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Abstract

The application of a discrete Hopfield-type neural network to solv-
ing the NP-Hard optimization problem - the N-Queens Problem (NQP)
is presented. The applied network is binary, and at every moment each
neuron potential is equal to either 0 or 1. The network can be imple-
mented in the asynchronous mode as well as in the synchronous one
with n parallelly running processors. In both cases the convergence
rate is up to 100% and the experimental estimate of the average com-
putational complexity is polynomial. Based on the computer simula-
tion results and the theoretical analysis the proper network parameters
are established. The behaviour of the network is explained.
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1 Introduction

In the early eighties Hopfield (1982) introduced a neural network model based
on the idea similar to the one used in the spin glass theory in quantum
mechanics. In the next papers (Hopfield 1984, Hopfield and Tank 1985)
the authors presented applications of that model to the Pattern Recognition
Problem and to solving the Travelling Salesman Problem (TSP).

Later on, the quality of the results as well as the convergence rate reported
by Hopfield and Tank were totally questioned by Wilson and Pawley (1988)
and, in some aspects, by Kamgar-Parsi and Kamgar-Parsi (1990).

On the other hand, since the ”classical” papers by Hopfield and Tank,
various modifications to the original model were introduced, e.g. (Brandt et
al. 1988; Bizzarri 1991) with very good results.

Most of the papers devoted to solving optimization problems by the use
of neural networks dealt with the TSP which became a ”standard problem”
for that researches.

In this paper we also state some remarks concerning the TSP, but our
main interest is bound with the N-Queens Problem (NQP). Due to its con-
ceptual simplicity, the NQP is adequate to fully illustrate the network mech-
anism.

In the NQP one is to place n chess queens on a square chessboard com-
posed of n rows and n columns, in such a way that they don’t attack one
another. In other words, the configuration of queens must fulfil the constraint
that any two different queens are placed in the different rows, columns and
diagonals. One of the possible configurations for n = 8 is presented in Fig. 1.

The problem is NP-Hard and the ”conventional” way of solving it is based
on extensive search methods.

The network proposed in this paper differs from the original Hopfield
network mainly in the two following aspects:
(i) the starting point of the network can be chosen in a completely random
way,
(i) neuron potential at time ¢ 4+ 1 does not directly depend on its value at
time ¢.

The point (i) as well as the complete binarization of the network are
considered to be its biggest advantages. The completely discrete network



is much simpler than the continuous one both conceptually and as to the
hardware realization.

The possibility of starting the network from any random point with no
negative influence on the convergence rate and quality of the results shows
that the network is indeed reliable.

The model proposed in this paper is a modification of the continuous
Hopfield-type neural network that was previously used to solve the NQP
(Mandziuk and Macukow 1992). Since the general idea of the network is
described in the above cited paper we only very briefly remind here the
concept of the Hopfield network and present our modifications.

In the Hopfield network composed of m neurons the energy function is of
the form

E = —]_/2 f:f:tijvivj (].)

i=1j=1
where ¢;; is weigth of connection from the output of the j —th neuron to the
input of the ¢« — th one and wv; is the output potential of the ¢ — th neuron
(defined below). For each neuron in the network the so-called input and
output potentials can be defined, denoted by u and v, respectively. The
input potential of the ¢ — th neuron is described by (2)

u; = —0E /0v; (t=1,...,m) (2)
From (1) and (2) we obtain

UZ:ZtU’UJ (z:l,,m) (3)
j=1

Usually, the output potential is a modified hyperbolic tangent function,
e.g.

v(u) = 1/2 [1 + tanh(au)] (4)

The network can work either synchronously or asynchronously. In the
synchronous mode all the neurons (or only some of them) are updated si-
multaneously. In the latter case neurons are updated consecutively in either
a completely random order or in the "random sequential order” (Yao et. al.
1989, Mandziuk and Macukow 1992).



