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A Two-Phase Multi-Swarm Algorithm for Solving
Dynamic Vehicle Routing Problem
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Abstract—This paper describes a method of solving Dynamic
Vehicle Routing Problem (DVRP) with Particle Swarm Optimiza-
tion. In the particular embodiment of DVRP considered in this
paper new requests may arrive during the whole working day.
Hence, the working day is divided into a certain number of
time slots in which a static Vehicle Routing Problem is solved.
The solution method works in two phases: the clustering phase
and the route optimization phase. Each of them is addressed by
a separate multi-swarm PSO instance.

Three forms of the fitness functions used for cost assessment
of the tours and two problem encodings are proposed and
experimentally verified.

The approach is tested on a well established set of benchmark
problems and produces more efficient solutions (on average
from 1.5% for identical number of fitness function evaluations
(FFE) up to 5.1% with increased number of FFE) than the best
metaheuristic results reported in the literature.

For the comparable number of FFE our method yielded 11
(out of 21 tested benchmark instances) new best literature results.
Additionally, with further increase of the number of FFE it was
capable of improving the best known solutions in 17 problems
(out of these 21).

I. INTRODUCTION

THE static version of the Vehicle Routing Problem (VRP),
introduced in the literature under the name The truck

dispatching problem, was initially proposed by Dantzig and
Ramser [1] and proved to be NP-Hard by Lenstra and Kan [2].

Dynamic Vehicle Routing Problem (DVRP) is a general-
ization of the VRP and in the literature, there are several
versions of the DVRP considered, which differ mainly by the
way a dynamic/stochastic factor is introduced. The version
discussed in this paper is the most common description of
the problem [3], sometimes referred to as the Vehicle Routing
Problem with Dynamic Requests (VRP+DR) [4]. In the DVRP
(VRP+DR) the goal is to find a minimal route for a fleet of
vehicles within a given time and capacity constrains without
having full knowledge of the number, location and size of the
set of requests at the start of the working day.

Generally speaking, in each point in time the DVRP may be
looked at as a combination of the two NP-Complete problems:
the Bin Packing Problem (BPP) for assigning the requests
to vehicles (clustering the set of requests) and the Traveling
Salesman Problem (TSP) for finding an optimal route for each
vehicle.

Division of the solution method into assignment and per-
mutation phases was initially proposed in heuristic algorithms
used for solving the static VRP by Fischer and Jaikumar [5],
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Ryan et al. [6] and Taillard [7]. Such a combination of BPP
and TSP may be effectively solved by both approximate meth-
ods [8], [9], [10] and metaheuristic algorithms, e.g. [11], [12],
[13], [14]. In this paper, the latter approach is adopted and
the Particle Swarm Optimization (PSO) algorithm is used to
solve both of these sub-problems. More precisely, the proposed
method - Two-Phase Multi-Swarm PSO (2MPSO) maintains
several swarms which simultaneously search for the optimal
solution. Utilization of a few swarms, enhanced by local
optimization of the tours and application of a new problem
encoding led to visible improvement of results compared to
our initial (single-swarm) approach [15].

Furthermore, when comparing the results with the state-of-
the-art solutions, for the cut-off time (see subsection II-C for
its description and meaning) set in the middle of a day (which
is the most common choice in the literature), the proposed
approach yields new best literature results in the case of 17
out of 21 benchmark problems considered.

This paper significantly extends our previous work [16]
mainly by providing a more thorough in-depth explanation
of the 2MPSO algorithm (in particular the problem encoding
in both phases) and by presenting certain limitations of the
clustering approach used in the first phase. Additionally,
the proposed method is compared in detail with its main
competitor - the state-of-the-art version of the MEMSO [17]
method, in terms of problem encodings and fitness functions
used.

The proposed multi-swarm method is also evaluated against
a single-swarm implementation with one large swarm of
the respective size. The advantages and weaknesses of both
implementations are presented and discussed.

Furthermore, an analysis of the contribution of several
auxiliary heuristics employed in our Two-Phase PSO method
is performed leading to a conclusion that the core strength
of the method should be mainly attributed to the PSO-based
clustering phase (the first phase of the method).

It is also argued in this paper that dividing the working
day into greater number of time slices than that proposed
in the literature [8] (and also used in our initial 2MPSO
presentation [16]) proved beneficial as it led to revealing new,
previously unknown best results for 13 benchmark problems.

