
Generic Heuristic Approach to General Game
Playing

Jacek Mańdziuk1 and Maciej Świechowski2

1 Faculty of Mathematics and Information Science, Warsaw University of Technology,
Warsaw, Poland; j.mandziuk@mini.pw.edu.pl

2 Phd Studies at Systems Research Institute, Polish Academy of Sciences,
Warsaw, Poland; m.swiechowski@ibspan.waw.pl

Abstract. General Game Playing (GGP) is a specially designed en-
vironment for creating and testing competitive agents which can play
variety of games. The fundamental motivation is to advance the devel-
opment of various artificial intelligence methods operating together in a
previously unknown environment. This approach extrapolates better on
real world problems and follows artificial intelligence paradigms better
than dedicated single-game optimized solutions. This paper presents a
universal method of constructing the heuristic evaluation function for
any game playable within the GGP framework. The algorithm embraces
distinctive discovery of candidate features to be included in the evalua-
tion function and learning their correlations with actions performed by
the players and the game score. Our method integrates well with the
UCT algorithm which is currently the state-of-the-art approach in GGP.

Keywords: General Game Playing, Heuristic Evaluation, Automatic
Learning, Monte Carlo Simulations.

1 Introduction

Computer systems able to play a particular game such as chess or checkers
have always been in the interest of Artificial Intelligence (AI). One of the most
prominent examples is Deep Blue [1] - chess-playing machine which successfully
challenged Garri Kasparov. Such programs, however, are equipped with game
specific knowledge and heavily rely on computational power rather than intel-
ligent behavior. General Game Playing (GGP) represents a new trend in AI
focused on the ability of playing many different games previously unknown to
the playing system. Given the game rules written in the so-called GDL (Game
Description Language) [2] a playing agent takes various actions towards learning
and mastering the game. This includes analysis of the game rules, application
of various learning and searching mechanisms, logic-based reasoning methods,
efficient knowledge representation and many other techniques [3–5]. Integration
of all these elements formulates an interesting and challenging research task.
Before playing a game an agent is a Tabula Rasa - no game specific features
should be assumed a priori. GGP took its name from the competition proposed

2 Jacek Mańdziuk and Maciej Świechowski

by Stanford Logic Group in 2005. It is held annually at AAAI (or IJCAI in
2011) conferences. Playing environment contains central unit called Gamemas-
ter and remote playing agents called Game Players. Game Players communicate
via http protocol with the Gamemaster only whose role is to provide players
with the rules in the GDL, running the game, sending control messages and
receiving responses. Gamemaster also includes its own GDL reasoning mecha-
nism in order to validate legality of the players’ moves and updates the state. If
an agent responded with an illegal move, a random move would be selected for
them. Each agent is then notified about moves performed by other players. The
contest features two timers: a move clock and a start clock. The first one counts
time available for notifying the Gamemaster about selected action and the latter
represents time for preparation before the actual start of the game. Hence, the
start clock defines room for application of various pre-game learning strategies.

1.1 The Class of Considered Games

Any game which is finite, deterministic and synchronous can be played within
GGP framework. The term finite should be understood as finite number of play-
ers and available actions (moves) in any game state and finite number of states.
One distinguished state is marked as initial and at least one as terminal. Each
terminal state has goal values defined for each player. Goal values range from
0 to 100. Due to deterministic nature of the game a state can change only as
a result of performed move and there is no randomness. Players perform moves
simultaneously (synchronously) during the update phase, but turn-based games
can be easily simulated with the use of no-operation moves. In this scenario, for
all players but one players the no-operation move is the only legal move available
for them in the current state.

1.2 Game Description Language

GDL is a formal first-order logic language with the structure strictly following
Datalog [2], which in turn is a subset of Prolog. Terms used in game descriptions
compose sentences that are true in particular states. There are a few distin-
guished keywords which cannot be redefined. As an example a partial listing of
Tic-Tac-Toe game written in GDL is presented below.

