
CI in General Game Playing - to date
achievements and perspectives

Karol Walȩdzik and Jacek Mańdziuk

Faculty of Mathematic and Information Science,
Warsaw University of Technology,

Pl. Politechniki 1, 00-661 Warsaw, Poland,
{k.waledzik,j.mandziuk}@mini.pw.edu.pl

Abstract. Multigame playing agents are programs capable of autono-
mously learning to play new, previously unknown games. In this paper,
we concentrate on the General Game Playing Competition which de-
fines a universal game description language and acts as a framework for
comparison of various approaches to the problem. Although so far the
most successful GGP agents have relied on classic Artificial Intelligence
approaches, we argue that it would be also worthwhile to direct more
effort to construction of General Game Players based on Computational
Intelligence methods. We point out the most promising, in our opinion,
directions of research and propose minor changes to GGP in order to
make it a common framework suited for testing various aspects of multi-
game playing.

1 Introduction

One of the most interesting areas of contemporary research on application of
Artificial Intelligence (AI) and Computational Intelligence (CI) to mind games
is the topic of multigame playing, i.e. development of agents able to effectively
play any game within some general category being informed only about the rules
of each of the games played. This poses a unique challenge to the AI community,
as all the most successful game playing agents to date have been developed to
achieve master level of play only in their specific games. Creating a system ex-
hibiting high playing competency across a variety of previously unknown games
would be a significant step in CI/AI research.

In the remainder of this paper we introduce the General Game Playing (GGP)
framework and deal with the CI perspectives in GGP. We devote chapter 4 to
analysis of possible machine learning approaches to GGP – identifying elements
of existing programs (mainly AI-based) that can be incorporated into soft learn-
ing solutions and proposing a number of possible research directions. Finally, in
chapter 5 we argue that GGP can easily become a universal multigame play-
ing platform, useful in many research areas, even outside the context of the
GGP tournament, as long as some necessary extensions are introduced into the
standard.



2 General Game Playing Competition

General Game Playing (GGP) [3] is one of several approaches to the multigame
playing topic. It was proposed at Stanford University in 2005 in the form of
General Game Playing Competition held annually at the National Conference for
Artificial Intelligence [4]. General Game Players are agents able to interpret game
rules described as a set of Game Description Language (GDL) [6] statements in
order to devise a strategy allowing them to play those games effectively without
human intervention.

The competition always includes a wide variety of games, both known pre-
viously and devised specifically for the tournament. Contestants should be pre-
pared to deal with games of various complexity, varied branching factors and
numbers of players, both cooperative and competitive.

2.1 Game Description Language

Game Description Language (GDL) [6] is used to describe the rules of the class
of games playable within the GGP framework, i.e. finite, discrete, deterministic
multi-player games of complete information. GDL describes games in a variant of
Datalog. Game states are defined in terms of facts and algorithms for computing
legal moves, subsequent game states, termination conditions and final scores for
players are represented as logical rules.

3 GGP competition winners

In this section, selected most notable achievements in the field of GGP agents
development are described. As it will become evident in the following sections,
the winners of the first four editions of the contest relied on AI rather than CI
methods. We believe, however, that elements of these successful AI solutions may
be transferable to more CI-focused approaches, and these transferable aspects
will be described in more detail in further chapters.

3.1 Cluneplayer

Cluneplayer [1], developed by James Clune, was the champion of the first and
vice-champion of the second GGP tournament. It relies heavily on game domain
specific observation that most mind games share a number of common concepts
important in close-to-optimal play. Extracting definition of these crucial game
features from game description should allow construction of a new simplified
game in the form of a compound lottery based on the three core aspects of the
original game: expected payoff, control (or mobility) measure and game termi-
nation probability (or game longevity). The expected outcome of thus created
model approximates original game state evaluation.



3.2 Fluxplayer

Fluxplayer [9] was developed by S. Schiffel and M. Thielscher and proved supe-
rior to Cluneplayer in the second GGP championship. Similarly to Cluneplayer it
depends on depth-first game tree search algorithm with widely known enhance-
ments and automatically generated evaluation function based on fuzzy logic
concepts. In each analyzed state approximate truth values of terminal and goal
formulas are calculated and the program attempts to end the game whenever its
goal is attained and avoid reaching terminal states when it would mean its loss.

