
A Neural Network Performing Boolean Logic
Operations

Jacek Mańdziuk and Bohdan Macukow

Faculty of Mathematics and Information Science,

Warsaw University of Technology,
Plac Politechniki 1, 00-661 Warsaw, POLAND

Abstract

A neural network, composed of neurons of two types, able to perform Boolean
operations is presented. Based on recursive definition of ”basic Boolean operations”
the proposed model, for any fixed number of input variables, can either realize all of
them paralelly, or accomplish any chosen one of them alone.

Moreover, possibilities of combining a few such networks into more complex struc-
tures in order to perform superpositions of basic operations are disscussed.

The general concept of neural implementation of First Order logic (FO) based on
the presented network is also introduced.

Key Words : neural networks, logic operations, First Order logic

Published in Optical Memory and Neural Networks 2(1), 17-35, (1993)

e-mail: mandziuk@mini.pw.edu.pl
http://www.mini.pw.edu.pl/˜ mandziuk

1

1 Introduction

In the last years much effort has been devoted to neural networks and great progress in this
field has been achieved. Many theoretical results as well as industrial applications concerning
neural nets have been presented. However, most publications focused on pattern recognition,
e.g. [1-2], content addressable memories, e.g. [3-5], and optimisation problems, e.g. [6-7],
some papers also dealt with applications of optical neural networks in realizing Boolean
logic operations of a few variables [8-12]. This field of application of neural nets seems very
promissing. Massive parallelism, inherent in neural nets allows performing logic operations
with high speed. Moreover, small neural nets performing basic logic operations of a few
variables [12], used as parts of bigger structures are able to realize more complex tasks. This
way may finally lead to building a general-purpose neurocomputer based on logic operations.

In this paper a neural network performing all possible basic Boolean operations of n
variables, for given n, is presented. Definition of ”basic Boolean operation” is introduced in
Section 2. Moreover, in this section the idea of the network based on recursive definition of
basic Boolean operations with respect to the number of variables is introduced. In Section
3 a closer look at the network and its formal definition are given. Matrix description of the
proposed network is presented in Section 4. Characteristic features of the network such as:
its ”open” structure, using external bias, and others are disscussed in Section 5.

Sections 6 and 7 are devoted to some extensions of the presented model, such as the way
of constructing a network performing any fixed, arbitrarily chosen basic Boolean operation
and combining simple networks into more complex structures. Additionally, remarks about
neural implementation of First Order logic [13] and its extensions (majority and modulo
quantifiers [14]) are placed in Section 7.

Finally, concluding remarks and suggestions of possible further development of the model
are covered by Section 8.

2 Preliminaries

Let us define the term ”basic Boolean (logic) operation” first.
Definition.
The k-th basic Boolean operation of n variables x1 , . . . , xn denoted

Bk
n(x1 , . . . , xn), k = 0, . . . , 22n − 1, n ∈ N

is defined by Tab. 1, where

k = f2n−1 · 22n−1 + f2n−2 · 22n−2 + . . . + f1 · 21 + f0 · 20

fi ∈ {0, 1}, i = 0, . . . , 2n − 1 that is k = (f2n−1, f2n−2, . . . , f1, f0)2.

2

x1 x2 . . . xn Bk
n(x1 , . . . , xn)

1 1 . . . 1 f2n−1

0 1 . . . 1 f2n−2

1 0 . . . 1 f2n−3

0 0 . . . 1 f2n−4
...

...
...

...
...

1 1 . . . 0 f3

0 1 . . . 0 f2

1 0 . . . 0 f1

0 0 . . . 0 f0

Table 1. The ”zero-one table” presentation of definition of the k-th basic Boolean operation
of n variables x1 , . . . , xn, where (f2n−1, f2n−2, . . . , f1, f0)2 is a binary representation of k.

Certainly it is only a matter of convention in which way we attribute zeros and ones in
the table. In our definition variable x1 changes most often and has 1 in the first row, 0 in
the second row, and so on. Variable x2 has ones in the first two rows, then zeros in the next
two rows, then two ones again, and so on. At last xn changes most slowly and has ones in
the upper half of the table and zeros in the lower half.

In definition above we assume that basic logic operation is defined ”straight” by Bk
n(),

not being a superposition of other logic operations. Certainly, any superposition of Boolean
operations finally yields to some basic operation, but superpositions of a few operations
require a little different treatment (see Section 7).

Henceforth, instead of ”basic logic operation” we shall simply write ”operation”, unless
it may lead to misunderstandings. Other, (not basic) logic operations will be called ”logic
functions”, e.g. B8

2((B1
1(x1), x2)) or B4

2((B3
1(x1), B7

2(x1 , x2)), etc.
For n = 1 there are four operations (see Tab. 2):

B0
1(x1), B1

1(x1), B2
1(x1), and B3

1(x1)

equivalent to FALSE (output always 0), x1 (not x1), x1 and TRUE (output always 1),
resp. and for n = 2 there are sixteen operations (see Tab. 3), etc.

x1 B0
1(x1) B1

1(x1) B2
1(x1) B3

1(x1)

1 0 0 1 1
0 0 1 0 1

Table 2. Four possible operations B0
1(x1), B1

1(x1), B2
1(x1), and B3

1(x1) for one variable
x1 . Those operations are equivalent to FALSE, x1 , x1 and TRUE, respectively.