Unlike our previous works [15], [16] which only formally
sketched the DVRP definition, this paper includes a detailed
discussion on a general framework used for solving this
problem as a series of static instances. Moreover, the role of
the related steering parameters: the cut-off time, the advanced
commitment time and the number of time slices, as well as the
pertinence of their proper selection are discussed in detail.

The paper is organized as follows. In the next section the
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definitions of the PSO algorithm and the DVRP are given. In
section III several metaheuristic approaches to solving DVRP,
which will be used for comparison with our method, are
presented. The following section describes our 2MPSO algo-
rithm and compares it with previous PSO-based approaches.
Subsequently, section V discusses the 2MPSO parameter setup
and introduces the set of benchmark problems used to verify
the efficacy of the method. Section VI presents the results of
experimental evaluation of the 2MPSO in comparison with the
competitive methods described in section III. The last section
summarizes the outcomes, provides conclusions and points
directions for possible future extensions of this work.

II. DEFINITIONS OF PSO AND DVRP

In this section the two major components of the presented
research, namely the Particle Swarm Optimization and the
Dynamic Vehicle Routing Problem are introduced.

A. Particle Swarm Optimization

PSO is an iterative global optimization metaheuristic
method proposed in 1995 by Kennedy and Eberhart [18]
and further studied and developed by many other researchers,
e.g., [19],[20],[21]. In short, PSO utilizes the idea of swarm
intelligence to solve hard optimization tasks. The underlying
idea of the PSO algorithm consists in maintaining the swarm
of particles moving in the search space. For each particle the
set of neighboring particles which communicate their positions
and function values to this particle is defined. Furthermore,
each particle maintains its current position and velocity, as
well as remembers its historically best (in terms of solution
quality) visited location. More precisely, in each time step t,
each particle i updates its position xit and velocity vit according
to the following formulas:

Position update: The position is updated according to the
following equation:

xit+1 = xit + vit. (1)

Velocity update: In our implementation of PSO (based
on [22] and [19]) velocity vit of particle i is updated according
to the following rule:

vit+1 =u
(1)
U [0;g](x

neighborsi
best − xit) + u

(2)
U [0;l](x

i
best − xit) + a · vit,

(2)

where
• g is a neighborhood attraction factor,
• xneighborsibest represents the best position (in terms of

optimization) found hitherto by the particles belonging
to the neighborhood of the ith particle,

• l is a local attraction factor,
• xibest represents the best position (in terms of optimiza-

tion) found hitherto by particle i,
• a is an inertia coefficient,
• u

(1)
U [0;g], u

(2)
U [0;l] are random vectors with uniform distribu-

tion from the intervals [0, g] and [0, l], respectively.
In our study we use the Standard Particle Swarm Opti-

mization 2007 (SPSO-07) [22] with random star neighborhood

topology, in which, for each particle, we randomly assign its
neighbors, each of them independently, with a given probabil-
ity1. Please note, that we are using SPSO-07 instead of the
newer SPSO-11 [22] since we intentionally take advantage of
the natural bias towards the search space center which results
in greater probability that PSO will choose solutions closer to
the center of the search space. Such an effect was observed
in the case of the former version of SPSO [23], [24]. Since in
our method the search space center is defined at the current-
best particle position, the above mentioned bias increases the
probability of finding the particles in the nearby of this best
location.

B. Dynamic Vehicle Routing Problem

In the version of DVRP discussed in this article one
considers:
• a fleet V of n vehicles,
• a series C of m clients (requests) to be served,
• a set D of k depots from which vehicles may start their

routes.
The fleet V is homogeneous, i.e. vehicles have identical

capacity ∈ R and the same speed2 ∈ R. The cargo is taken
from one of the k depots3. Each depot dj ∈ D, j = 1, . . . , k
has:
• a certain location locationj ∈ R2,
• working hours (startj , endj), where 0 ≤ startj < endj .
For the sake of simplicity, we additionally define two global

auxiliary variables (constraints): start := min
j∈1,...,k

startj and

end := max
j∈1,...,k

endj , which are not part of the standard

definition.
Each client cl ∈ C (l = k + 1, . . . , k +m), has a given:
• locationl ∈ R2,
• timel ∈ R, which is a point in time when their request

becomes available (start ≤ timel ≤ end),
• unldl ∈ R, which is the time required to unload the

cargo,
• sizel ∈ R - which is the size of the request (sizel ≤
capacity).

A travel distance ρ(i, j) is the Euclidean distance between
locationi and locationj on the R2 plane, i, j = 1, . . . ,m+k.