(role xplayer) (role oplayer)

(init (cell 1 1 b)) (init (cell 1 2 b))

(init (cell 3 3 b))

(init (control xplayer))

(<= (next (cell ?m ?n x))

(does xplayer (mark ?m ?n))

(true (cell ?m ?n b)))

(<= (next (control oplayer) (true (control xplayer)))

(<= (row ?m ?x)

Generic Heuristic Approach to General Game Playing 3

(true (cell ?m 1 ?x))

(true (cell ?m 2 ?x))

(true (cell ?m 3 ?x)))

(<= (legal ?w (mark ?x ?y))

(true (cell ?x ?y b))

(true (control ?w)))

(<= (legal xplayer noop) (true (control oplayer)))

(<= (goal xplayer 100) (line x))

(<= (goal xplayer 50)

(not (line x))

(not (line o))

(not open))

(<= (goal xplayer 0) (line o))

(<= terminal (line x)) (<= terminal (line o)) (<= terminal (not

open))

[A subset of Tic-Tac-Toe game definition downloaded from Dresden GGP Server [6]]

A complete set of keywords consists of the following elements: role, init, true,
does, next, legal, goal, terminal, distinct. They are used to define the initial state,
legal moves, state update procedure as well as game terminal states and goals
accomplishment. A more detailed description of all keywords can be found in
[2]. There are also logical operators available in GDL, such as not, or, and <=.
A special symbol ? is used to make an argument a variable - in this case a
set of symbols satisfying the truth condition is to be calculated. For example:
relation (cell ?m 1 ?x) has two variable arguments (?m ?x) and one constant (1).
Negation and recursion, in restricted form, are both part of the language too.

2 State-of-the-art

GGP annual competition provides an environment for testing the strength of
game playing algorithms. Last years were dominated by two winning approaches:
CadiaPlayer (2007, 2008) presented in [7] and Ary (2009, 2010) described in
[8]. Both agents rely on performing Monte Carlo simulations (MCS) aimed at
learning the game and incrementally building the game tree. This solution was
inspired by Go playing agents [9]. MCS perform random play from the current
state to the terminal state. The goal value is then obtained and stored in the
current node of the tree. Storing the entire tree in memory using all visited nodes
on simulation paths would quickly exceed the available memory. Therefore, only
one node, representing the first action, is added after a single simulation [7]. The
most popular variant of MCS is known as Upper Confidence Bounds Applied
for Trees (UCT) method [9] which efficiently keeps balance between exploration
and exploitation. As the name suggests, the UCT method is a generalization of
the Upper Confidence Bounds (UCB) [10] which can be used, for example, to
learn the payoff distribution of slot machines in a casino. The goal of UCT is to
perform MCS as wisely as possible taking advantage of the knowledge acquired

4 Jacek Mańdziuk and Maciej Świechowski

so far. In each node the algorithm checks if all possible moves in the associated
position have already been tried at least once during simulation (therefore they
possess initial MC estimations). If not, one of the unvisited child nodes is chosen
at random. Otherwise (i.e. in case all successors of the current node have been
visited at least once), the move a* is chosen according to the following rule:

a∗ = arg max
a∈A(s)

{
Q(s, a) + C

√
ln [N(s)]

N(s, a))

}
(1)

where a - is an action; s - the current state; A(s) - a set of actions available
in state s; Q(s,a) - an evaluation of performing action a in state s; N(s) - a
number of previous visits of state s; N(s,a) - the number of times an action
has been sampled in state s; C - a coefficient defining a degree to which the
bonus (second component) should be considered. UCT-based players, such as
the above-mentioned Ary and Cadia build a game tree gradually. Each node
stores the average payoff, obtained by those MCS, in which it was visited on the
path of play. Simulations are not terminated when the start time elapses but
continue through the entire GGP episode. During the actual game, if a player
chooses an action stored in a node, that node becomes a new tree root (i.e.
all higher branches are deleted, because they are not needed anymore). A new
simulation always runs from the current game state. Most of the UCT based
players share the basic idea described above but differ by employing specific
search control mechanism to optimize tree exploration [11]. .