3

x1 x2 B0
2 B1

2 B2
2 B3

2 B4
2 B5

2 B6
2 B7

2 B8
2 B9

2 B10
2 B11

2 B12
2 B13

2 B14
2 B15

2

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 3. Sixteen possible operations B0
2(x1 , x2), . . . , B15

2 (x1 , x2) for two input variables x1

and x2 .

For example, operations AND, OR, NAND:

x1 ∧ x2 , x1 ∨ x2 , x1 ∧ x2

are in this notation equivalent to

B8
2(x1 , x2), B14

2 (x1 , x2) and B7
2(x1 , x2),

respectively.

The network presented in the paper is based on the following preposition:
Preposition.

∀p, n ∈ N ∀x1 , . . . , xn

if p = (f2n−1, f2n−2, . . . , f1, f0)2, fi ∈ {0, 1}, i = 0, . . . , 2n − 1
then ∃! r, s ∈ N such that

Bp
n(x1 , . . . , xn) =

(
Br

n−1(x1 , . . . , xn−1) ∧ xn

)
∨

(
Bs

n−1(x1 , . . . , xn−1) ∧ xn

)

and
r = (f2n−1, f2n−2, . . . , f2n−1+1, f2n−1)2, s = (f2n−1−1, f2n−1−2, . . . , f1, f0)2

Proof.
This preposition is immediate by definition of the operation Bp

n(). Actually, since in the
”zero-one” table definition of Bp

n() the last variable, i.e. xn has ones in the upper half and
zeros in the lower half of it, then Br

n−1() and Bs
n−1() are determined by halfs of that table

(upper and lower ones, respectively). Thus

Br
n−1(x1 , . . . , xn−1) = Bp

n(x1 , . . . , xn−1, 1)

Bs
n−1(x1 , . . . , xn−1) = Bp

n(x1 , . . . , xn−1, 0)

The conditions for r and s are obvious.
Two examples of such recursive decomposition are presented in Tabs. 4a and 4b. In Tab.

4a there are n = 2, p = (1001)2 = 9 and thus r = (10)2 = 2, s = (01)2 = 1, and in Tab. 4b
we have n = 3, p = (10110101)2 = 181, r = (1011)2, s = (0101)2 = 5.

4

α β

x1 x2 Br
1(x1) Bs

1(x1) x2 ∧ Br
1(x1) x2 ∧ Bs

1(x1) α ∨ β B9
2(x1 , x2)

1 1 1 0 1 0 1 1
0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1

Table 4a. Recursive decomposition of operation B9
2(x1 , x2) based on Preposition from

Section 2. α and β are used only to streamline the notation.

α β

x1 x2 x3 Br
2(x1, x2) Bs

2(x1, x2) x3 ∧ Br
2(x1, x2) x3 ∧ Bs

2(x1, x2) α ∨ β B181
3 (x1, x2, x3)

1 1 1 1 0 1 0 1 1
0 1 1 0 1 0 0 0 0
1 0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1 1
1 1 0 1 0 0 0 0 0
0 1 0 0 1 0 1 1 1
1 0 0 1 0 0 0 0 0
0 0 0 1 1 0 1 1 1

Table 4b. Recursive decomposition of operation B181
3 (x1 , x2 , x3) (cf. Preposition in Section

2). α and β are used only to streamline the notation.

3 Network definition

The network is composed of two types of neurons. Thus we shall use two threshold functions:
g1 and g2

g1(z) =
{

1 if z > 0
0 if z ≤ 0

and

g2(z) = g1(z − 1) =
{

1 if z > 1
0 if z ≤ 1

Let us note, for future use, that the conditions

p = g1(p), p = g1(1 − p), p ∨ q = g1(p + q), (1)

p = g2(p + p), p ∧ q = g2(p + q)

are fulfilled by any Boolean variables p, q. In other words, neurons with the threshold
function g1 (i.e. neurons of type g1) can perform logical OR operation for the two Boolean

5

inputs. Moreover, with the use of the external bias 1, they can perform logical NOT operation
(this feature is only used in the first layer of the network). Similarily, neurons of type g2 can
act as a logical AND gate for the two Boolean inputs.

The network, for n input variables x1 , . . ., xn, is composed of 2n layers numbered 0, 1, 1+,
2, 2+, . . ., (n−1)+, n. The 0-th layer is the input layer and the layer number n is the output
one. Layers 1, 2, 3, . . . , n are composed of neurons of type g1. In layers 1+, 2+, . . . , (n − 1)+

neurons of type g2 are used. Layers with superscript ” + ” are auxiliary ones and the others
are main layers.

The example of the network for n = 2, i.e. performing all operations Bk
2 (x1 , x2), k =

0, . . . , 15 is presented in Fig. 1. In that case there are four layers: input layer, two hidden
layers and the output one. In the input layer except for two input variables x1 , x2 a node
representing external bias 1 is added. Nodes in the first hidden layer represent functions
B0

1(x1), B1
1(x1), B2

1(x1), B3
1(x1) and variables x2 , x2 . Nodes in the second hidden layer are

created as Bi
1(x1) ∧ x2 and Bi

1(x1) ∧ x2 , i = 0, . . . , 3. In the output layer there are sixteen
possible basic logical operations B0

2(x1 , x2), . . . , B15
2 (x1 , x2).