3.3 CadiaPlayer

Cadiaplayer, developed by H. Finnsson and Y. Björnsson [2], is the first pro-
gram that managed to win the GGP tournament two times in a row – in 2007
and 2008. Unlike earlier champions, it does not concentrate on advanced anal-
ysis of game description, relying, instead, on strong simulation-based game tree
evaluation algorithm. Its operation is, in general case, based on Monte Carlo
simulations enhanced by the UCT (Upper Confidence bounds applied to Trees)
method. Cadiaplyer repeatedly plays partially random matches, gathering sta-
tistical data on each moves’ relative strength. The move choice routine in each
of the simulated matches is partially guided by the move quality data gathered
so far.

4 Computational Intelligence perspectives in GGP

So far all GGP champions relied on traditional AI approaches in the form of
deterministic analysis of game description (in order to identify some well known
patterns) and sophisticated game tree search algorithms. This is probably, to
a large extent, caused by severely limited time allotted for learning before the
actual match starts, while most CI learning processes require repetitive and
time-consuming learning patterns presentation or environment sampling.

Even though current tournament rules make it difficult for an agent relying on
Computational Intelligence methods to compete against deterministic symbolic
approaches and/or brute-force game tree analysis algorithms in the competition
itself, GGP-like environment with increased learning time limits can be used as a
common test bed for various approaches to multigame playing agent implemen-
tation. In the following sections we intend to present our view on the promising
research directions and concepts in this area.

Most perfect-information deterministic game playing agents make use of var-
ious minimax algorithms, and so far there is no evidence that this approach
should be unsuitable for multigame playing. The most difficult (and interesting)
part of minimax search-based agent development is construction of its game state
evaluation function. There are many possible representations of this heuristic,
but two of them have gained most popularity: linear combination of selected
state features and artificial neural networks. In any case, the input game fea-
tures should first be identified. Before presenting our solutions to those questions,



we want, however, to take a peek at a CI-based GGP agent, which we think may
provide inspiration for further research in the field of multigame playing with
machine learning methods.

4.1 nnrg.hazel

nnrg.hazel [8] is one of the applications that suggest that CI-based approaches
may yet prove successful in GGP-like problems. It was developed by J. Reisinger,
E. Bahçeci, I. Karpov and R. Miikkulainen and came 6th (out of 12 contestants)
in 2006 GGP Competition (5th in the preliminary rounds).

nnrg.hazel makes use of minimax game tree search method based on alpha-
beta pruning algorithm with a depth limit of one ply. Game state evaluation
function is represented as an artificial neural network (ANN). It is generated
by a co-evolutionary method, evolving network topology and connection weights
simultaneously. This is done using a method called NeuroEvolution of Augment-
ing Topologies (NEAT) [10]. It starts with the simplest possible fully-connected
network with input and output layers only, which is then incrementally com-
plexified to incorporate gradually more complex concepts without forgetting the
knowledge already acquired.

The most obvious weakness of nnrg.hazel is its lack of any ‘intelligent’ ANN
input data generation algorithm. Instead, the agent simply relies on random
projection of game state features onto a 40-node ANN input layer. Improvements
in this area, described more closely in the following section, seem to be the most
obvious path of further development of NEAT-based General Game Players.

4.2 Game state features identification in existing solutions

While nnrg.hazel is able to achieve surprisingly promising results with only ran-
dom projection of state description facts onto the evaluation function input
vector, even its authors admit that it can be expected to fare much better with
better input features generation routines. The input vector of a state evaluator
should ideally include intelligently selected both static (e.g. pieces counts) and
dynamic (e.g. mobility) features of the game state.

The first widely cited and influential paper on game features identification
and generation was published by G. Kuhlmann, K. Dresner and P. Stone [5].
Their approach consists in syntactical analysis of game description (supported
by simple simulations) in search for a set of general patterns, such as successor
relations (inducing ordering), counters (incrementing in each time step according
to successor relation), two-dimensional boards, markers (occupying cells on a
board) and pieces (markers that can exist at at most one cell on a board at
a time). Having identified these structures, it is possible to easily create a set
of game features such as Manhattan distances between pieces or number of
occurrences of markers.

Cluneplayer’s game state features identification process is to some extent
similar. A set of candidate features contains initially all expressions found in the
game description. Additional features are then generated by automatic discovery



of possible constants that can be substituted for all the variables in these ex-
pressions. Dedicated analysis algorithm can furthermore identify constant values
that are, in some way, ’special’ (i.e. differ significantly from the rest). Afterwards,
Cluneplayer attempts to impose interpretations on the resulting features. The
three available interpretations are solution cardinality, symbol distance and par-
tial solution.

Fluxplayer takes the concept even further by replacing syntactic analysis of
game description with exploration of semantical properties of rules definitions.
That way higher level concepts can be detected more easily and with greater
confidence. Fluxplayer evaluation function may make use of structures such as
successor and order relations.