3 Automatic Construction of the Evaluation Function

One of the potential enhancements of purely simulation-based UCT implementa-
tion is combining it with the use of some kind of evaluation function. Due to wide
variety of GGP games it is hardly (if at all) possible to design such a generally-
applicable function a priori and only tune its coefficients for a particular game.
Despite the above difficulties, several researchers have explored this possibility
and some heuristic approaches to General Game Playing used predefined candi-
dates for the evaluation procedure. ClunePlayer [12] considered mobility, payoff
and termination stability. Fluxplayer [13], harnessed predefined syntactic tem-
plates for common game features like board definition or successor relation. Flux-
player’s heuristic construction mechanism is an extension to the idea derived ear-
lier in [15]. Another noteworthy approach, adopted by OGRE player [16], focuses
mainly on board games. It uses the so-called evaluators. The game structure eval-
uators are distance-initial, distance-to-target, count-pieces and occupied-columns
whereas game definition evaluators are count-moves, depth, exact, pattern and
purse [16]. OGRE came 4-th out of 12 entrants in 2006 competition winning
34% of the matches [17].

Generally speaking, all the above-mentioned methods were geared towards
standard two players board games and, in random environment, they tend to
lose againts UCT-based players. Our approach constructs features that are com-
pletely independent of particular game definition. The key difference is that no

Generic Heuristic Approach to General Game Playing 5

predefined templates are present. Its underpinning idea is related to identifica-
tion of meaningful numbers from the symbol representation. Before going into
details let us introduce database-like vocabulary used to describe the elements
of GDL.

– A row is a complete term in GDL that describes the game fact in a particular
state. By a fact we mean a statement which is true. A row consists of a name
of the fact and its arguments (called symbols).

– A table is a name of the row; in our example it is cell. TableRows are all
rows sharing a common name;

– A column is a set of symbols at a fixed position in rows’ argument lists.

The proposed algorithm for automatic construction of the evaluation function
for a given GGP game consists of three phases: selection, construction and play.

3.1 Selection Phase

The aim of this phase is to select the candidate features for heuristic function.
The main idea is to track cardinality of three kinds of objects:

– For a given table count its rows (TableRows);
– For a given table, column index and symbol count the symbol occurrences

in the corresponding column in the table (ColumnSymbols);
– For a given table, column index and symbol extract the set of rows with the

matching symbol in the corresponding column in a given table (Symbol-
Rows).

The essential part of the algorithm is the way the features are counted. This
issue is described in detail below.

Selection phase - step 1 - parallel simulations In the first selection phase
TableRows and ColumnSymbols are found. Not all of them are selected but
only those with occurrence count varying during the game in a manner
which depends on the performed moves. It means that, if for a current game
state all legal moves produce pairwise equal changes to the object’s quantity,
then such occurrence is neglected by the algorithm. The motivation behind this
constraint is to discard all features a player has no impact on (such as counters,
timers, control, board cells count etc.) and focus on real move consequences.
In order to perform the selection, N simulations with random move making are
launched in parallel. Parameter N can be tuned depending on how much time
is available. Tests show that 3-4 parallel simulations are usually sufficient. This
phase terminates when there is only one or none unfinished simulations left. At
each simulation step TableRows and ColumnSymbols are counted independently
for each simulation and their counters are tested against each other. If a difference
occurs, an object (a table with all its TableRows or ColumnSymbol) is marked as
changing and excluded from further tests. It is important to note that a difference
is computed only between the same steps of each of (different) simulations. No
difference is computed between consecutive steps. Objects marked as changing
are stored for further use.

6 Jacek Mańdziuk and Maciej Świechowski

Selection phase - step 2 - extracting symbols In the second step of selec-
tion phase, only one complete random simulation is performed. Let (s1, s2, s3,
. . . , sn−1, sn) represent consecutive states present during the simulated game.
After reaching each state si two additional random moves are simulated that lead
to hypothetical states sij and sik. The difference between the two new states sij
and sik is analyzed from the heuristic selection viewpoint. The main simulation
continues as if it was not affected by the two moves and SymbolRows sets are
constructed for each symbol. The general idea behind this part of the algorithm
is to filter symbols which express the most important features within the rela-
tion. The most important features are usually dynamic and the rest of symbols
which they appear with, represent their properties which vary from state to
state. Therefore features supposed to play important role will change their set
of properties often. The following measure of symbols’ variation was used:

val = 1− 2 ∗ |Aij ∩Aik|
|Aij |+ |Aik|

(2)

where Aij and Aik denote SymbolRows for a particular symbol in states sij and
sik. Formula (2) is used to calculate variation of each symbol during the selection
step. The most varying symbol (with the highest computed value) at each step is
marked as changing and becomes a candidate for further heuristic weighting. If
a selected symbol has already been marked before, this new selection is ignored.