External input bias 1 is neccessary to implement operations that for totally zero input
produce a non-zero output, e.g. B9

2(0, 0) = 1. This external node is also indispensable in
creating complements of the input variables in the way described in (1). We have taken into
account two possible ways of creating these complements:

(a) adding the external node 1 to all but the two last layers in the network,
or

(b) using the external 1 only in the input layer.
Both of the above ways have their advantages as well as weak points. The reason why

we chose variant (b) is explained in Section 5, together with the general description of the
network features.

The first inconvenience of method (b) is that since we have decided to add external node
1 only in the input layer we have had to generate complements of all input variables yet in
the first hidden layer. In fact, according to (1) we create the complement x of variable x
using the external node 1 (with weight 1) and variable x (with weight −1) as the inputs to
the neuron of type g1 in layer 1.

The other inconvenience is connected with ”moving” input variables with bigger indices
and their complements through the hidden layers up to their destinations, i.e. the layers
in which they are used (e.g. x3 and x3 are used in layer 2+, x4 and x4 in layer 3+, etc.).
Since in auxiliary layers we use threshold function g2 which returns 0 for any argument less
or equal 1, we had to either use multiple wages or what we did in fact, duplicate some of the
nodes. Namely, for every input variable xi , as well as its complement xi , in the main layers
1, 2, . . . , i − 2 we create two nodes: xi and x ′

i for xi and xi , x ′
i for xi (see Fig. 2).

In the auxiliary layers there is one node representing xi (and one representing xi) created
from the two nodes: xi and x ′

i (respectively xi and x ′
i) from the previous layer. This way

in the auxiliary layers we obtain by (1):

g2(xi + x ′
i) = xi and g2(xi + x ′

i) = xi

In other words, nodes xi and x ′
i representing xi (and similarily nodes xi , x ′

i representing
xi) created in the main layers 1, 2, . . . , i − 2 enable prolonging input variable xi (and its

6

complement xi) through auxiliary layers 1+, 2+, . . . , (i − 2)+ up to the layer (i − 1)+, in
which xi and xi are used.

The above described (a little bit confusing) method of avoiding multiple and negative
wages is schematically illustrated in Fig. 2. Now let us describe the network layer by layer.
For n input variables x1 , . . . , xn, the following number of nodes is required:

- in layer 0; n + 1 input nodes:
1, x1 , x2 , . . . , xn.

- in layer 1; 4(n − 2) + 6 nodes:
B0

1(x1), B1
1(x1), B2

1(x1), B3
1(x1) and x2 , x ′

2 , and
x3 , x ′

3 , x3 , x
′
3 , . . . , xn, x ′

n, xn, x ′
n.

- in layer 1+; 2(n − 2) + 8 nodes:
Bk

1 (x1) ∧ x2 , Bk
1 (x1) ∧ x2 , k = 0, . . . , 3 and x3 , x3 , . . . , xn, xn.

Henceforth, for any l ≤ m < n we denote by
+Bl

m(x1 , . . . , xm+1) node representing Bl
m(x1 , . . . , xm) ∧ xm+1 and by

−Bl
m(x1 , . . . , xm+1) node representing Bl

m(x1 , . . . , xm) ∧ xm+1 (both in layer m+).

- in layer 2; 4(n − 3) + 18 nodes:
Bk

2 (x1 , x2), k = 0, . . . , 15 and x3 , x
′

3 , and x4 , x
′

4 , x4 , x
′

4 , . . . , xn, x ′
n, xn, x ′

n.

- in layer 2+; 2(n − 3) + 32 nodes:
+Bk

2 (x1 , x2 , x3), −Bk
2 (x1 , x2 , x3), k = 0, . . . , 15 and x4 , x4 , . . . , xn, xn.

.

- in layer m, m ≤ n; 22m
+ 4(n − m − 1) + 2 nodes:

Bk
m(x1 , . . . , xm), k = 0, . . . , 22m − 1 and xm+1, xm+1 and

xm+2, x
′

m+2, xm+2, x
′

m+2, . . . , xn, x ′
n, xn, x ′

n.

- in layer m+, m ≤ n − 1; 2 · 22m
+ 2(n − m − 1) nodes:

+Bk
m(x1 , . . . , xm+1),

−Bk
m(x1 , . . . , xm+1), k = 0, . . . , 22m − 1 and

xm+2, xm+2, . . . , xn, xn.

.

- in layer (n − 1)+; 2 · 22n−1
nodes:

+Bk
n−1(x1 , . . . , xn), −Bk

n−1(x1 , . . . , xn), k = 0, . . . , 22n−1 − 1.

- in layer n; 22n
output nodes:

Bk
n(x1 , . . . , xn), k = 0, . . . , 22n − 1.

