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NOTES

ALPHA-BETA SEARCH ENHANCEMENTS WITH A REAL-VALUE GAME-STATE
EVALUATION FUNCTION

Jacek Mándziuk1 and DanielOsman1

Warsaw, Poland

ABSTRACT

The note presents results of applying several Alpha-Beta search enhancements in the game of give-
away checkers with a real-value state evaluation function. In particular, the MTD-bi (bisection)
algorithm is tested and compared (1) with MTD(f ) and (2) with Alpha-Beta search enhanced with
transposition tables and the history heuristic. The results show that in the real-value domain the
MTD(f ) algorithm becomes impractical and loses its superiority over MTD-bi. Several remarks
concerning possible implementations of different replacement schemes in transposition tables are
presented and discussed.

1. INTRODUCTION

Integer evaluation functions are used in many game-playing programs. There are two reasons: (1) the speed
(floating point operations are slower than integer ones) and (2) there is often no need for a real-value state
evaluation. The elements of a game-state feature vector are usually integers or can be made integers by
multiplying all values by a factor of 10. Moreover, an integer representation seems natural. However, this can
change due to the growing popularity of computer learning algorithms. For instance, in Temporal Difference
learning and in other reinforcement learning algorithms (Kaelbling, Littman, and Moore, 1996) the weights of
the evaluation function are real values. This in itself forces us to abandon the integer representation. However,
in minimax algorithms, the format of the state value is unimportant. Only the relative differences between
values matter. Therefore one could convert the real-value state evaluation function into an integer one, e.g.,
in the following way:Vint = round(1

ε · Vfloat), whereε is the acceptable error value, e.g.,ε = 0.01. Yet,
this type of conversion implies another problem: the information about small (less thanε) differences between
state values is lost. It can be acceptable once an optimal set of weights is developed. However, during learning
we usually cannot afford to ignore even the smallest differences between state values. For instance, if the
evaluation function is a sigmoidal neural net (Tesauro, 1992), a difference of0.001 does not necessarily imply
that the compared states are similar. First, it is hard to estimate which level of granularity is satisfactory.
Furthermore, ignoring even a small difference may result in losing some important line of strategy that has
just been learned. In that case the chance of reinforcing the weights that were responsible for choosing this
strategy is lost. Second, it is not the real-value representation by itself that introduces anything new in game-
tree search algorithms. It is rather the increase of distinct values of the evaluation function or the increase of its
granularity. The conversion presented above reduces the granularity only to some extent, depending onε. In
Plaat (1996a) the author suggested that a fine-grained evaluation function may be a problem for the MTD(f )
algorithm (Plaatet al., 1996b) which is considered the state-of-the-art game-tree search method in the integer
domain. Up to our knowledge, no one has yet conducted experiments involving this problem.

Fixed-depth game-tree search algorithms have been widely analysed by several authors. Most practical tests
were done using an integer evaluation function with only some exceptions - for instance, theCRAY BLITZ

chess program (Hyatt, Gower, and Nelson, 1990) used real values. In this note we analyse a few common
Alpha-Beta search enhancements in the real-value domain. The results presented in Section 5 show that a
domain change does not effect the standard Alpha-Beta enhancements such as the history heuristic (Schaeffer,
1989) and the transposition tables (Lazar, 1995). The observable effect was that the MTD(f ) algorithm lost
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its superiority. Throughout the note we try to explain why this happened and propose replacing MTD(f ) by
MTD-bi when performing game-tree search in the real-value domain. This note describes the first stage of a
larger experiment tailored to the application of various temporal-difference approaches to playing give-away
checkers (Mándziuk and Osman, 2004).

The note is organized as follows. In Section 2 we briefly describe the game of give-away checkers and in-
troduce the domain of the evaluation function. In Section 3 the MTD(f ), realMTD(f ), MTD-bi, and MTD-
step(f ) algorithms are discussed. Section 4 describes the experimental design and Section 5 presents the
results. Conclusions and directions for future research are given in Section 6.

2. GIVE-AWAY CHECKERS

The rules of give-away checkers (Alemanni, 1993) are exactly the same as those of checkers (ACF, 1990). The
only difference is the goal of the game. In give-away checkers the aim of the player is to lose all his2 pieces.
Formally a player is considered a winner when no legal move can be made in his turn.