3.2 Construction of a Heuristic Function

During the selection phase some objects marked as changing are captured. These
can either be TableRows, ColumnSymbols or SymbolRows. The occurrence count
is correlated with the actions selected by a player during the game. The purpose
of the construction phase is to approximate the correlation factor by assigning
weights to the counters. Here come MCS with preferable UCT enhancement
which are run until the time is up. These MCS are used to assign weights to dis-
covered elements of the evaluation function. The following pseudocode describes
the weight-learning phase:

ConstructHeuristic(TimeLimit,Player)

While(currentTime < TimeLimit)

Start a new simulation S

While S not finished

SavedStates->Push(S->State)

S->Advance

If IsSuccess(S->State,Player)

CountOccurences(SavedStates)

CountAverages()

AddAverages(WinAverageList);

Else If IsFail(S->State,Player)

CountOccurences(SavedStates)

CountAverages()

AddAverages(LossAverageList);

Generic Heuristic Approach to General Game Playing 7

For each heuristic object:

Count winAverage

Count lossAverage

weight = C*(winAverage - lossAverage)/MaxValue

End

[A pseudocode of the weights-learning phase.]

Although the detailed algorithm appears to be rather complicated, its underlying
idea is quite simple. During simulations the counting procedure is performed and
the game-average result is computed. This value is put into collection of either
’win values’ or ’loss values’ depending on the game result assigned to the player
for whom the heuristic is being defined. The distinction between a won and lost
game can be defined in various ways. In our approach it was:

AverageResult =

(MaxResult - MinResult)/2 If(Result > AverageResult)

Win = true

Else If(Result < AverageResult)

Loss = true;

Else //no action

Win = Loss = false

[A pseudocode for determining the win or loss. MaxResult and MinResult come from

the GDL definition.]

In the final step of this phase, game-average values from win and loss collections
are transformed into single averages for won and lost games independently. For
each counter the maximum occurrence ever (MaxValue) is monitored and used
for the normalization purpose (see an example below).

//Data structures after a completed simulation:

CurrentGameValues = [6,4,2,0] //symbol occurrences

WinAverageValues = [4.5, 4.5]

LossAverageValues = [3,2]

MaxValue = 6

//Computing current average

CurrentAverage = (6+4+2+0)/4 = 3

//Let assume the game was won

WinAverageValues = [4.5, 4.5, 3] //3 is added

//Computing single average values for won and lost games

WinAverage = (4.5+4.5+3)/3 = 4

LossAverage = (3+2)/2 = 2.5

[Illustration of how the average values are computed.]

The heuristic value for each object is computed according to the following for-
mula:

weight = C ∗ WinAverage− LossAverage

MaxV alue
(3)

8 Jacek Mańdziuk and Maciej Świechowski

where C is a constant parameter for each of the three types of heuristic elements.
In the current implementation of the system we use C = 1.0 for both TableRows
and ColumnSymbols and C = 0.2 for SymbolRows. Concrete rows, counted for
symbols, have lesser weights in order to force them to be used if no legal action
positively changes TableRows or ColumnSymbols. The final evaluation function
is a linear combination of the numbers of occurrences of the elements multiplied
by the computed weights.

3.3 The Use of the Heuristic Function

The evaluation method constructed as described in sections 3.1 - 3.2 takes game
state as an input, performs weights calculation according to (3) and returns a
single floating point value. Such automatically constructed heuristic can be taken
advantage of in several ways by the playing agent. It can be used for

(1) evaluation of each legal move in order to choose the heuristically best one;
(2) incremental building of a min-max inspired game tree (in that case a distinct

heuristic function is maintained for each player);
(3) sorting unplayed actions in the classic MC + UCT solution (evaluation

function helps to determine which branches should be tried first);
(4) to replace the whole or part of the MC phase with certain probability in the

classic MC + UCT approach [14].