4.3 Constructing game state features in CI-based solutions

All the above-mentioned approaches have proved relatively successful as part of
AI programs and we think that they may also be utilized in CI-based solutions
for creating input vectors for evaluation functions in any form. What is worth
noting, is that the patterns identified by the described applications generally fall
into two categories:

1. universal logical predicates (e.g. successor and order relations) and expres-
sions explicitly provided in game rules;

2. ‘real-world’ mind game specific predicates (e.g. boards, pieces).

We believe that truly universal and purely CI-based GGP agent should not
include any of the latter, as there is no inherent reason stemming from the prob-
lem specification to assume that, e.g., the concept of board should be generally
applicable.

In many cases the number of identified game features will be too big to
directly include them all in the evaluation function (whatever its form). In such
cases, some selection or dimensionality-reduction mechanism will be required.
This task can be accomplished by deterministic methods; they may,

The simplest approach might be parallel construction of several state evalu-
ators with varied input features sets and occasional comparison to decide which
of them should be maintained in the pool of candidate solutions and which
should be discarded. New candidate features sets can be generated randomly
or via modification of existing sets depending on training results, e.g. utilizing
sensitivity analysis.

4.4 Soft learning in GGP research direction proposals

Although the specifics of multigame playing application must differ significantly
from the single-game programs, we believe that much of the knowledge gathered
during development of single-game learning agents is transferable to the multi-
game case. One of the distinguishing aspects of GGP agents is that game tree
traversal and identification of legal moves may prove much more time-consuming



than in the case of single-game programs, since in GGP both these operations
require costly theorem proving. Depending on the detailed setup of the learning
approaches, this fact may make some methods less useful than others. Particu-
larly, coevolutionary training schemes may turn out to be slower than expected.

We believe that one of the approaches that may be effective in terms of game
tree traversal cost might be the layered learning scheme described, in the context
of evolutionary algorithm, in [7]. The method requires dividing the game into
several disjoint stages and gradually creates evaluation function applicable to
all of them. First, a number of end-game positions are generated via random
play. These positions are analyzed with minimax algorithm without evaluation
function with the expectation that the search will reach terminal states in most
of the cases; the rest will have neutral value assigned. This way a training set
of game states with their evaluations is generated and any supervised learning
method can be used to construct the heuristic evaluation function. A number of
new positions from an earlier game stage is then generated and evaluated using
minimax search with depth limit of at least game stage length and the heuristic
evaluation function from previous step. The new training set is used for further
improvement of evaluation function. This process is repeated until the game tree
root is reached.

GGP covers a very wide spectrum of possible games. Many machine learning
algorithms can prove very sensitive to the choice of their parameters and game-
specific features. Ideal General Game Player should, therefore, be able to tune
its learning patterns to the problem at hand. We propose two basic approaches
allowing to achieve this goal.

Firstly, the agent’s training scheme could involve tuning the learning algo-
rithm’s steering parameters. This task could be performed by employing some
kind of an evolutionary approach analogical to the one proposed for input fea-
tures selection. A population of candidate solutions would be trained with sep-
arate sets of steering parameters. Their training results would occasionally be
compared in order to identify the most promising individuals. The weakest would
then be disposed of and the strongest reproduced into the next population. At
some point the parameters would usually have to be frozen, and training of sin-
gle candidate would continue to further optimize the evaluation function until
some stop condition (e.g. running out of time) was met.

More sophisticated applications might take the same idea further and try to
not only choose the best steering parameters but the training algorithm itself,
comparing, for instance, various representations of evaluation function and/or
learning schemes. The principles of the selection process would remain similar
to those described in the previous paragraph, with parallel application of all
the schemes and occasional comparison of their quality to abandon the weak-
est solutions. Alternatively, a whole ensemble of evaluation functions could be
constructed along with rules describing how their results should be combined
depending, for instance, on game phase.



5 GGP framework extension proposals

5.1 Opponent modeling

GGP, in its current form, does not offer enough information to seriously attempt
long-term modeling of individual opponents. Contestants typically resort to one
of popular simplifications: assuming that other players will implement decision
process analogical to the playing agent’s one, treating other players as opponents
attempting to minimize the agent’s score or simply considering random reactions
of other players.

GGP framework can, however, easily be extended to include unique identifiers
of players, thus forming a useful opponent modeling test bed. Game playing
agents would then be able to gather knowledge about individual players’ behavior
and transfer it from match to match. Full opponent modeling scheme should also
attempt to identify cross-game elements of player style, such as its aggressiveness
(tendency to play risky moves, that may yield both high rewards and losses,
depending on other players’ responses), ability of long-term, strategic planning,
probability of employing mobility strategies and so on. Identified traits could
then be incorporated into game simulation and minimax tree analysis algorithms
to better predict opponents’ behavior.

