
Comparison of TDLeaf(λ) and TD(λ) Learning
in Game Playing Domain

Daniel Osman and Jacek Mańdziuk

Faculty of Mathematics and Information Science, Warsaw University of Technology,
Plac Politechniki 1, 00-661 Warsaw, POLAND

dosman@prioris.mini.pw.edu.pl, mandziuk@mini.pw.edu.pl

Abstract. In this paper we compare the results of applying TD(λ) and
TDLeaf(λ) algorithms to the game of give-away checkers. Experiments
show comparable performance of both algorithms in general, although
TDLeaf(λ) seems to be less vulnerable to weight over-fitting. Additional
experiments were also performed in order to test three learning strategies
used in self-play. The best performance was achieved when the weights
were modified only after non-positive game outcomes, and also in the case
when the training procedure was focused on stronger opponents. TD-
learning results are also compared with a pseudo-evolutionary training
method.

1 Introduction

The Temporal Difference TD(λ) algorithm [1] has been successfully used for
learning optimal control in domains with a large state space. Some of the well
known applications involving TD(λ) are TDGammon [2] (computer backgam-
mon), KnightCap [3] (computer chess), TDL Chinook [4] (computer checkers)
and computer Go [5].

In [6] we have applied the TD(λ) algorithm in the domain of give-away check-
ers (GAC). The game shares the same rules of playing [7] as regular checkers.
The only difference is the goal. In GAC a player wins if no legal move can be
made in his turn. The game at first glance may seem trivial or at least not in-
teresting. However a closer look reveals that a strong positional knowledge is
required in order to win. A simple piece disadvantage isn’t a good estimation of
in-game player’s performance. Due to the fact that GAC is not a very popular
game, we did not concentrate at this point, on creating a master GAC playing
program. Our aim was to show that in a domain with a large state space, a
control learning program can benefit from the Temporal Difference algorithm
even when a relatively simple value function is used (with only 22 weights).

Continuing the work started in [6], we now extend the experiment by testing
the TDLeaf(λ) algorithm [3]. TDLeaf(λ) is a modification of TD(λ), enhanced
for use in domains, where a d-step look ahead state search is performed in order
to choose an action to be executed at a given time step.

We also test a pseudo-evolutionary learning method (EVO) described in [8]
and compare it with TD(λ) and TDLeaf(λ).

Several possible training strategies related to Temporal Difference learning
are possible in practice. Results presented in [6] show that learning only on non-
positive game outcomes i.e. (loss or tie) is much more efficient than learning
on all games. In this paper (section 4) we propose and verify a new learning
strategy denoted by L3 which consists in playing up to three games in a row
against opponents that are stronger than the learning player. The results are
very promising.

2 Value Function, TD(λ) and TDLeaf(λ) Algorithms

The value function is used to assign values to states. The value of state s is an
approximation of the final game outcome accessible from s. The possible game
outcomes are +100 for win, −100 for loss and 0 for tie. Each state is defined
by a limited number of features (22 in our experiment). The list of features
implemented was based on the one used by Samuel in [9]. During the game, the
following value function was used:

V (s, w) = a · tanh
(
b ·

K∑

k=1

ωk · φk(s)
)
, a = 99, b = 0.027, K = 22 (1)

where φ1(s), . . . , φK(s) are state features and w = [ω1, . . . , ωK]T ∈ IRK is the
tunable weight vector. Parameter a = 99 to guarantee that V (s, w) ∈ (−99;+99)
and b = 0.027 in order to decrease the steepness of the tanh(·) function.

The TD(λ) and TDLeaf(λ) algorithms are used in order to modify the weights
of V (s, w). The goal of this weight correction is to achieve a perfect value func-
tion, that is the one that always returns the correct game outcome prediction
from any given state s ∈ S. In TDLeaf(λ) [3] the equation for modifying weights
is as follows:

∆w = α ·
N−1∑
t=1

∇wV (s(l)
t , w) ·

N−1∑

i=t

λi−t · di (2)

where s1, s2, . . . , sN are the states observed by the learning player during the
entire course of the game and s

(l)
1 , s

(l)
2 , . . . , s

(l)
N are the principal variation leaf

nodes calculated for these states. Parameter α ∈ (0, 1) is the learning step size
and λ ∈ (0, 1) is the decay constant. ∇wV (s(l)

t , w) is the gradient of V (s(l)
t , w)

relative to weights w and di = V (s(l)
i+1, w) − V (s(l)

i , w) represents the temporal
difference in state values obtained after a transition from state si to si+1.

The difference between TD(λ) and TDLeaf(λ) is that in TD(λ) the gradi-
ent at time step t in (2) is calculated for V (st, w) as opposed to V (s(l)

t , w) in
TDLeaf(λ).