In the experimental evaluation of the proposed method our focus was on facets
(2). We decided to fully utilize start clock on heuristic function construction and
move clock for min-max tree search. Such distribution was chosen because it is
natural and easy to maintain. However, for some games a different balance might
be more beneficial.

4 Empirical Results

An agent using the heuristic function was tested against reference UCT solution
based on CadiaPlayer description [7] in several games downloaded from the Dres-
den General Game Playing Server site [6]. The main criterion for choosing games
was to focus on most widely recognized games of various rules and complexity.
The games included bomberman, breakthrough, checkers, chess, connnectfour,
farmers, othello, pacman, tic-tac-toe, sheep and wolf and wallmaze. Each of these
11 games was played 80 times with four different pairs of clocks settings (start
clock, move clock), i.e. (16T,2T), (32T,4T), (64T,8T) and (128T,16T) where T
is a game-specific parameter proportional to the average time of one random
simulation from the beginning to the end for particular game. The exact value
depends on game complexity. In each case, in half of the games the Heuristic
Player (our algorithm) was making the first move and it the remaining half of
them the UCT was the initial player.

In majority of tested games interesting features were selected for the heuris-
tics. For example high value is always assigned in chess to the TableRow check

Generic Heuristic Approach to General Game Playing 9

Table 1. Percentage results between the Heuristic Player and UCT for short times.
The interpretation is the following: Heuristic Player win ratio - UCT win ratio (the
remaining games are ties). The results in favor for the Heuristic Player are bolded.

Game HP vs UCT. Clocks = [16T,2T] HP vs UCT. Clocks = [32T,4T]

Bomberman 6% - 94% 11% - 86%
Breakthrough 50% - 50% 50% - 50%
Checkers 64% - 22% 66% - 20%
Chess 14% - 0% 35% - 10%
Connectfour 48% - 40% 45% - 44%
Farmers 36% - 64% 32% - 68%
Othello 50% - 25% 29% - 49%
Pacman 78% - 22% 75% - 25%
Tic-Tac-Toe 55% - 25% 30% - 33%
Sheep and Wolf 89% - 11% 76% - 24%
Wallmaze 3% - 0% 6% - 0%

making the player perform checking the opponent whenever possible. Our player
achieves better win ratio in almost all games for the shortest of tested times,
with bomberman and farmers being the only exceptions. The results prove that
the evaluation function constructed during the preparation time has a positive
impact on playing quality. With the increase of time the UCT becomes a stronger
opponent. It is mainly due to a greater impact of MCS performed during the
move clock. With extreme time limits, most parts of the tree constructed by
UCT approach will have an exact goal values fetched directly from terminal
states, whereas min-max algorithm requires a full tree expansion in order to
fetch at least one real goal value. This is a key difference between the methods
in terms of a tree search. For the longest time settings the heuristic player re-
mained superior in five games. Chess and checkers are games which are in favor
for our method in a most significant way, whereas bomberman and farmers are

Table 2. Percentage results between the Heuristic Player and UCT for longer times.
See description of Table 1.

Game HP vs UCT. Clocks = [64T,8T] HP vs UCT. Clocks = [128T,16T]

Bomberman 21% - 70% 14% - 77%
Breakthrough 48% - 52% 37% - 63%
Checkers 84% - 10% 74% - 16%
Chess 45% - 9% 23% - 4%
Connectfour 45% - 46% 41% - 51%
Farmers 14% - 86% 11% - 89%
Othello 38% - 49% 30% - 54%
Pacman 55% - 45% 51% - 49%
Tic-Tac-Toe 44% - 46% 24% - 58%
Sheep and Wolf 70% - 30% 58% - 42%
Wallmaze 29% - 25% 34% - 30%

10 Jacek Mańdziuk and Maciej Świechowski

games at which the UCT is undeniably better. Below we present two evaluation
functions obtained for chess and bomberman, respectively.
Chess. The evaluation function primarily forces to check the opponent whenever
possible and rewards having a greater number of particular pieces. Piece types
have various levels of importance assigned. Moreover, board positions where a
threat to adversary king’s initial location (coordinates) is applicable are slightly
favored. The most varying symbols are discovered as wp, wn, wb, wq, wr, bp, bn,
bb, bq, br for cell. These symbols represent chess pieces. For example wn stands
for white knight and bq stands for black queen.