7

To describe the connection weights and structure let us denote by {α, β} = γ the fact
that node α from previous layer is connected with node β from the next layer and weight of
the connection is equal to γ. Then
1) There are 6(n − 1) + 9 connections between nodes from layer 0 to layer 1:

{x1 , B
0
1(x1)} = −1, {x1 , B

1
1(x1)} = −1, {x1 , B

2
1(x1)} = 1,

{x1 , B3
1(x1)} = 1, {1, B1

1(x1)} = 1, {1, B3
1(x1)} = 1,

and
{xi , xi } = 1, {xi , xi } = −1, {1, xi } = 1, i = 2, . . . , n,

and
{xi , x ′

i } = 1, {xi , x ′
i } = −1, {1, x ′

i } = 1, i = 3, . . . , n

2) All weights of connections between nodes from layer 1 to layer 1+, from layer 1+ to layer
2, and so on up to connections to the output layer are equal to 1, i.e. {α, β} = 1 for all
nodes α, β belonging to the two successive layers and α is not the input node.
3) Layer m+, 1 ≤ m ≤ n − 1 is created from layer m in such a way that every node
+Bi

m, i = 0, . . . , 22m − 1 in layer m+ is connected with two nodes: Bi
m and xm+1 from layer

m and every node −Bi
m, i = 0, . . . , 22m − 1 from layer m+ is connected with nodes Bi

m and
xm+1 from layer m.

Moreover, every node xm+j and xm+j , j = 2, . . . , n − m in layer m+ is connected with
the pair of nodes xm+j , x ′

m+j and xm+j , x
′

m+j , respectively from layer m. So, there are
4 · 22m

+ 4(n − m − 1) connections from layer m to layer m+:

{Bi
m,+ Bi

m} = 1, {Bi
m,− Bi

m} = 1, {xm+1,
+ Bi

m} = 1, {xm+1,
− Bi

m} = 1, i = 0, . . . , 22m − 1.

and

{xm+j , xm+j} = 1, {xm+j , xm+j} = 1,

{x ′
m+j , xm+j} = 1, {x ′

m+j , xm+j} = 1, j = 2, . . . , n − m.

4) Layer m + 1, m + 1 ≤ n is created from layer m+. Nodes xm+2 and xm+2 are extended
from layer m+ to layer m + 1. Every other node xm+j as well as xm+j , j = 3, . . . , n − m
from layer m+ creates two nodes: xm+j , x

′
m+j and xm+j , x

′
m+j , respectively, in layer m + 1,

that is

{xm+j , xm+j} = 1, {xm+j , xm+j} = 1, j = 2, . . . , n − m,

and
{xm+j , x

′
m+j} = 1, {xm+j, x

′
m+j} = 1, j = 3, . . . , n − m

Every node Bk
m+1, k = 0, . . . , 22m+1−1 in layer m + 1 is connected with two nodes from layer

m+: one with superscript ” + ” and one with superscript ” − ”. More precisely, the node
Bk

m+1, k = 0, . . . , 22m+1−1 has the connections
{+Bi

m, Bk
m+1} = 1, {−Bj

m, Bk
m+1} = 1,

where

8

i = Ent
(k

22m

)
, j = k − 22m · Ent

(k

22m

)

Totally there are 2 · 22m+1
+ 4(n − m − 2) + 2 connections between layers m+ and m + 1.

5) Layer number n is the output layer. It is composed of 22n
nodes in which values of

operations Bk
n(x1 , . . . , xn), k = 0, . . . , 22n−1 are presented.

4 Matrix notation

Let us consider the network performing all operations Bk
n(x1 , . . . , xn), k = 0, . . . , 22n − 1,

and define for any Boolean vector [y1 , . . . , ym], m ∈ N casting operations

Gi([y1 , . . . , ym]) = [gi(y1), . . . , gi(ym)], i = 1, 2

Denote also by INi, i = 0, . . . , n and INi+ , i = 1, . . . , n − 1, Boolean input vectors
to the layers i and i+, respectively, and similarly by OUTi and OUTi+ output vectors from
these layers. For the input layer:

IN0 = [1, x1 , . . . , xn] and OUT0 = IN0

The total input to layer number 1 and output produced by this layer are as follows:

IN1 = OUT0 ∗ W0, and OUT1 = G1(IN1),

where ’∗’ denotes matrix product, and

W0 =

0 1 0 1 0 1 0 0 1 1 . . . 0 0 1 1
−1 −1 1 1 0 0 0 0 0 0 . . . 0 0 0

1 −1 0 0 0 0 . . . 0 0 0 0
0 0 1 1 −1 −1 . . . 0 0 0 0

0
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 0 . . . 1 1 −1 −1

n + 1 rows

220
+ 4(n − 2) + 2 columns

Rows of matrix W0 correspond to n+1 nodes in layer 0 and its columns to 220
+4(n−2)+2

nodes in layer 1 (see Section 3 for details).

Similarly the total input to layer 1+ and output of this layer are equal to:

IN1+ = OUT1 ∗ W1, and OUT1+ = G2(IN1+),

where

9

W1 =

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

1 0 . . . 0
1 0 . . . 0
0 1 . . . 0
0 1 . . . 0

0
...

...
. . .

...
0 0 . . . 1
0 0 . . . 1

220
+ 4(n − 2) + 2 rows

2 · 221
+ 2(n − 2) columns

Rows and columns of matrix W1 correspond to nodes in layers 1 and 1+, respectively.
Equations describing the next layers can be stated in the similar way:

INi+ = OUTi ∗ Wi, OUTi+ = G2(INi+)
and

INi+1 = OUTi+ ∗ Wi+ , OUTi+1 = G1(INi+1)
For the formal description of matricies Wi and Wi+ we introduce some helpful notation:

Φr,s - matrix r × s with all elements equal to 0, i.e.