3 Experiment Design

Ten learning players were trained in the experiment. Players 1 to 5 played using
white pieces (they performed the initial move). Players 6 to 10 played using red

pieces. The look ahead search depth was set to d = 4. In the first stage, learning
players 1 and 6 started with all weights set to zero. The rest of the learning play-
ers had their weights initialized with random numbers from interval (−10,+10).
Each learning player played in total 10, 000 games against a distinct set of 25
random opponents. The opponents in subsequent games were chosen according
to some predefined permutation. All 250 opponents were pairwise different and
had their weights initialized randomly from interval (−10,+10).

In the second stage, each learning player started out with the weights that
were obtained after finishing the first training stage. This time each learning
player played 10, 000 games against a common set of 25 opponents. 20 of them
were randomly picked from the learning players being developed in the first
stage at different points in time. The remaining 5 opponents had their weights
initialized randomly from interval (−10, +10). The opponents were not modified
during training.

Results obtained in the first stage were presented in [6]. Here, we report the
results of the second stage of the training phase together with a test (valida-
tion) phase which involved matching up every learning player with 100 strong
opponents developed in another experiment. These test opponents were not en-
countered earlier during training. One test phase match was repeated after every
250 training games. There was no weight modification during the test phase. The
purpose of this phase was to test the general performance of the learning players.
For every win the learning player was rewarded with 1 point, 0.5 for a tie and
0 points for a loss. The percentage results presented in the next section show
the fraction of points received by the learning player out of the total number of
points available.

In the pseudo-evolutionary learning method (EVO) only one opponent was
used during training. This opponent was modified after every two games by
adding Gaussian noise to all of its weights. If the learning player lost both games
or lost and drawn then its weights were shifted by 5% in the direction of the
opponent’s weight vector. The two players changed sides after every game. We
present the results of the EVO method obtained during training games 1-10,000
since in subsequent games (10,001-20,000) the performance started to gradually
decrease.

4 TD(λ), TDLeaf(λ) and EVO Results

Choosing the best learning strategy for Temporal Difference method is still an
open question. Many authors, for example [5] and [3], stressed the importance of
this aspect. Besides tuning parameters α and λ in (2), it is even more important
to properly choose the quality and the number of opponents that the learning
player will play against. One must also choose whether the weights of the learning
player are to change after each game (this approach will be denoted by LB)
or only after games that the learning player lost or drawn (denoted by LL).
Another question is whether to play the equal number of times against each
opponent or to concentrate on the stronger ones (this strategy will be denoted

Table 1. TD, TDLeaf and EVO average results.

(a) Training phase results.

games TDLeaf+LL TDLeaf+LB TD+LL TD+LB TD+L3 EVO

1 - 2,500 61.3% 59.0% 61.8% 52.9% 56.7% 64.5%
2,501 - 5,000 66.3% 65.6% 64.3% 54.9% 45.5% 63.5%
5,001 - 7,500 60.1% 63.3% 71.9% 51.8% 40.8% 64.8%
7,501 - 10,000 60.1% 64.6% 62.8% 52.3% 37.5% 63.1%

(b) Test phase results (against strong opponents).

games TDLeaf+LL TDLeaf+LB TD+LL TD+LB TD+L3 EVO

1 - 2,500 51.7% 50.4% 53.3% 43.3% 53.3% 30.1%
2,501 - 5,000 52.2% 55.0% 56.7% 44.8% 57.4% 32.9%
5,001 - 7,500 50.6% 56.1% 54.0% 47.9% 56.7% 35.3%
7,501 - 10,000 50.8% 56.0% 54.8% 48.2% 56.1% 36.8%

by L3). Strategy L3, proposed by the authors, is a modification of LL. In L3 the
learning player after losing a game plays the next game with the same opponent
(not more than three times in a row, however). This causes the learning process
to be concentrated on stronger opponents.

The LB learning strategy for TDLeaf was enhanced (similarly to [3]) by
preventing the learning player from learning on the opponents’ blunders (more
precisely: state transitions that were not predicted by the learning player). This
limitation of the number of states that the learning player could learn on was
applied only when the learning player won with the opponent. In case of a loss
or tie, the learning player learned on all encountered states.

The results of the training phase for all learning strategies presented in Table
1(a) clearly show the superiority of the TD algorithm using the LL learning
strategy (TD+LL). The worst performance was obtained by TD+L3, which can
be explained in the following way: in L3 the learning player concentrates more
on stronger opponents. Since in case of losing the game, the learning player was
forced to play against the same opponent again, it turned out that the learning
player often lost 3 games in a row when the opponent was really strong. Moreover,
due to decrease of α in time the above situation (3 loses in a row) happened more
frequently in subsequent training games than at the beginning of the training
period. This observation was supported by the following results obtained when
the learning coefficient α was kept constant: 56.7%, 45.5%, 44.5%, 44.0%.

