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Motivation

1. Typical neural networks have static computation graph and
parameters after training.

2. Dynamic neural networks can adapt their structure and
parameters during inference.
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Dynamic neural networks

1. Efficiency: Can allocate computation during inference
conditioned on the input.

2. Representation power: Data-dependent structure or
parameters enlarge the parameter space.

3. Adaptiveness: Allow to achieve a trade-off between accuracy
and efficiency.
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Dynamic neural networks

4. Compatibility: Dynamic mechanisms are often orthogonal to
advancements in other methods.

5. Generality: Mechanisms of adaptation can be transferred
between problem domains.

6. Interpretability: Adaptation offers another axis for
interpreting the models.
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Sample-wise models



Sample-wise models

Based on each sample:

1. Adjust architecture to appropriately allocate computation.

2. Adapt parameters to increase representational power.
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Early exiting – model cascade
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Figure 1: Cascading of models.
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Early exiting – model cascade

Figure 2: Big/Little Deep Neural Network [11].
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Early exiting – model cascade

Figure 3: Network topology selection for AlexNet, GoogleNet, and
ResNet [1].
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Early exiting – intermediate classifiers
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Figure 4: Network with intermediate classifiers.
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Early exiting – intermediate classifiers

Figure 5: Early exiting system for AlexNet [1].
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Early exiting – intermediate classifiers

Drawbacks:

1. Classifiers can interfere with each other.

2. High-resolution features lack high-level information required
for classification.

3. Early classifiers can force the shallow layers to produce
task-specific features.
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Early exiting – multi-scale processing
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Figure 6: Multi-scale Dense Network (MSDNet) [6].
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Early exiting – multi-scale processing
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Figure 7: Routing networks [10].
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Early exiting – multi-scale processing
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Figure 8: Resolution Adaptive Network (RANet) [15]. 15



Early exiting – multi-scale processing

Figure 9: MSDNet vs RANet [15]
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Early exiting vs layer skipping

1. Early exiting: skip execution of layers after a certain classifier.

2. Layer skipping: skip execution of intermediate layers.
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Layer skipping – halting score
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Figure 10: Halting score.
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Layer skipping – halting score

Figure 11: Adaptive skipping of layers in ResNet based on a halting
score [4].
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Layer skipping – halting score

Figure 12: Adaptive computation time for one block of residual units in
ResNet [4].
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Layer skipping – halting score

Figure 13: Layers in ResNet can be adaptively repeated based on an
adaptive computation time [9].
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Layer skipping – gating function
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Figure 14: Gating function.
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Layer skipping – gating function

Figure 15: SkipNet learns to skip certain convolutional layers with a
gating module [13].
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Layer skipping – policy network
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Figure 16: Policy network.
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Layer skipping – policy network

Figure 17: Policy Network predicts drop / keep decisions for the layers
of a ResNet [14].
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Dynamic depth vs dynamic width

1. Dynamic depth: adapt the number of executed layers.

2. Dynamic width: adjust the number of units (e.g., neurons,
branches) executed in a given layer.
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Cascade of models vs mixture of experts

1. Cascade of models: models are executed serially.

2. Mixture of experts (MoE) [7]: modules are run in parallel
and their output is fused.
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Mixture of experts – soft weighting
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Figure 18: Soft attention in MoE.
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Mixture of experts – hard weighting
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Figure 19: Hard attention in MoE.
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Mixture of experts: soft weighting vs hard weighting

1. Soft weighting: all experts have to be executed even in test
time.

2. Hard weighting: computation can be limited to experts with
non-zero weights.
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Mixture of experts – tree structure
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Figure 20: Tree structure.
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Dynamic structure vs dynamic parameters

1. Dynamic structure: efficient allocation of resources, but
might require custom training strategies.

2. Dynamic parameters: minor increase in computational cost,
but allows to increase representational power.
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Dynamic parameters

Main research directions:

1. Adapt trained parameters based on the input.

2. Directly generate parameters based on the input.

3. Rescale features with soft attention.
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Dynamic parameters – weight adjustment
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(c) Soft attention for dynamic features.Figure 21: Dynamic weight adjustment.
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Dynamic parameters – weight adjustment

Figure 22: Deformable convolution adjusts offsets for spatial sampling
locations of a convolution filter [3].
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Dynamic parameters – weight adjustment

Figure 23: Deformable pooling adjusts offsets for spatial sampling
locations of a pooling operation [3].
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Dynamic parameters – weight adjustment

Figure 24: Deformable convolution enables image processing with an
adaptive receptive field [3].
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Dynamic parameters – weight prediction
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(c) Soft attention for dynamic features.Figure 25: Dynamic weight prediction.
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Dynamic parameters – weight prediction

Figure 26: Dynamic Filter Network predicts convolution filters
dynamically based on the input [8].
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Dynamic parameters – soft attention
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Figure 27: Soft attention.
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Dynamic parameters – soft attention

Figure 28: Dynamic Convolution aggregates multiple convolution kernels
based on the input [2].
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Dynamic parameters

1. Weight adjustment / prediction: increase representational
power with a small increase in the number of parameters.

2. Soft attention: increase model complexity without increasing
depth or width.
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Spatial-wise models



Spatial-wise models

1. Not all image locations are equally relevant in computer vision.

2. Spatial dynamic computation can eliminate some redundancy.

3. Such models adapt computation differently to spatial locations.
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Spatial-wise models – dynamic convolution
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Figure 29: Dynamic convolution on selected spatial locations.
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Spatial-wise models – dynamic convolution

Figure 30: Efficient algorithms for processing sparse matrices are
required [12].
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Spatial-wise models – region-level dynamic inference
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Figure 31: Region-level dynamic inference.
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Temporal-wise models



Temporal adaptive inference – skip update
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Temporal adaptive inference – partial update
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Temporal adaptive inference – skip tokens
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Figure 34: Temporal dynamic jumping.
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Temporal adaptive inference – skip tokens

Figure 35: Adaptive mechanism in an RNN decides how many input
tokens to skip [16].
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Training and inference



Decision making mechanisms – sumary

1. Confidence-based criteria

2. Policy networks

3. Gating functions
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Training dynamic networks

1. Multi-exit: minimize weighted cumulative loss of all classifiers.

2. Encourage sparsity: minimize an auxiliary loss that promotes
sparsity.
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Q&A
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