Φr,s[i, j] = 0, i = 1, . . . , r, j = 1, . . . , s

Jr - matrix r × 2r such that

Jr[i, j] =
{

1 2i = j or 2i = j + 1
0 in other cases

i = 1, . . . , r, j = 1, . . . , 2r

Ir,s - matrix composed of s copies of unit matrix r× r placed one after the other (in a row),
that is

Ir,s[i, j] =
{

1 j − i | r
0 in other cases

i = 1, . . . , r, j = 1, . . . , rs

where ’|’ denotes divisibility.
Finally the definition of the more complicated matrix Kr - composed of 22r+1 rows and

22r+1
columns such that

Kr[i, j] =
{

1 (i − 1 | 2 and i−1
2

22r
< j ≤ i+1

2
22r

) or (j − i
2
| 22r

)
0 in other cases

i = 1, . . . , 22r+1, j = 1, . . . , 22r+1

Matrix Kr is presented in Fig. 3.

10

With above notation each matrix Wi, 1 ≤ i ≤ n can be depicted as follows:

Wi =

J22i

Φ2+22i
, 2(n−i−1)

I2, 22i

Φ4(n−i−1), 22i+1
(J2(n−i−1))T

22i
+ 4(n − i − 1) + 2 rows

22i+1 + 2(n − i − 1) columns

First 22i
rows of matrix Wi correspond to nodes B0

i , B1
i , . . . , B22i−1

i in layer i. Next two
rows correspond to nodes xi+1 and xi+1 in layer i. Finally, 4(n− i− 1) left ones correspond
to nodes xi+2, x ′

i+2, xi+2, x ′
i+2, . . ., xn, x ′

n, xn, x ′
n in this layer.

Columns are responsible for nodes in layer i+. First 22i+1 of them correspond to nodes
+B0

i ,
−B0

i , . . ., +B22i−1

i , −B22i−1

i , and the other 2(n− i− 1) to nodes xi+2, xi+2, . . ., xn, xn.
For any auxiliary layer i+, 1 ≤ i < n we have:

Wi+ =

Ki Φ22i+1, 4(n−i−2)+2

Φ2, 22i+1

I2, 1 Φ2, 4(n−i−2)

Φ2(n−i−1), 2+22i+1

J2(n−i−2)

22i+1 + 2(n − i − 1) rows

22i+1
+ 4(n − i − 2) + 2 columns

where rows correspond to nodes in layer i+ (see description above), and columns to nodes

in layer i + 1. First 22i+1
columns describe nodes B0

i+1, . . . , B22i+1−1

i+1 and the rest of them
nodes xi+2, xi+2, xi+3, x ′

i+3, xi+3, x ′
i+3, . . . , xn, x ′

n, xn, x ′
n.

5 Description of the network features

What are characteristic features of the network ?

11

First, the network has ”open” structure. Any main layer, say for example layer number
l, can work as the output layer. In its nodes values of 22l

operations Bk
l (), k = 0, . . . , 22l−1

of l variables x1 , . . . , xl are produced. Thus the network, actually performs all operations
of the input variables x1 , . . . , xl , for every l ≤ n. Such a structure also provides easy way
for constructing a network realizing any single fixed operation, not performing all of them
together.

The above feature as well as possibilities of modular combining parts of the network
in order to create networks performing more complex tasks are broadly described in next
sections.

As mentioned before we cannot avoid external bias 1 to produce a non-zero output from
totally zero input, but in construction presented above we need external 1 only in the input
layer. The cost of this is that we have to generate complements of all input variables yet in
the first hidden layer, though they are used in further layers. Moreover, we have to duplicate
some nodes in the main layers to prevent input variables from being reset in the auxiliary
layers.

The alternative solution is to prolonge external node 1 from the input layer through all
hidden layers up to the last but one of them. This way it is possible to obtain complements
of input variables at the last moment. Strictly speaking value of xl , 2 ≤ l ≤ n is created
in layer (l − 1)+. On the other hand, using external node 1 in every layer and applying
negative wages in further layers (to obtain complements of the input variables) seems to be
”not elegant” and artificial.

Moreover, the chosen model provides very simple mechanism for creation of layers. From
layer 1 up to the output layer all weights of connections are equal to 1 which makes structure
of the network symmetric and clear. Avoiding artificial external nodes in the hidden layers
as well as multiple and negative wages except of a few negative ones between the input layer
and the first hidden layer seems promissing for the practical computer implementation of
the model. Such an approach is also more intuitive for Boolean zero-one logic as well as for
the low-level computer work than the other one.

These are the reasons why we have sticked to the model with only one extra node, added
in the input layer. Examples of both networks performing operation B181

3 (x1 , x2 , x3) are
presented in Figs. 4a and 4b.

The main disadvantage of the proposed network is a big number of nodes required. On
the other hand, in the network, there are parallelly implemented all basic operations of given
number of input variables and the velocity of them grows extremely rapidly (22n

operations
of n variables). Moreover, as stated above, the network performing operations for n input
variables x1 , . . . , xn additionally performs all operations of the first l variables x1 , . . . , xl ,
for every l ≤ n.

Denoting by N(k) and N(k+) the number of nodes required in the k-th main layer and
the k-th auxiliary layer, respectively we get

N(k) =

n + 1 if k = 0
22k

+ 4(n − k − 1) + 2 if 0 �= k �= n
22n

if k = n

N(k+) = 22k+1 + 2(n − k − 1) k = 1, . . . , n − 1

12

Thus for Nn - the total number of nodes in the network for n variables we have the equation

Nn =
n∑

k=0

N(k) +
n−1∑
k=1

N(k+) = 22n

+ 3n2 − 6n + 5 + 3
n−1∑
k=1

22k

First four values of Nn are: N1 = 6, N2 = 33, N3 = 330, N4 = 216 + 857.