5.2 Knowledge transfer

Analogically to the case of opponent modeling, cross-game knowledge transfer
is a goal very difficult to pursue in the current form of GGP framework. Game
playing agents are not provided with game names or categorization and, during
the tournament, even the GDL constants and predicate identifiers are garbled
to devoid the programs of any lexical clues to their meaning. In this context,
knowledge transfer would require very sophisticated game description analysis
able to identify and extract patterns common to the games.

GGP framework communication protocols could, however, yet again be slightly
modified in order to create a cross-game knowledge transfer testing environment,
in which agents are provided with game names and categorization and GDL
atoms with same names represent analogical data in varied games. In the sim-
plest approach, game agent could attempt to store metaparameters that proved
most successful in evaluation function learning for each game and attempt to
select one of those sets whenever a new game is encountered (relying on game
similarities). In case of games classified into the same category and sharing a
significant number of concepts, the learning phase could gain a head-start by
starting from solutions based on evaluators successful in similar games, instead
of learning from scratch.

6 Summary

Although not new, the concept of multigame playing remains a very interesting
and still little explored research area. We believe that it is well suited for ap-
plication and comparison of various Computational Intelligence methods. One



of the important factors that could help this research area flourish, would be a
common framework defining class of games along with their description language
that should be understood by the game playing agents and allowing direct com-
parison of various approaches. General Game Playing competition offers exactly
that.

Although so far the tournaments seem better suited for symbolic approaches,
we argue that it is possible to create a reasonable CI-based GGP player. In this
paper, we have discussed the key aspects of developing CI-based General Game
Players, identified the elements of the existing applications that can be trans-
ferred to machine learning approaches and proposed several promising research
directions for the CI community. Implementation and validation of some of these
proposals is, at the moment, a work in progress.

At the same time, we have pointed out that some aspects of multigame
playing, such as opponent modeling and cross-game knowledge transfer, are pro-
hibitively hard to tackle in the current form of the GGP framework. We therefore
propose slight modifications to its definition so that it can become a standard
multigame playing platform for testing and comparison of various approaches,
even outside the scope of the annual championship.

References

1. J. Clune: Heuristic evaluation functions for General Game Playing. In Proceed- ings
of the Twenty-Second AAAI Conference on Articial Intelligence (AAAI- 07), pages
1134–1139, Vancouver, BC, Canada, 2007. AAAI Press.

2. H. Finnsson, Y. Björnsson: Simulation-based approach to General Game Playing. In
Proceedings of the Twenty-Third AAAI Conference on Articial Intelligence (AAAI-
08), pages 259–264, Chicago, IL, 2008. AAAI Press.

3. General Game Playing website. http://games.stanford.edu/.
4. M. Genesereth, N. Love: General Game Playing: Overview of the AAAI Competi-

tion. http://games.stanford.edu/competition/misc/aaai.pdf, 2005.
5. G. Kuhlmann, K. Dresner, and P. Stone: Automatic heuristic construction in a com-

plete General Game Player. In Proceedings of the Twenty-First AAAI Conference on
Artificial Intelligence (AAAI-06), pages 1457–1462, Boston, MA, 2006. AAAI Press.

6. N. Love, T. Hinrichs, D. Haley, E. Schkufza, M. Genesereth:
General Game Playing: Game Description Language Specification.
http://games.stanford.edu/language/spec/gdl spec 2008 03.pdf, 2008.

7. J. Mańdziuk, M. Kusiak, K. Walȩdzik: Evolutionary-based heuristic generators
for checkers and give-away checkers. Expert Systems, 24(4): 189–211, Blackwell-
Publishing, 2007.

8. J. Reisinger, E. Bahçeci, I. Karpov and R. Miikkulainen: Coevolving strategies for
general game playing. In Proceedings of the IEEE Symposium on Computational In-
telligence and Games (CIG’07), pages 320–327, Honolulu, Hawaii, 2007. IEEE Press.

9. S. Schiffel, M.Thielscher: Automatic Construction of a Heuristic Search Function for
General Game Playing. In Seventh IJCAI International Workshop on Non-monotonic
Reasoning, Action and Change (NRAC07).

10. K. O. Stanley and R. Miikkulainen: Evolving neural networks through augmenting
topologies. Evolutionary Computation, 10(2):99–127, 2002.