2 The N-Queens Problem

2.1 Network definition

The network is represented by a square boolean matrix V,,,,. For the sake of
simplicity, henceforth we shall use the same symbol v;; for both the neuron
in the network and the element of the matrix V. The energy function E is
given by
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where A, B, C, o are positive constants.
According to (2) we have
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Since the detailed explanation of the choice of the function (5) is given
in Mandziuk and Macukow (1992) let us only state two remarks:
(i) the energy function is chosen in such a way that its global minima cor-
respond to solutions of the problem,
(ii) in (5) and (6) terms multiplied by A correspond to interactions in rows
and columns - in each row and in each column at most one chess queen
may be placed, terms multiplied by B correspond to the same constraint on
diagonals, and finally, those multiplied by C' correspond to the global network
inhibition for the number of queens on the chessboard.

For evaluation of the neuron output potential, instead of a hyperbolic
tangent we used the following hard-limiter threshold:

0 if u < 0
v(u) = { 1 it uw >0 (7)
In the simulation tests three ways of setting the initial output potentials

were used, denoted by (a), (b) and (c). The output of each of n? neurons was
initially set to (cf. Mandziuk 1993):



(a) - Oa
(b) - random value from the set {0, 1},
(c) - L.

In the case (a) none of the neurons is excitated. In the case (b) some
randomly chosen neurons are set (set to one), and the rest is reset (set to
zero). In the last case all the neurons are set (the starting energy is very
high in that case).

2.2 Asynchronous mode

In the asynchronous mode a single computer simulation test was composed
of the following steps:

(i) all initial output potentials v;; (i,j = 1,...,n) were set and from (5)
the starting value of energy F was evaluated,
(ii) neuron (7,7)(4,5 € {1,...,n}) was chosen at random and from (6)

and (7) the input and output potentials were calculated,

(iii) operation (ii) was repeated 5n? times, and then a new value of F
from (5) was calculated.

Every n? repetitions of (ii) was called an internal iteration. Five internal
iterations composed one external iteration. The simulation process termi-
nated if the energy remained constant in the a prior: established number of
the successive external iterations or, the number of external iterations ex-
ceeded the constraint for the global number of iterations and the network
still did not achieve a stable state, i.e. a constant value of E.

The network was tested with the folowing values of n:

n=4, 8, 16, 32, 48, 64 and 80 (8)

Preliminary simulations together with the theoretical analysis of the net-
work led to the following values of the network parameters:

A=B=C=100, 0 =0 (9)

The constraints for the global number of external iterations (equal to
1000) and for the number of repetitions of the same energy value (equal to
50 for n < 32 and 100 otherwise) were chosen big enough not to stop the test
unless it really settles in the stable state.



2.2.1 Simulation results

For each n from (8), 100 simulation tests were done. The diagram of the
average external iterations required by a single test for each initial strategy
is depicted in Fig. 2.
According to the results we can state that:
(i) the convergence rate is very high - equal to 100% in all cases, except for
n =8, (a) - which is 99%,
(ii) there is no significant differences in speed among strategies (a), (b), (¢),
(iii) the average number of external iterations grows with the problem size
In the following sections the experimental results will be compared with
the theoretical analysis of the network behaviour and the experimental com-
putational complexity of the method will be estimated (sections 2.2.2 and
2.2.3).

2.2.2 Network analysis

In order to find the stable states of the network let us denote as k,(t) the
number of queens that attack the field (r,s) at time ¢, (r,s € {1,...,n}) and
by m(t) the number of all queens placed on the chessboard at time t.

Let IT: Ny — {1,...,n} x {1,...,n} - be the selecting function, i.e.

(H(t) = (r, s)) = (at time ¢ the neuron (7, s) was chosen)

and let f(t), be the function of transition between the states at time ¢, i.e.

£ {0,137 x {1,...,n} x {1,...,n} — {0,1}"

Now, the consecutive steps of the simulation test can be defined as below:

V(t+1) = f(V(2),11())

where V' (t) is the matrix of the output potentials at time ¢.