1. TableRows:
a (check, 0.8); (pawn moved two, -0.006); (piece has moved, -0.25).

These symbols represent one-time actions that can occur after a move.
2. ColumnSymbols:

a For cell at column 2: (b,-0.008); (bb, -0.08); (bn, -0.04); (bp, 0.1); (bq;
-0.21); (br; -0.12); (wb, 0.29); (wn, 0.16); (wp, 0.11); (wq, 0.52); (wr; 0).
Pieces counts (known as strength of the material) are captured here.

b For check at column 0: (black, 0.36); (white, -0.43).
The white player is advised to check the black player.

c More values are discovered for all symbols in check,
pawn moved two, piece has moved, but with little impact.

3. SymbolRows:
a All rows with varying symbols that occurred during simulations, e.g. (cell

a 4 wq, 0.012). Values are within the range (-0.02, 0.02).
Particular board cells with concrete pieces are evaluated here.

Bomberman. This is an example of a game for which usually only one varying
symbol is discovered. It is 1 at the first index of blockedeast table. It turned out
that one random simulation in step 2 of the selection phase (3.1) is insufficient
since, if acting randomly, a player has 50% chance of dying because of its own
bomb in the first turn of the game. The only legal action is to place a bomb or
move in unblocked direction. The probability of losing in a few turns drastically
increases. UCT is capable of finding the safe path if given enough time.

1. TableRows: (location, -0.1).
2. ColumnSymbols:

a For table location, column 0: (bomb0, -0.5); (bomb1, -0.11); (bomb2, -
0.05); (bomb3, 0).

b For location, columns 1 and 2: not meaningful values.
3. SymbolRows: (blockedeast 1 2, 0) (blockedeast 1 7, 0).

The term location which appeared above describes rows with the following struc-
ture (location ?object ?x ?y). Its column 0 (?object) contains symbols repre-
senting object located at (?x,?y) coordinates (columns 1,2). Possible objects
are bomberman, bomberwoman, bomb0, bomb1, bomb2 and bomb3. The term
blockedeast means, if present, that east direction is not available at particu-
lar coordinates. The game description includes also north direction which was
not selected by the algorithm. The goal of the game is to avoid bombs (of any
players) and make the opponent die by a bomb.

Generic Heuristic Approach to General Game Playing 11

5 Conclusion

A novel approach to building a heuristic evaluation function for General Game
Playing has been presented. The proposed algorithm clearly outperforms UCT
in four out of eleven games while losing visibly in three games. The introduced
heuristic evaluation is constructed in a fully automatic way. Instead of using
predefined categories it counts occurrences of carefully filtered elements of three
different kinds. GDL description is lexical by nature and there are no ready-to-
use numbers encoded (even mathematical operators must be explicitly defined
for all possible arguments of lexical symbols). Our solution not only extracts
numbers but also assesses their usefulness. Only elements whose values’ vari-
ability is caused by a player’s move are considered which is an essential idea of
the algorithm. Their usefulness is further remodeled by their correlation with a
game score. Experiments show that the method is well suited for games in which
some ’objects’ are created, destroyed or moved. Objects can be of any type like
money, pieces, buildings, obstacles etc. The evaluation function can be inserted
at several stages of GGP scenario. It can be used to guide MC or UCT search,
which vastly improves the quality of play for games it normally performs bad at
and moderately decreases the quality of play for games it has advantage in. The
integration may even proceed a step further - the agent may discover, during
the learning phase, whether using plain heuristic approach or guided UCT gives
better results. Better strategy may by dynamically chosen for the actual play.
The other way to improve the method would be to incorporate it into a complex
agent featuring various heuristic functions and equipped with a feedback-based
learning mechanism to choose the best suited evaluation for a currently playing
game.