6 Performing any single, fixed operation

From practical point of view it may be more interesting to answer the question how to
construct a network performing any fixed, arbitrarily chosen operation. The answer is very
simple, straight from Preposition.

Consider Bα1
n (x1 , . . . , xn), where α1 = (f2n−1, f2n−2, . . . , f1, f0)2. Which operations of less

than n variables must be implemented before Bα1
n () is reached ?

Applaying n − 1 steps depth decomposition procedure from Preposition we obtain:

- first step

Bα1
n (x1 , . . . , xn) →

Bα2
n−1(x1 , . . . , xn−1) α2 = (f2n−1, . . . , f2n−1)2

Bα3
n−1(x1 , . . . , xn−1) α3 = (f2n−1−1, . . . , f0)2

- second step

Bα2
n−1(x1 , . . . , xn−1) →

Bα4
n−2(x1 , . . . , xn−2) α4 = (f2n−1, . . . , f2n−2n−2)2

Bα5
n−2(x1 , . . . , xn−2) α5 = (f2n−2n−2−1, . . . , f2n−1)2

Bα3
n−1(x1 , . . . , xn−1) →

Bα6
n−2(x1 , . . . , xn−2) α6 = (f2n−1−1, . . . , f2n−2)2

Bα7
n−2(x1 , . . . , xn−2) α7 = (f2n−2−1, . . . , f0)2

.

- k−th step

B
α

2k−1

n−k+1(x1 , . . . , xn−k+1) →

B
α

2k

n−k(x1 , . . . , xn−k)

B
α

2k+1

n−k (x1 , . . . , xn−k)

α2k = (f2n−1, . . . , f2n−2n−k)2, α2k+1 = (f2n−2n−k−1, . . . , f2n−2n−k+1)2

. . .

13

B
α

2k−1

n−k+1(x1 , . . . , xn−k+1) →

B
α

2k+1−2

n−k (x1 , . . . , xn−k)

B
α

2k+1−1

n−k (x1 , . . . , xn−k)

α2k+1−2 = (f2n−k+1−1, . . . , f2n−k)2, α2k+1−1 = (f2n−k−1, . . . , f0)2

.

- (n − 2)−th step

B
α2n−3

3 (x1 , x2 , x3) →

B
α2n−2

2 (x1 , x2) α2n−2 = (f2n−1, f2n−2, f2n−3, f2n−4)2

B
α2n−2+1

2 (x1 , x2) α2n−2+1 = (f2n−5, f2n−6, f2n−7, f2n−8)2

. . .

B
α2n−2−1

3 (x1 , x2 , x3) →

B
α2n−1−2

2 (x1 , x2) α2n−1−2 = (f7, f6, f5, f4)2

B
α2n−1−1

2 (x1 , x2) α2n−1−1 = (f3, f2, f1, f0)2

- (n − 1)−th step

B
α2n−2

2 (x1 , x2) →

B
α2n−1

1 (x1) α2n−1 = (f2n−1, f2n−2)2

B
α2n−1+1

1 (x1) α2n−1+1 = (f2n−3, f2n−4)2

. . .

B
α2n−1−1

2 (x1 , x2) →

B
α2n−2

1 (x1) α2n−2 = (f3, f2)2

B
α2n−1

1 (x1) α2n−1 = (f1, f0)2

Finally, in order to implement Bα1
n () there must be implemented 2n−2 previous operations

(of less than n variables). Note that for bigger values of n many of them are redundant (not
unique). For example in case B181

3 (x1 , x2 , x3), i.e. n = 3, α1 = 181 = (10110101)2 (see Fig.
4a and Tab. 4b) we need

Bα1
1 (x1 , x2 , x3) →

Bα2
2 (x1 , x2) →

Bα4
1 (x1)

Bα5
1 (x1)

Bα3
2 (x1 , x2) →

Bα6
1 (x1)

Bα7
1 (x1)

where
α2 = (1011)2 = 11, α3 = (0101)2 = 5,

14

α4 = (10)2 = 2, α5 = (11)2 = 3, α6 = α7 = (01)2 = 1

In the first step we divide (10110101)2 into (1011)2 and (0101)2, that is α2 and α3, respec-
tively. In the second step we obtain (10)2 and (11)2 (α4 and α5) from α2 and (01)2, (01)2

(α6, α7) from α3.

7 Performing more complex tasks

Once we are able to perform all operations Bk
n() (for fixed n) parallelly, or any single one of

them alone, we can accomplish some more complex tasks. One of the promissing features of
the network is its ability to be combined into more complex structures. Suppose for example,
that a network which for any Boolean input variables x1 , x2 , x3 outputs value of

B8
2(B4

2(x1 , x2), B200
3 (x1 , x2 , x3)) (2)

is required (see Tab. 5).

x1 x2 x3 B4
2(x1 , x2) B200

3 (x1 , x2 , x3) B8
2(B

4
2(x1 , x2), B200

3 (x1 , x2 , x3))

1 1 1 0 1 0
0 1 1 1 1 1
1 0 1 0 0 0
0 0 1 0 0 0
1 1 0 0 1 0
0 1 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 0

Table 5. Presentation of logical function B8
2(B4

2(x1 , x2), B200
3 (x1 , x2 , x3)) by a zero-one

table.