It should be noted that there exist several variants of the game of checkers (and consequently also of give-away
checkers). In this work we have adopted one of the most popular variants, with the so-called US rules (8 x 8
game board, capturing a piece by another piece is allowed only in a forward move, capturing a piece by a king
is allowed in either direction, kings in non-capturing moves are allowed to move in any direction but only by
one square). The game at first glance may seem trivial or at least not interesting, but actually its complexity
goes far beyond this first impression. For instance, the naive approach based on losing stones as fast as possible
is completely unsuccessful. A much more “sophisticated” approach is required to achieve a good level of play.

Due to sharing the same rules of playing, the games of checkers and give-away checkers share the same key
characteristics important in analysing game-tree search algorithms (Schaefferet al., 1996). For instance, the
branching factor for both games is located between 2 and 3.

In our experiment a real-value state evaluation function denoted byV (s) is used. In brief, it is a straightfor-
ward weighted sum of game-state features limited byMIN andMAX, i.e.,V (s) ∈ (MIN ; MAX), where
MIN = −100 andMAX = +100.

3. ALGORITHMS TESTED

A transposition table with220 records was used in our experiments. However, the state space for checkers (and
give-away checkers) is about1020, that is approximately14 orders of magnitude greater than what can fit in
a transposition table. Sooner or later transposition-table conflicts will occur while saving a new state in place
of an old one. This problem must be handled by an appropriate replacement scheme (Breuker, Van den Herik,
and Uiterwijk, (1994); Lazar, 1995). Three replacement schemes were tested in this work. “If newer” - the
new record is always saved in place of an older one. “If deeper” - the results of a new search replace the old
ones only if the new search was performed to a greater or equal depth. “If deeper + timestamp” - all records
while being saved are timestamped with the current move number (incremented after each saving). The new
record is saved only ifnew.depth + new.timestamp ≥ old.depth + old.timestamp. Quite surprisingly,
the simplest of the above schemes (i.e., “if newer”) was the most effective in both the execution time and the
evaluated nodes count. The results presented in Section 5 show that the overall performance varied up to 17
per cent depending on which scheme was selected.

The MTD(f ) algorithm

In Plaatet al., (1996b,c) the MTD class of algorithms was introduced, among which the MTD(f ) algorithm
is currently the state-of-the-art in fixed-depth game-tree search, at least for integer evaluation functions. The
code of MTD(f ) for integer values is presented in Figure 1(a). Function MT(s, b− 1, b) in line 4 is equivalent
to a fail-safe, null-window Alpha-Beta(s, b−1, b) algorithm enhanced with a transposition table and the history
heuristic (Schaeffer, 1989). The search window is limited toα = b − 1 andβ = b ands is the state to be
expanded. MT returns the lower (f−) or the upper (f+) bound of the final outcome in every repeat-until
iteration. The idea of MTD(f ) is to call MT(s, b − 1, b) or indeed any other fail-safe, null-window variant
of Alpha-Beta repeatedly untilf− equals or exceedsf+. The valuef is the first rough prediction of the
final outcome. Tests in Plaatet al. (1996b) showed that more accurate predictions tend to cause MTD(f )

2In this note we use ‘his’ and ‘he’ when ‘her/his’ and ‘she/he’ are possible
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function MTD(f )
1: f+ := MAX; f− := MIN ;
2: if ( f = MIN ) then b := f + 1 elseb := f ;
3: repeat
4: g := MT (s, b− 1, b)
5: if ( g < b ) then f+ := g elsef− := g;
6: if ( g = f− ) then b := g + 1 elseb := g;
7: until f− ≥ f+

8: return g;

(a) MTD(f) algorithm working on integer values.

function MTD-bi
1: f+ := MAX; f− := MIN ;
2: repeat
3: b := (f+ + f−)/2 + ε

2
4: g := MT (s, b− ε, b)
5: if ( b− ε < g < b ) then return g;
6: if ( g < b ) then f+ := g elsef− := g;
7: until forever

(b) MTD-bi algorithm.

Figure 1: MTD(f ) and MTD-bi algorithms.

to work faster because fewer repeat-until iterations need to be performed. Null-window Alpha-Beta search
terminates faster than wide-window Alpha-Beta(s,MIN,MAX) because much more cutoffs occur during
the search. Additionally, repeated executions of MT use results from previous calls saved in the transposition
table. Empirical results show that MTD(f ) should be faster than wide-window Alpha-Beta(s,MIN, MAX)
search as long as the number of repeat-until iterations is kept low (below 20).