For each vehicle vi, the ri = (i1, i2, . . . , ip(i)) is a per-
mutation of indexes of requests assigned to the ith vehicle
and depots to be visited by the vehicle, which defines the
route of the ith vehicle. Please note, that the first and the last
elements always denote depots (the initial one and the final
one, respectively). The arvij is the time of arrival to the jth
request of the ith vehicle. arvij is induced by the permutation
ri, the time when requests become available - see eqs. (4)
and (5) and the time arvi1 at which vehicle leaves the depot.

1Please, note that the “neighboring” relation is not symmetrical, i.e. the fact
that particle y is a neighbor of particle x, does not imply that x is a neighbor
of y.

2In all benchmarks used in this paper speed is defined as one distance unit
per one time unit.

3In the most common benchmarks used in the literature, likewise in this
paper, it is assumed that k = 1.
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As previously stated, the goal is to serve all clients (re-
quests), according to their defined constraints, with minimal
total cost (travel distance) within the time constraints imposed
by the working hours of the depot.

In other words, the goal of the algorithm is to find such
a set R = {r∗1 , r∗2 , . . . , r∗n} of permutations of requests and
depots that minimizes the following cost function:

COST (r1, r2, . . . , rn) =

n∑
i=1

p(i)∑
j=2

ρ(ij , ij−1) (3)

under the following constraints (4) - (8).
Vehicle i, i = 1, 2, . . . , n cannot arrive at locationij until

the time required for traveling from the last visited location
locationij−1 (after receiving an information about the new
request) is completed:

∀i∈{1,2,...,n}∀j∈ri/{i1} arvij

≥ timeij + ρ(ij , ij−1)
(4)

Please recall that for j = 2, locationij−1
denotes the location

of the starting depot.
The vehicle cannot arrive at locationij before serving the

request rij−1 and traveling to the next location:

∀i∈{1,2,...,n}∀j∈ri/{i1} arvij

≥ arvij−1
+ unldij−1

+ ρ(ij , ij−1)
(5)

All vehicles must return to the depot before its closing:

∀i∈{1,2,...,n} arvip(i) ≤ endip(i) (6)

Recall that index ip(i) (the last index in route i) denotes the
closing depot for vehicle i.

A sum of requests’ sizes between consecutive visits to the
depots must not exceed vehicle’s capacity:

∀i∈{1,2,...,n}∀j1,j2∈ri,j1<j2,ij1≤k :

j2∑
l=j1

sizeil

≤ capacity · |{l′ : il′ ≤ k ∧ l′ ∈ [j1, j2 − 1]}|

(7)

Each client must be assigned to exactly one vehicle:

∀l∈{1,2,...,m}∃!i∈{1,2,...n} (k + l) ∈ ri (8)

C. Solution framework

In a typical approach to solving DVRP, regardless of the
particular optimization method used, one utilizes a vehicles’
dispatcher (event scheduler) module, which is responsible
for communication issues. In particular, the event scheduler
collects information about new clients’ requests, generates
the actual problem instance and sends it to the optimization
module and, afterwards, uses the solution found to commit
vehicles. Such a framework is depicted in Fig. 2. An example
of a technical description of such information technology
system could be found in [25].

The event scheduler maintains the three following param-
eters, which in some sense define the “degree of dynamism”
of a given problem instance:

• Tco - cut-off time parameter,
• nts - number of time slices,
• Tac - advanced commitment time parameter.
The cut-off time (Tco) parameter, in real business situations,

could be interpreted as a time threshold for not accepting
any new requests that arrive afterwards and treating them as
the next-day’s requests, available at the beginning of the next
working day.

In a one-day simulation horizon considered in this paper,
likewise in the referenced works [14], [4], [26], [17], [13],
[15], the requests that arrive after the Tco are treated as being
known at the beginning of the current day, i.e. they actually
compose the initial problem instance. In all tests, for the sake
of comparability of results, Tco = 0.5 was set, so as to make
this choice consistent with the above-cited works.

The number of time slices (nts) decides how often the
dispatcher sends a new version of the problem to the opti-
mization module. Kilby et al. [8] set this value to 25, claiming
the optimal trade-off between the quality of solutions and
computation time. In the case of our algorithm we observed
that it is beneficial to increase nts to 50 and, at the same
time, decrease twice (from 100 + 25 to 50 + 12) the number
of PSO iterations per time slice (respectively for the first
and the second phase of the algorithm), thus maintaining the
total number of fitness function evaluations (FFE) at the same
level (equal to 106) for the sake of comparability with other
literature results. Generally speaking, dividing the day into
greater number of time slices allows optimization module to
react faster to the newly-arrived requests since it is informed
sooner about the introduced changes.