A diagram of the network performing logical function (2) is presented in Fig. 5. In
the first step, operations B4

2(x1 , x2), B200
3 (x1 , x2 , x3) are parallelly realized in two separate

networks, having only input in common. Then outputs of those networks plus additional
external 1 work as inputs to the next network performing operation B8

2(p, q), where p, q are
Boolean variables.

The proposed network can also be used for neural implementation of First Order logic
(FO) [13]. Since the details of this implementation require further research we would only
like to introduce here the general concept.

Let us assume that we have a neural network able to sequentially generate all possible
sequences of zeros and ones (zero-one mappings) of length n, where n is fixed, that is:

(0, 0, . . . , 0, 0︸ ︷︷ ︸
n times

), (0, 0, . . . , 0, 1︸ ︷︷ ︸
n times

), . . . , (1, 1, . . . , 1, 0︸ ︷︷ ︸
n times

), (1, 1, . . . , 1, 1︸ ︷︷ ︸
n times

)

Such a neural device (treated as a ”black-box” here) together with the network proposed in
the paper allow to implement classical FO over the language

Ln =
〈

Bk
n(x1 , . . . , xn) : n − fixed, 0 ≤ k < 22n

〉

15

What is to be implemented are quantifiers ∀ and ∃.
The existential quantifier (∃) can be realized as the sum of results of the performed

operation for all possible zero-one sequences (there are 2n of them, of course), with threshold
function g1.

Similarly, the general quantifier (∀) can be implemented as the logical product of these
2n results, or more simply by the sum of all of them, decremented by 1 each, plus additional
1 (with threshold function g1).

As the example let us consider Boolean formulas:

∀x1 ∀x2 B3
2(x1 , x2) and ∃x1 ∃x2 B3

2(x1 , x2)

For the two variables x1 and x2 there are four possible zero-one mappings: (0, 0), (0, 1),
(1, 0), and (1, 1). The condition

∀x1 ∀x2 B3
2(x1 , x2)

can be realized as

g1((B3
2(0, 0) − 1) + (B3

2(0, 1) − 1) + (B3
2(1, 0) − 1) + (B3

2(1, 1) − 1) + 1)

and
∃x1 ∃x2 B3

2(x1 , x2)

is equivalent to
g1(B3

2(0, 0) + B3
2(0, 1) + B3

2(1, 0) + B3
2(1, 1))

The general quantifier can also be accomplished according to the rule: ”work until non-
zero output is generated”. This way the answer FALSE is achieved when for any zero-one
mapping the output of the network (performing operation B3

2(x1 , x2), in our example) is
equal to 0, otherwise the answer is TRUE.

Certainly, the rule for the existential quantifier is: ”work until the output is equal to
zero”. The result is TRUE if for any mapping non-zero output is generated, otherwise the
result is FALSE.

As one can see it is easy to implement open formulas and formulas with exactly one type
of quantifiers (general or existential). Implementing formulas with mixed quantifiers is not
so natural and is of present research.

Since we are able to accomplish the classical FO we may think about its extensions by
adding majority or modulo quantifiers [14]:

FO + MAJn or FO + Qmoda

Let us remain that the condition

MAJnx1 , . . . , xn f(x1 , . . . , xn) is TRUE if and only if (3)

{(x1 , . . . , xn) : f(x1 , . . . , xn) is TRUE} > {(x1 , . . . , xn) : f(x1 , . . . , xn) is FALSE}

where double-line over the set denotes its power.

16

The majority quantifier can be carried out by the doubled sum of all results decreased
by 1 each, with 1 substracted from the whole (with threshold function g1). For example

MAJ2x1 , x2 B3
2(x1 , x2)

can be realized by the formula

g1((2B3
2(0, 0) − 1) + (2B3

2(0, 1) − 1) + (2B3
2(1, 0) − 1) + (2B3

2(1, 1) − 1) − 1) (4)

When in (3) the weak inequality is allowed then the majority quantifier is nothing else but
the general one with threshold equal to 1

2
and therefore the condition (4) must be modified

to

g1((2B3
2(0, 0) − 1) + (2B3

2(0, 1) − 1) + (2B3
2(1, 0) − 1) + (2B3

2(1, 1) − 1) + 1)

The authors have also tried to implement the modulo quantifier Qmoda:

Qmoda f(x1 , . . . , xn) is TRUE if and only if (5)

{(x1 , . . . , xn) : f(x1 , . . . , xn) is TRUE} | a

This task is more complicated and so far we are unable to answer how to carry it out.
Quantifiers described above may also be implemented simplier in case the threshold

functions other than g1 are used, especially when the threshold depends on n. In language
Ln, the general quantifier can be simulated as a multiple-AND gate (threshold equal to 2n),
the existential one as multiple-OR gate (threshold equal to 1 - as in our implementation)
and the majority quantifier as a multiple-AND gate with threshold equal to 2n−1 (with or
without external −1, depends on the inequality in (3)).

We suppose that the modulo quantifier (5) can be accomplished by a combination of
multiple gates with threshold equal to a but the precise answer is unknown to us.

8 Conclusions

Neural networks are finding many areas of applications. Although they are particularly well
suited for applications related to associative recall such as content addressable memories,
neural nets can be used in various other applications ranging from logic operations to solving
difficult optimisation problems.