Based on the above formalism we can define the stable state and the
solution of the problem:

Definition 1 (Stable state)
The state V(t) of the network is called a stable state at time ¢ if and only if,



V(rs) € {1,...onpx{l,...on}  (11(t) = (r,5)) = (F(V(£),TI(t) = V(1))

De finition 2 (Solution of the problem)
Any stable state V(¢) at time ¢ that fulfils the following conditions (i)-(ii) is
called the solution of the problem (simply: solution).
(@) m(t) =n
(B)V(r,5)  (vna(t) =1) = (kns(t) = 0)
Finally, we define the two other categories of the network states:
De finition 3 (False stable state)
Any stable state which is not a solution is called a false stable state.

Definition 4 (Quasi-stable state)
Any state V(t) of the network from which it is possible to go in one step
to another state without changing the energy value is called a quasi-stable
state, i.e.

I (V(E+1) £ V(t) and E(t+1) = E(1))

As previously stated the parameters (9) were chosen after some initial
simulations and network analysis. In fact, the only condition that was es-
tablished firmly was A = B def D, which meant that attacks along rows or

columns were ”of the same importance” as those along diagonals.

Now we can rewrite (5) and (6) in the form

n n

2E(t) = D ; ; kij(t)vii(t) + C(m(t) — (n+0))? (10)
and
—u;;(t) = Dki;(t) + C(m(t) — (n+0)) (11)

Let us consider the network at time ¢ > 0, and assume that the energy is
equal to E(t), and II(¢) = (r,s). Then from (7) and (11)

{ kys(t) > C/D(n + o —m(t)) it
kyo(t) < C/D(n + o —m(t)) it

8



The change of the energy AE % E(t 4+ 1) — E(t) is from (10) equal to

C(n—m(t) + o0 +1/2) — Dk,4(t) if Ups(t+ 1) —v,5(t) = —
AE=¢0 if Urs(t+ 1) = v,4(t)
{C(m(t) —n+1/2—0)+ Dk,(t) if Vps(t + 1) —’Um(t() :)
13

Generally speaking the quality of the results (the percentage of the tests
that led to solutions) essentially depended on the proportion % and the pa-
rameter o, for all n tested. The equations presented below can be developed
in the general form, i.e. with the parameters C', D and o. For the sake of
clarity we present them in the simpler form based on the conditions

C=D and c=0 (14)

Let us assume that at time ¢, m(t) = n — f, f € Z and II(¢) = (r,s).
Then egs. (12) and (13) can be rewritten as:

kes(t) < f if vs(t+1)=1
<0 if Ups(t+ 1) —v,5(t) = —1
=0 if Ups(t + 1) = v,5(%)
AEN 0 i et D) —va() = land > kut) 10
>0 if Ups(t+1) —v,5(t) = 1 and f = k(1)

From (15) we determine the stable states of the network. These are the
states for which

Vip,q) € {1,...,n} x {1,...,n} (vpg(t) = vpg(t + 1))

(1) f < 0 : there are no stable states in this case,

(i) f=0:

1

1



In this case the stable states of the network are exactly the solutions. The
energy in that case is equal to 0.
(iii) f > 0 : stable states in that cases are the false stable states,

{kpq(t) > f+1 V(P q) : vpg(t) =0
kpq(t) </ V(p, q) : qu(t) =1

- f =1 : each unoccupied field is attacked at least twice and the non-empty
fields are attacked at most once.
- f = 2: the empty fields are attacked at least three times and the non-empty
fields are attacked at most twice.
- f = 3 : according to Proposition 1 (placed below) the stable states for
f > 3 do not exist.

In order to formulate propositions about the existence of stable states we
introduce the following definition:

Definition 5 (k-dominant set of queens)

The set Dy, o {(r,s) : vs(t) = 1}, where [ is the power of that set, and n
is the problem size, is called the k-dominant set of queens at time t (simply:
k-dominant set) if condition () of the Definition 2 is fulfiled and k is the
largest number among those which fulfil the following condition:

(N V(rs)  (veslt) = 0) = (kpa(t) > k)

Examples of the k-dominant sets for n = 8,k = 1,2 and various [ are
presented in Figs. 3 — 6

Corollary 1
(i) - condition (B) together with cond. () for & = 2 do not imply cond.
(@),
(ii) - condition («) with cond. () for k = 2 do not imply cond. ().
Proof:
(i) - see Fig. 3 as a counter-example for n=8,
(ii) - the implication is not true for n queens placed on the main diagonal of
the chessboard.
Now, let us show that potential solutions of the problem, from the the-
oretical viewpoint, are only those states of the network that represent 2- or
3-dominant sets.