The realMTD(f ) algorithm

A naive modification of MTD(f ) making it useful in the real-value domain involves replacing every appearance
of “+1” in Figure 1(a) by “+ε” which is the greatest acceptable error value. Additionally, in a continuous
domain, instead of a null window anε-window has to be used. Thus after line 4, a check whetherg falls
between (b− ε; b) needs to be performed. If it does, theng is not a bound but an exact value and the algorithm
terminates. Finally, the termination condition (line 7) also needs to be changed into:until f+ − f− < ε. The
algorithm modified in the way described above is denoted by realMTD(f ).

Unfortunately the above straightforward modification of the discrete MTD(f ) encounters serious practical
problems. Let us assume that the repeatable execution of MT(s, b − ε, b) in line 4 returnsg, g − 0.01, g −
0.02, . . . , g − 0.99 in the consecutive repeat-until iterations. Thus in each iteration a very small step towards
the exact outcome is made. If for instancef = 0 and the actual backed-up score of states is -50 then reaching
this value could take a very long time. In fact, such situations occurred many times in our tests. For instance,
returning the value−56.81 from f = 0 andε = 0.01 required752 repeat-until iterations and lasted149.62
seconds. Computing the same move with a wide window MT(s,MIN,MAX) required only15.01 seconds.

In integer domains the number of repeat-until iterations in MTD(f ) is limited byL = MAX −MIN . This
is because in the worst case in every iteration eitherf+ is decreased by 1 orf− is increased by 1. Hence, the
difference (f+ − f−) has to decrease by at least 1 in each iteration. Using realMTD(f ) in real-value domains
can result in the number of iterations reachingL = MAX−MIN

ε . This can be a large number especially if
ε is small. One can use greater values ofε in order to lower this theoretical bound. However, there are two
reasons against doing this. First, greaterε means greater error. This problem can be solved by inserting the
line g := MT (s, f−, f+) just before returningg in the final line. Consequently one more execution of MT is
performed, but an exact value is returned. Second, greaterε means wider search windows in MT(s, b − ε, b).
This means that the advantage of a narrow window search is partly lost. Using realMTD(f ) would require to
start always with a very accurate initial predictionf , which makes the algorithm impractical.

The MTD-bi algorithm

Instead of taking smallε-steps in every repeat-until iteration, an algorithm that takes greater steps towards
the final outcome is needed in practice. That is why an algorithm based on MTD-bi (bisection) (Plaatet al.,
1996b) was implemented and used instead of realMTD(f ). The code of MTD-bi is presented in Figure 1(b).
Like beforeε = 0.01 ands is the state being expanded. In every repeat-until iteration the algorithm performs
anε-window search in the middle of the interval defined byf− andf+. It is important to note that in this case
ε does not stand for an acceptable error value. It only represents the size of a search window. MTD-bi for any
ε > 0, always returns exactly the same value as would be returned by plain Alpha-Beta(s, MIN,MAX). This
is guaranteed by line 5 and the lack of a termination condition in line 7. The algorithm terminates only when
g is found to be in the current search window. In MTD-bi the number of repeat-until iterations is limited by
L = log2(

MAX−MIN
ε ) which in the case ofMIN = −100, MAX = +100 andε = 0.01 givesdLe = 15.

Actually, in practical tests described in Section 5 this theoretical bound was never reached.
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The MTD-step(f ) algorithm

Another variant of the MTD family that seems to be suitable in real-value domains is MTD-step(f). In this
algorithm after the initial guess off , a step is made towards the final outcome value. Step sizes can vary
between iterations. With a good initial guess and smart step sizes MTD-step(f) outperforms MTD-bi. The
latter algorithm however is less problem dependent and is recommended when the initial guess and the step
sizes are hard to predict. One can also think of MTD-step(f ) as realMTD(f ) with greater steps.