In [3] the TDLeaf algorithm showed a faster performance increase than
plain TD when learning to play turbo chess. In our experiments indeed TDLeaf
achieved the maximum of its performance (66% in games 2,501-5000) earlier
than TD (72% in games 5,001-7,500). This is also presented in Figs 1(a) and
1(b). There were a few TDLeaf learning players during games 2,501-5,000 that
performed particularly well. However as can be seen in Table 1(a), the overall
average training performance of TDLeaf was inferior to TD.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 2000 4000 6000 8000 10000
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24
po

in
ts

games played

points
avg

(a) Player 3-TDLeaf LL.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 2000 4000 6000 8000 10000
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

po
in

ts

games played

points
avg

(b) Player 3-TD LL.

Fig. 1. History of performance changes for the best learning players using TDLeaf+LL
and TD+LL algorithms during the training phase.

Table 1(b) presents the results of the test phase. This time the results of
TDLeaf+LB and TD+LL were comparable. It is important to note that for
TDLeaf the LB learning strategy was superior to LL. The most superior results
were achieved by TD+L3 method, which confirms the efficacy of L3 learning
strategy. The raise in performance from 64.3% to 71.9% by TD+LL in the train-
ing phase was not reflected in the test phase where in the same time a fall
from 56.7% to 54.0% was observed. This phenomenon of increasing training
phase performance along with decreasing test phase results (over-fitting) was
only sporadically observed when using the TDLeaf algorithm.

In our experiments the EVO method turned out to be significantly inferior
to TD in the test phase (Table 1(b)). Training results for EVO should not be
directly compared with the remaining ones in Table 1(a) because of different
training strategy used. A similar learning method was used earlier in [8] where
its performance was superior to TD. This could have been caused by different
characteristics of the games chosen (GAC vs Rummy). Moreover, in our ex-
periments a more sophisticated TD self-play learning strategy had been used
enabling better state space exploration due to frequent opponent changing.

In another test phase (not presented in the paper) that consisted in playing
against 100 randomly generated opponents the results reached the level of 70-
75% for TD and TDLeaf and 60% for EVO. Although the results may not seem
very high, they do show the amount of improvement obtained with the Temporal
Difference algorithm and promise better performance if a more sophisticated
value function were used.

5 Conclusions

The main conclusion from this work is that in the training phase, the TDLeaf
algorithm shows overall inferior performance compared to TD. In the test phase
however, the results of both algorithms are comparable. The TDLeaf algorithm

has an additional benefit of faster performance improvement and seems to be
less vulnerable to weight over-fitting which results in good training phase results
combined however with an average test phase performance.

The TD learning methods are visibly more efficient than the pseudo-evolution-
ary technique described in [8]. The results also confirm that self-play can be suc-
cessfully used in Temporal Difference learning applied in a deterministic game
of give-away checkers as long as frequent opponent changing is guaranteed. As
it was mentioned in [3], to achieve a good level of play, one must match up the
learning player against opponents with strengths similar to that of the learning
player. Playing against many different opponents (25 in our case) ensures ade-
quate state space exploration. There is a great chance that once we encounter
the same opponent again, the learning player’s weights will not be the same as
before and therefore the game will take a different course. Secondly in case of
many opponents the chance that some of them will share a similar strength of
play as the learning player increases.

The L3 training strategy, in which the learning player is more focused on
strong opponents was inferior in the training phase but achieved the best score
in the test phase. Closer investigation of L3 method is one of our current research
goals.

References

1. Sutton, R.: Learning to predict by the method of temporal differences. Machine
Learning 3 (1988) 9–44

2. Tesauro, G.: Temporal difference learning and td-gammon. Communications of the
ACM 38 (1995) 58–68

3. Baxter, J., Tridgell, A., Weaver, L.: Knightcap: A chess program that learns by
combining td(λ) with game-tree search. In: Machine Learning, Proceedings of the
Fifteenth International Conference (ICML ’98), Madison Wisconsin (1998) 28–36

4. Schaeffer, J., Hlynka, M., Jussila, V.: Temporal difference learning applied to a high-
performance game-playing program. In: International Joint Conference on Artificial
Intelligence (IJCAI). (2001) 529–534

5. Schraudolph, N.N., Dayan, P., Sejnowski, T.J.: Learning to evaluate go positions via
temporal difference methods. In Baba, N., Jain, L., eds.: Computational Intelligence
in Games. Volume 62. Springer Verlag, Berlin (2001)

6. Mańdziuk, J., Osman, D.: Temporal difference approach to playing give-away check-
ers. In Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A., eds.: 7th Inter-
national Conference on Artificial Intelligence and Soft Computing (ICAISC 2004),
7th International Conference, Zakopane, Poland. Volume 3070 of Lecture Notes in
Computer Science., Springer (2004) 909–914

7. Alemanni, J.B.: Give-away checkers. http://perso.wanadoo.fr/alemanni/
give away.html (1993)

8. Kotnik, C., Kalita, J.K.: The significance of temporal-difference learning in self-play
training td-rummy versus evo-rummy. In Fawcett, T., Mishra, N., eds.: Machine
Learning, Proceedings of the Twentieth International Conference (ICML 2003),
Washington, DC, USA, AAAI Press (2003) 369–375

9. Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development 3 (1959) 210–229