The main weak point of the proposed solution is that quality of the computed
function greatly depends on the numbers of simulations which fall into won
and lost categories. If a game lasts for a very long time or a tie is the typical
result, the evaluation function may be inaccurate. Such games are also difficult
to master by UCT approaches because most of the results propagated in a tree
are ties. Our current work concentrates on extension of the proposed method
towards automatic discovery of correlations among particular game elements
(game aspects) which would allow capturing their dynamic (changing in time)
mutual dependencies. This issue, in its general form, is highly challenging. To
the authors’ knowledge no universal solution for automatic discovery of such
correlations exists, even in well-researched classical board games domain (chess,
checkers, Go, Othello, etc.).

Acknowledgments. Maciej Świechowski would like to thank Foundation for
Polish Science under International PhD Projects in Intelligent Computing. Project
financed from The European Union within the Innovative Economy Operational
Programme 2007-2013 and European Regional Development Fund.

12 Jacek Mańdziuk and Maciej Świechowski

References

1. Newborn, M.: Kasparov versus Deep Blue: Computer Chess Comes of Age,
Springer-Verlag (1997)

2. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General Game
Playing: Game Description Language Specification. Technical Report LG-2006-01
(2006) Available at: http://games.stanford.edu

3. Genesereth, M., Love, N.: General Game Playing: Overview of the AAAI compe-
tition, AI Magazine, vol. 26, 62-72 (2005)

4. Walȩdzik, K., Mańdziuk, J.: CI in general game playing: to date achievements and
perspectives, ICAISC’10 Proc. 10th International Conference on Artificial Intelli-
gence and Soft Computing: Part II, Springer-Verlag Berlin, Heidelberg (2010)

5. Mańdziuk, J.: Knowledge-Free and Learning-Based Methods in Intelligent Game
Playing, vol 276 of Studies in Computational Intelligence, Springer-Verlag, chapter
14.5 (2010)

6. Dresden GGP Server: http://euklid.inf.tu-dresden.de:8180/ggpserver
7. Bjornsson, Y., Finnsson, H.: CadiaPlayer: A Simulation-Based General Game

Player, IEEE Transactions on Computational Intelligence and AI in Games, Vol.
1, No. 1., pp. 4-15 (2009)

8. Mėhat, J., Cazenave, T.: Ary, a General Game Playing Program, Board Games
Studies Colloqium, Paris (2010)

9. Gelly, S., Wang, Y.: Exploration and Exploitation in Go: UCT for Monte-Carlo Go,
20th Annual Conference on Neural Information Processing Systems NIPS (2006)

10. Auer, P.: Using upper confidence bounds for online learning, FOCS ’00 Proceedings
of the 41st Annual Symposium on Foundations of Computer Science (2000)

11. Bjornsson, Y., Finnsson, H.: Simulation Control in General Game Playing Agents,
In. Proc. IJCAI-09 Workshop on General Game Playing (GIGA’09) (2009)

12. Clune, J.: Heuristic evaluation functions for general game playing. Proc. AAAI Nat.
Conf. on Artificial Intelligence, Vancouver, AAAI Press, pp. 1134-1139 (2007)

13. Schiffel, S., Thielscher, M.: Fluxplayer: A successful general game player. In: Pro-
ceedings of the AAAI National Conference on Artificial Intelligence, Vancouver,
AAAI Press 1191-1196 (2007)

14. Walȩdzik K., Mańdziuk J.: Multigame playing by means of UCT enhanced with
automatically generated evaluation functions, 4th Conf. on Artificial General In-
telligence, Mountain View, CA, LNAI vol. 6830, 327-332, 2011

15. Kuhlman, G., Dresner K., Stone P.: Automatic Heuristic Construction in a Com-
plete General Game Player. In: Proceedings of the Twenty-First National Confer-
ence on Artificial Intelligence, pp. 1457-1462 (2006)

16. Kaiser, D.: Automatic Feature Extraction for Autonomous General Game Playing
Agents. In: Proceedings of the Sixth Intl. Joint Conf. on Autonomous Agents and
Multiagent Systems, (2007)

17. Love, N.:2006 General Game Playing Competition Results: http://euklid.inf.
tu-dresden.de:8180/ggpserver accessed, (2006)