10



Proposition 1 (estimation of the parameter k for k-dominant sets)
For any n,1 € N the set Dy, does not exist for k > 4.

Proof:
A chess queen can attack at most 4(n — 1) — 1 fields (a row, a column and
two diagonals). Thus [ queens can attack less than 4/(n — 1) fields. The
number of empty fields in case [ queens are placed on the chessboard is equal
ton? —1.
Since for [ < n

4l(n —1) < 4n(n —1) = 4(n* —n) < 4(n® =)

then, £ < 4 in that case.

For | = n from () we have that, the queens are placed in the pairwise
different rows, columns and diagonals. Since the n queens that fulfil (/)
attack along exactly 2n diagonals, and there exist 2(2n — 3) diagonals of
length not less than 2, then from 2n — 3 > n for n > 3 we have that there
must exist an empty field that is attacked along at most one diagonal. That
field cannot be attacked more than 3 times.

The subcases for n =1, 2,3 with [ = n and the subcase [ > n are obvious.

Corollary 2
Every solution is either a 2-dominant set or a 3-dominant set.

Proof:
From (/) we obtain that the queens are placed in the pairwise different rows,
columns (and also diagonals). Since m(t) = n, then each empty field is
attacked at least twice. Thus, k > 2. According to Proposition 1, k < 3.

2.2.3 Conclusions

Comparing the above theoretical analysis with the simulation results (Fig. 2
and sect. 2.2.1) leads to the following remarks:

(i) since, in practice, the convergence rate is equal to 100%, the number of
stable states for f =1 and f = 2, i.e. with n — 1 and n — 2 queens placed,
resp. is relatively small,

(ii) from the theoretical analysis it is clear that instead of o = 0, any other
value from the interval (0,0.5) may be used with exactly the same quality of
the results,

(iii) in case o = 0.5, from (13) there exist quasi-stable states, e.g.:

11



m(t) =n and Ap, q 1 (Vp(t) = 0) A (kpy(t) = 0)

m(t) =n and 3Ap, q : (Vpg(t) = 1) A (kpy(t) = 1)

m(t)=n—1 and Ap, q : (vpe(t) = 0) A (kpg(t) = 1)

m(t)=n—1 and Ap, q : (vpe(t) = 1) A (kpg(t) = 2)

ete.

In each of the above cases chosing neuron (p,q) results in changing its

state without changing the network energy,
(iv) by the simulation results the average number of external iterations is,
except for n = 4, about 4.31 - n%4", which implies the average experimental
computational complexity of the method be polynomial and equal to O(n*47)
(the average number of external iterations, by O(n?) neurons updated in each
iteration, by O(n?) elementary operations required to compute the neuron’s
potentials).

We would briefly describe how values 4.31 and 0.47 were obtained. Let
T'(n) be the function of the average number of external iterations required in
one simulation test. Based on the values of T'(n) except for n = 4 it was clear
that the shape of the function resembles 4n%°. Since the results for n = 4,
which were of the least importance, had unproportionally big influence on
the function shape they were left out.

T'(n) was assumed to be of the form:

T(n)=a-n*

Thus,
In(T(n)) =In(a) + k - In(n) (17)

which is of the linear form with respect to parameters a and k. The least
square fit method applied to the form (17) led to the solution

a=4.31 and k=0.47
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with the square fit error for the base, i.e. not logarithmic form equal to 3.557
(the biggest component was equal to 2.087 - for n = 16) and the biggest
absolute linear error equal to 8.31% - also for n = 16.