The proposed network model can either work as the independent universal logic module or
be combined with neural network associative memories to accomplish complex combinations
of data and logic operations on corrupted input data.

It is well suited in the electronical (hardware) context. Except for a few connection
weights between the input layer and the first hidden layer all of weights are equal to 1.
Thus, weights in the network can be looked at as electronical switches.

The problem of performing any desired logical operation for any, arbitrarily constrained,
number of input variables can be handled by the universal hardware, based on the full

17

network, with the programmable switches. This way is much more effective than using
specific hardware dedicated to every single operation.

The network is still under research. We work on full implementation of First Order logic
(accomplishing formulas with mixed quantifiers), and on implementation of the modulo
quantifier. We also plan to define the network and its behaviour strictly in the logical
terminology.

Acknowledgments
Thanks are due to Dorota Krauze for her careful reading of the manuscript and sugges-

tions concerning implementation of First Order logic and its extensions.

References

[1] G. A. Carpenter, S. Grossberg, C. Mehanian, ”Invariant Recognition of Cluttered Scenes
by a Self-Organizing ART Architecture: Cort-X Boundary Segmentation”, Neural Net-
works, 2, 169-181, 1989

[2] A. Rajavelu, M. T. Musavi, M. V. Shirvaikar, ”A Neural Network Approach to Character
Recognition”, Neural Networks, 2, 387-393, 1989

[3] T. Kohonen, ”Adaptive, associative, and self-organizing functions in neural computing”,
Applied Optics, 26, 4910-4918, 1987

[4] H. H. Arsenault, B. Macukow, ”Neural network model for fast learning and retrieval”,
Optical Engineering, 28, 506-512, 1989

[5] X. Xu, W. T. Tsai, ”Constructing Associative Memories Using Neural Networks”, Neu-
ral Networks, 3, 301-309, 1990

[6] A. R. Bizzarri, ”Convergence properties of a modified Hopfield-Tank model”, Biological
Cybernetics, 64, 293-300, 1991

[7] J. Mańdziuk, B. Macukow, ”A neural network designed to solve the N-Queens Problem”,
Biological Cybernetics, 66, 375-379, 1992

[8] M. H. Hassoun, R. Arrathoon, ”Logical signal processing with optically connected
threshold gates”, Optical Engineering, 25, 56-68, 1986

[9] M. J. Murdoca, A. Huang, J. Jahns, N. Streibl, ”Optical design of programmable logic
arrays”, Applied Optics, 27, 1651-1660, 1988

[10] P. S. Guilfoyle, W. J. Wiley, ”Combinational logic based on digital optical computing
architectures”, Applied Optics, 27, 1661-1673, 1988

[11] B. M. Macukow, H. H. Arsenault, ”Neural networks for logic operations”, Proceedings
SPIE, 1134, 40-43, 1989

18

[12] B. M. Macukow, H. H. Arsenault, ”Logic operations with neural networks”, Control
and Cybernetics, 20, 116-133, 1991

[13] J. R. Shoenfield, Mathematical logic, Reading, MA: Addison - Wesley, 1967

[14] D. A. Barrington, N. Immerman, H. Straubing, ”On uniformity within NC1”, Proceed-
ings 3rd Annual Conference Structure in Complexity Theory, IEEE, 47-59, 1988

Figure captions.

Figure 1. The example of proposed neural network model for two variables. Lines with
arrowheads denote connection weights equal to −1, while the rest of them is equal to 1.

Figure 2. Presentation of the structure of nodes representing first four input variables
x1 , . . . , x4 (and their complements) in the successive layers of the network.

Figure 3. A general form of matrix Kr, for r ∈ N . In the picture columns are divided into
22r

groups, separated by characters ′ |′. Each group consists of 22r
columns.

Figures 4a and 4b. In Figs. 4a and 4b there are presented two networks performing
operation B181

3 (x1 , x2 , x3) (see Section 5). In the model proposed in Fig. 4a the external
node 1 appears only in the input layer. In the alternative network (Fig. 4b) external node 1
is prolonged from the input layer to the next ones. In both pictures lines with arrowheads
denote connection weights equal to −1, while the rest of them is equal to 1.

Figure 5. A schematical diagram of the network performing logical function B8
2(B4

2(x1 , x2),
B200

3 (x1 , x2 , x3)) (see Section 7).

19

Kr =

1 1 . . . 1 1 | 0 0 . . . 0 0 | 0 0 . . . 0 0 | · · · | 0 0 . . . 0 0
1 0 . . . 0 0 | 1 0 . . . 0 0 | 1 0 . . . 0 0 | · · · | 1 0 . . . 0 0
0 0 . . . 0 0 | 1 1 . . . 1 1 | 0 0 . . . 0 0 | · · · | 0 0 . . . 0 0
0 1 . . . 0 0 | 0 1 . . . 0 0 | 0 1 . . . 0 0 | · · · | 0 1 . . . 0 0

... | ... | ... | . . . | ...
0 0 . . . 0 0 | 0 0 . . . 0 0 | 0 0 . . . 0 0 | · · · | 1 1 . . . 1 1
0 0 . . . 0 1 | 0 0 . . . 0 1 | 0 0 . . . 0 1 | · · · | 0 0 . . . 0 1

Figure 3

