning can extract relevant task structure.
- DNC/NTMs learn quicker than LSTMs.
- Another type of problem where DNCs are advantageous.
Experimental results

• It is possible to learn from very few instances.
• Meta-learning can extract relevant task structure.
• DNC/NTMs learn quicker than LSTMs.
• Another type of problem where DNCs are advantageous.
• Weakly inspired by how humans approach such a task.
Experimental results

- It is possible to learn from very few instances.
- Meta-learning can extract relevant task structure.
- DNC/NTMs learn quicker than LSTMs.
- Another type of problem where DNCs are advantageous.
- Weakly inspired by how humans approach such a task.
- Very narrow problem.
Experimental results

- It is possible to learn from very few instances.
- Meta-learning can extract relevant task structure.
- DNC/NTMs learn quicker than LSTMs.
- Another type of problem where DNCs are advantageous.
- Weakly inspired by how humans approach such a task.
- Very narrow problem.
- Structured input, temporal offset.
Experimental results

- It is possible to learn from very few instances.
- Meta-learning can extract relevant task structure.
- DNC/NTMs learn quicker than LSTMs.
- Another type of problem where DNCs are advantageous.
- Weakly inspired by how humans approach such a task.
- Very narrow problem.
- Structured input, temporal offset.
- Memory interference.
Experimental results

- It is possible to learn from very few instances.
- Meta-learning can extract relevant task structure.
- DNC/NTMs learn quicker than LSTMs.
- Another type of problem where DNCs are advantageous.
- Weakly inspired by how humans approach such a task.
- Very narrow problem.
- Structured input, temporal offset.
- Memory interference.
- Specific architecture.
Future work

• Meta-learning to find a suitable memory-addressing procedure.
Future work

- Meta-learning to find a suitable memory-addressing procedure.
- Learning across tasks, not different samples from one task.
Future work

• Meta-learning to find a suitable memory-addressing procedure.
• Learning across tasks, not different samples from one task.
• Active learning.
Future work

- Meta-learning to find a suitable memory-addressing procedure.
- Learning across tasks, not different samples from one task.
- Active learning.
- Attention mechanisms.

Human-level concept learning through probabilistic program induction.

arXiv.