Applaying the same as above procedure to the values of T'(n) with n = 4
included led to the following results:

a=231 and k =0.63

with square fit error equal to 43.93 (the biggest value was equal to 14.96 - for
n = 16), and the biggest absolute linear error equal to 22.27% - for n = 16.

2.3 Synchronous mode

In the synchronous mode the simulation test was performed according to the
following steps:

(i) all initial output potentials v;; (¢, = 1,...,n) were set and from (5)
the starting value of energy E was evaluated,

(ii) n neurons were randomly chosen and from (6) and (7) the corre-
sponding potentials were calculated (simultaneously for all n neurons),

(iii) operation (ii) was repeated 5n times, and then the value of the
energy, from (5) was updated.

Similarily to the asynchronous case every n repetitions of (ii) was called
an internal iteration, and five internal iterations composed an external one.

The termination criterion was the same as the one used in the asyn-
chronous case.

In all tests the following values of the parameters were used:
A=B=100, C'=40, 0 =2

and like in the former case, for each n from (8) - except for n = 80, 100
tests were performed. Unfortunately, for n = 80, the equipment used (PC
80486/33) appeared to be too slow to finish the simulations in the reasonable
time.
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2.3.1 Simulation results

Based on the simulation results we can say that:

(i) the convergence rate is equal to 100% except for the case n = 16, (a)
and n = 16, (¢) for which is equal to 99%,

(ii) there are no significant differences in speed among the initial strategies
(see Fig. 7),
(iii) simulations for n = 64 were also performed with ¢ = 3, which resulted
in lower convergence rate (90%), but much smaller number of iterations (e.g.
27.48 for strategy (b)).
(iv) the function estimating the average number of external iterations is,
except for n = 4, of the form 2.82 - n%67, which implies the average experi-
mental computational complexity of the method be polynomial and equal to
O(n*57) - for the sequential RAM machine - (the average number of external
iterations, by O(n?) neurons updated in each external iteration, by O(n?)
elementary operations required to compute the neuron’s potentials).

We used the same method as the one described in the asynchronous case
(cf. 2.2.3) to obtain values for a and k, and for the same reason the case
n = 4 was omitted.

The respective errors were equal to 3.35 (the biggest component being
equal to 2.16 - for n = 48), and 4.26% - for n = 16.

In case n = 4 was included we obtained a = 1.71, k = 0.81, with the errors
respectively equal to 36.89 (max. component equal to 13.93 - for n = 64)
and 14.30% - for n = 16.

Unfortunately, we were unable to successfully simulate the network for
O(n?) parallely (synchronously) chosen neurons, because in that case the
network usually oscillated between the two metastable states, and wasn’t
able to settle.

3 Final remarks

In this paper a completely binary model of the network for the N-Queens
Problem is described. The network can work either in the asynchronous
mode or in the synchronous mode with n processors, where n is the problem
size.

The convergence rate is very high, up to 100%.
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The experimental estimate of the computational complexity of the pro-
posed network is (according to the performed simulations) equal to O(n*47)
in the asynchronous case, and O(n*57) in the synchronous case (performed
on the sequential computer).

Based on the theoretical analysis of the network performance in the asyn-
chronous case we can describe and characterize the stable states, the solu-
tions, as well as the false stable states of the network. Such analysis is more
complicated in the synchronous case, but also in that case the adequate set
of the parameters was established.

Generally speaking, the proposed binary network seems to be useful in
solving other optimisation problems, especially those which are discrete.
Based on that model we have also tried to solve the TSP, with some suc-
cess, but we are not yet satisfied and convinced whether such limited, binary
approach is strong enough for solving the TSP.

In future we plan to show network’s efficiency in solving other optimiza-
tion problems.
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Figure 1: An example of the NQP solution for n=8
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Figure 3: An example of the k-dominant set Figure 4: An example of the k-dominant set
for n=8, k=1 and I=n-1 for n=8, k=1 and I=n-2

Figure 5: An example of the k-dominant set Figure 6: An example of the k-dominant set

for n=8, k=1 and I=n-3 for n=8, k=2 and I=n-1
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