4. EXPERIMENTAL DESIGN

In the experiment25 random games were played, each terminated after the40th move (counting both sides,
i.e., the40th ply). This gave a total of1000 test states, although not pairwise different (e.g., the initial state in
all games was the same). For each algorithm and for every game state, the best move was computed just as
if it were a regular play. The number of leaf nodes evaluated and the time spent on computing that move was
registered. Instead of executing the best move, a pre-defined move for that game was made. Every game had
a random pre-defined move sequence associated with it. This ensured that all algorithms worked on exactly
the same states. The values presented in the next section are the average ones counted for all1000 states.
The size of the transposition table was fixed throughout the experiment and equal to220. Larger transposition
tables did not seem to offer any speed-up. By default, in all algorithms the “if newer” replacement scheme
was used. TTHH is defined as a wide-window Alpha-Beta(s,MIN, MAX) search algorithm enhanced with
a transposition table and history heuristic. MTD-bi corresponds to the algorithm presented in Fig. 1(b).

5. RESULTS

Initial experiments involved testing two standard Alpha-Beta search enhancements which are history heuristic
HH (Schaeffer, 1989) and transposition table TT (Lazar, 1995). The results were quite similar to the ones
presented in Schaeffer (1989). The relative usefulness of these enhancements in the real-value domain was the
same as in the integer domain, with the combination of both, denoted by TTHH, being the most effective. The
results confirmed our intuition that a domain change should not effect the standard Alpha-Beta enhancements
(i.e., HH and TT). Moreover, there should be little or no difference between using integers or real numbers as
state values. This reasoning can be extended to other Alpha-Beta enhancements, i.e., killer moves, iterative
deepening (Schaeffer, 1989), ETC or EIB (Plaatet al., 1996c), which should also prove to be useful in the real-
value domain since they do not utilise any properties of the discrete value space on the contrary to MTD(f ).
The algorithm assumes that there are no values between (b− 1; b) and that the minimal change in state values
equals 1. These assumptions are clearly incorrect in the real-value domain.

A comparison between TTHH and MTD-bi is presented in Figure 2(a). The MTD-bi algorithm outperformed
TTHH by 39 per cent in execution time and 42 per cent in leaf nodes count (not presented in the figure) for
depth13. Moreover, the average interior nodes count (not presented) is about 37 per cent less for MTD-bi than
for TTHH. Please note that since MTD-bi often revisits nodes, the actual reduction indistinct interior nodes
count is even greater. That is the reason why MTD algorithms seem to work well, even with relatively small
transposition tables. Visiting fewer nodes means that fewer states have to be saved in the transposition table.
The size chosen in our experiments (i.e.,220) is more than sufficient for a game of checkers or give-away
checkers (Plaatet al., 1996b). The results for realMTD(f ) are not shown because they were far worse than
the ones for TTHH. This confirms our discussion of Section 3 that the MTD(f ) algorithm is impractical in the
real-value domain. However, the superiority of MTD-bi over TTHH confirms thatε-window search can still
be successfully used in the real-value domain. Hence, the main idea behind MTD algorithms still proves to be
useful.

The increase of performance between MTD-bi and TTHH reported in this note (about 40 per cent in favour
of MTD-bi) should not be directly compared with the increase of performance that the MTD(f ) algorithm
introduced in the integer domain (i.e., about 20 per cent) as reported in Plaatet al., (1996b) since in the cited
paper the tests were performed on tournament class programs where achieving any performance increase is
very hard. However, the thing worth noting is that in the real-value domain an increase of performance is
possible even thoughε-window instead of null-window search is applied.

Figure 2(b) shows the results of applying different replacement schemes in transposition tables. The “if deeper”
scheme was in average 13 per cent worse than the “if newer” one for TTHH and depth13 considering execution
time and 17 per cent worse considering leaf nodes count (not shown). For MTD-bi the inferior replacement
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(a) Wide-window TTHH(MIN ; MAX) algorithm com-
pared with the MTD-bi algorithm.
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Figure 2: Average time per move for TTHH(MIN ; MAX) and MTD-bi.

scheme (“if deeper”) had less significant impact on the results (9 per cent worse compared to “if newer” in
execution time and 12 per cent worse for leaf nodes count). This is surprising considering that the MTD
algorithms depend highly on transposition tables. The “if deeper+timestamp” replacement scheme was in
practice equally efficient to the “if newer” one. The latter one however has a clear advantage of being easier to
implement and needing less storage space (no timestamp information has to be saved). One more replacement
scheme called “if sharply deeper” (not shown in the figures) was also tested. In this scheme, the new state
replaced the old one only if it was searched to a greater (not greater or equal) depth. With this scheme the
average execution time per move for TTHH and depth13 raised to approximately 28 seconds. This poor result
was most probably caused by the inability to replace old records with the new ones. As the transposition table
got filled up with states searched to great depths there was a decreasing possibility of replacing them by new
records. Using the “if sharply deeper” replacement scheme with the MTD-bi algorithm caused its average
results to degrade to the level of TTHH. The MTD-bi algorithm often needs to correct its initial guess (upper
or lower bound) of the backed-up score of some state in the transposition table. If the state was searched to
the same depth as before, it did not pass the “if sharply deeper” rule. Failing to do this caused the algorithm’s
performance to decrease.

