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Zdolność sieci neuronowych do adaptacji w uczeniu maszynowym

Paulina Tomaszewska

Seminarium z Metod Inteligencji Obliczeniowej - 28 kwietnia 2021

Paulina Tomaszewska



Introduction Architectures Self-paced learning Summary References

Outline

1 Introduction

2 Architectures
Shared trunk
Cross-talk

3 Self-paced learning
Uncertainty based
GradNorm

4 Summary

Paulina Tomaszewska



Introduction Architectures Self-paced learning Summary References

Multi-task learning

Motivation:
compact models inspired by human ability of
multi-tasking
better representations (more universal)
increased performance
decreased inference time (autonomous cars)

Main problem: negative transfer

Figure 1: High level architecture in multi-task learning [7]
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Initial application

Figure 2: Multi-label architecture [1]
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Shared trunk

Figure 3: Shared trunk architectures [3]
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Cross-stitch Networks for Multi-task Learning [6] (CVPR 2016)1

single shared extractor → separate network for each task with information flow

Figure 4: Problem definition [6]
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Cross-stitch Networks for Multi-task Learning [6] - motivation
”Given a pair of tasks, how should one pick a network architecture?”

Figure 5: Analysis of performance at different split levels [6]

Paulina Tomaszewska



Introduction Architectures Self-paced learning Summary References Shared trunk Cross-talk

Cross-stitch unit

”Enumerating all possible architectures for each set of tasks is impractical.
Should we have a completely shared representation between tasks?
Or should we have a combination of shared and task-specific representations?”

Figure 6: Cross-stitch unit [6]

Figure 7: Cross-stitch unit - formula [6]
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Cross-stitch network

Figure 8: Cross-stitch unit - backpropagation [6]
Figure 9: Cross-stitch network [6]
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Cross-stitch network - initialization

αS,D ⊂ [0, 1], αS + αD = 1 for stable learning (ensures that input and outputs are
of the same order of magnitude)
better initialize weights by training one-task networks than using transfer learning
(Imagenet)
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Performance on data-starved categories

Figure 10: Performance gain in attribute detection task [6]

Figure 11: Performance gain in semantic segmentation task [6]
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NDDR-CNN: Layerwise Feature Fusing in Multi-Task CNNs by Neural
Discriminative Dimensionality Reduction

Figure 12: NDDR-CNN architecture [4]
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Motivation

”What are the key components to determine whether or not MTL is better than
single-task learning (STL)? In response, we identify three components: model capacity,
task covariance, and optimization scheme.” [8]
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Baseline loss in MTL

L =
∑K

k=1 αk ∗ Lk

K - number of tasks in multi-task learning
Lk - loss in single task k
αk - coefficient corresponding to task k

Is it good idea to set coefficients uniformly?
Problem: losses from different tasks have different scales → gradient from small loss
tasks will be small making the training slow
Possible solution: use grid search to find optimal coefficients (but they are static)

Could it be done better?
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Multi-Task Learning Using Uncertainty to Weigh Losses for Scene
Geometry and Semantics (CVPR 2018) [5]

Two types of uncertainties in NN:
epistemic (could be mitigated in case of more data)
aleatoric:

data-dependent, heteroscedastic
task-dependent, homoscedastic

Lk := Lk/σ
2 + log(σ)

L =
∑K

k=1 Lk
σ - homoscedastic uncertainty
log(σ) - regularization
The bigger the uncertainty, the smaller the contribution to overall loss.
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GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep
Multitask Networks (ICLM 2018) [2]

Figure 13: Preliminaries [2]

Figure 14: Target gradient norm [2]

Figure 15: Loss related to GradNorm (second term is treated as constant
during differentiation [2]

Paulina Tomaszewska



Introduction Architectures Self-paced learning Summary References Uncertainty based GradNorm

GradNorm

Figure 16: Scheme [2]
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Summary

Multitask learning- research in 3 domains:
task similarity
architecture
optimization
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Improving Information Transfer in Multi-Task Learning”. In: International
Conference on Learning Representations. 2020. url:
https://openreview.net/forum?id=SylzhkBtDB.

Paulina Tomaszewska

https://arxiv.org/abs/1604.03539
https://arxiv.org/abs/1706.05098
https://openreview.net/forum?id=SylzhkBtDB

	Introduction
	Architectures
	Shared trunk
	Cross-talk

	Self-paced learning
	Uncertainty based
	GradNorm

	Summary
	References