This result together with the superiority of the “if newer” scheme shows the importance of storing the latest
information in the transposition table even for the cost of losing search results performed to greater depths that
might have been computationally more expensive.

The number of repeat-until iterations for MTD-bi ranged from3 to 14. For depth8 the average was7.5
iterations and gradually increased with depth to10.7 for depth13. These are reasonable numbers. Similar
results were reported by other authors (Plaatet al., 1996b) using MTD(f ) with integer evaluation functions.

One could suspect that the superiority of MTD-bi over TTHH is caused by the greater number of transpositions
(successful uses of transposition table) in case of MTD-bi. This however is not the case. In fact the number of
transpositions in MTD-bi was 40 per cent less than in TTHH. It seems to correspond well with the 42 per cent
reduction in leaf nodes count and 37 per cent reduction in interior nodes count. The transpositions per interior
node ratio was approximately the same for MTD-bi (0.180) and TTHH (0.187). The result confirms that
MTD-bi makes smarter use of a transposition table and visits a smaller number of nodes which are irrelevant
for computing the final score.

6. CONCLUSIONS

MTD(f ) is currently a state-of-the-art game-tree search method in the integer domain. Unfortunately, as can
be observed in our experiment a straightforward modification of this method denoted by realMTD(f ), suitable
for the real domain, becomes inefficient and MTD-bi gives far better results.

MTD-bi was also superior to Alpha-Beta combined with transposition tables and the history heuristic (denoted
by TTHH). In this group of tests three replacement schemes in transposition tables were tested, denoted by
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“if newer”, “if deeper” and “if deeper + timestamp”. Surprisingly, the scheme “if newer” in which always
the new record is saved in the transposition table regardless of the search depth of a previously stored record
was the most effective. Another interesting observation concerns the frequency of using transposition tables
in MTD-bi and TTHH methods. The ratio of transpositions per interior node was approximately the same for
both methods, which implies that the transpositions in MTD-bi are more effective.

The main conclusion drawn from this work is that in thereal domainnarrow window (ε-window) search
methods, such as the MTD-bi algorithm, are very efficient and outperform standard wide-window search
methods. Although in the real domain the realMTD(f ) algorithm becomes inefficient, other MTD algorithms
such as MTD-bi or MTD-step(f ) can be successfully used.

One of our current research goals is a closer examination of the three tested replacement schemes in transpo-
sition tables in order to explain in more detail the phenomenon of the superiority of the “if newer” scheme
over the two other ones. Moreover we continue to work onTD approaches to playing give-away check-
ers (Mándziuk and Osman, 2004).

7. REFERENCES

ACF (1990), American Checkers Federation. http://www.acfcheckers.com/.

Alemanni, J. B. (1993), Give-away checkers. http://perso.wanadoo.fr/alemanni/giveaway.html.

Breuker, D. M., Uiterwijk, J., and Herik, H. J. (1994). Replacement Schemes for Transposition Tables.ICCA
Journal, Vol. 17, No. 4, pp. 183–193.

Hyatt, R., Gower, A., and Nelson, H. (1990). Cray Blitz.Computers, Chess, and Cognition(eds. T. Marsland
and J. Schaeffer), pp. 111–130, Springer-Verlag, New York, N.Y. ISBN 0–387–97415–6.

Kaelbling, L. P., Littman, M. L., and Moore, A. P. (1996). Reinforcement Learning: A Survey.Journal of
Artificial Intelligence Research, Vol. 4, pp. 237–285. ISSN 1076–9757.

Lazar, S. (1995).Analysis of Transposition Tables and Replacement Schemes. Department of Computer Sci-
ence and Electrical Engineering, University of Maryland, Baltimore County.
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