The advanced commitment time (Tac) parameter is a safety
buffer, which shifts the latest possible moment in which a
current part of the route is finally approved and “frozen”,
i.e. the vehicle is dispatched to serve the respective requests.
In other words, any requests whose respective vehicles are
scheduled for the departure not later than at the end of the
current time slice span plus Tac time need to be dispatched

Fig. 2. General solution framework.
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{The initial problem = all the requests received after the cut-off time}
for all time_slices do

Solve the current VRP instance
Select the best solution found {for this time slice}
Commit orders to respective vehicles {with processing time within the next T

nts
+ Tac seconds}

Include requests received during this time slice in the next static instance (next time slice)
Send back to the depot any vehicle which might otherwise be late at the depot closing
Send back to the depot any vehicle that used its capacity

end for

Fig. 1. An overview of DVRP processing schema when transformed into a sequence of static VRP instances.

immediately. In effect, a condition defined by eq. (6) is, in
practice, changed into

∀i∈{1,2,...,n} arvip(i) + Tac ≤ endip(i) (9)

We have observed that appropriate choice of this parameter
allows greater flexibility in assigning requests to vehicles in the
phase of a day just before the Tco, when appropriate handling
of potential arrival of a large request is a critical issue. In our
tests we set Tac equal to 2 time slices:

Tac = 2
end− start

nts
(10)

A general algorithm for solving the DVRP problem as a
sequence of static VRP instances is presented in Fig. 1.

III. SOLVING THE DVRP

On a general note there are two major approaches to
solving dynamic transportation (optimization) problems. In the
first one the optimization algorithm is run whenever there is
a change in the problem instance. In the second one, time is
divided into discrete slices and the algorithm is run once per
time slice, usually at its origin, and the problem instance is
"frozen" for the rest of the time slice period. In effect, any
potential changes introduced during the current time slot are
handled in the next run of the algorithm, which is scheduled
for the subsequent time slice period.

In this study the latter approach, which in the context of
DVRP was proposed by Kilby et al. [8], is adopted.

In the following subsections we briefly review various
problem encodings proposed in the literature used by the most
effective Computational Intelligence (CI) approaches. All of
them take advantage of a natural, graph-based, topological
representation. In order to compare different ways of coding
the problem and point differences in the methods’ internal op-
erators a common example of particular vehicles’ assignment,
with three vehicles and ten requests, will be used.

A. Discrete one-phase approaches

Initial metaheuristic methods devoted to solving the DVRP
were largely one-phase methods, that simultaneously opti-
mized the assignment of requests and the final lengths of the
vehicles’ tours. In particular this paradigm was implemented
with the help of Ant Colony Systems (ACS) [14], Genetic
Algorithms (GA) [13] and Tabu Search [13].

B. Ant Colony System

Application of Ant Colony System to DVRP [14] takes
a direct advantage of graph representation of the problem.
Similarly to the case of solving the TSP [27], when solving
DVRP, ACS maintains a colony of ants, each of which is
devoted to solving the whole problem and the best overall
solution is finally selected. Ants communicate via pheromone
trail which is deposited on their way (on the edges of a
graph) with the amount proportional to the quality of obtained
solution. Whenever the total load would exceed the truck’s
capacity an ant returns to the depot (initial vertex). This way
each solution found by an ant is composed of a set of cycles
of loads not greater than the truck’s capacity.

Once a solution is found, it is further optimized by a greedy
local search procedure, in which, iteratively, for each client’s
request all its possible placements in the assigned tour and in
the other tours are tried. Whenever such a replacement leads
to a solution improvement it is accepted.

C. Genetic Algorithm

Application of GA to solving DVRP was proposed by
Hanshar and Ombuki-Berman [13]. The main features of this
approach can be summarized as follows:

• Each genotype is a sequence of requests’ identifiers
(represented by positive integers) and vehicles’ identifiers
(represented by negative integers). All requests which
appear after a given vehicle’s id. until the next vehicle’s
id. define the current route of that vehicle.

• The cross-over operator creates two children from each
pair of parent genotypes. In each parent chromosome one
of the vehicle’s routes is randomly chosen and all requests
assigned to that route are removed from the other parent
chromosome. Next, the removed requests are inserted in a
greedy manner, i.e. in the places which lead to the shortest
overall sum of vehicles’ routes (all possible insertions in
all routes are verified).

• The mutation operator randomly selects two points in
a chromosome and reverses the order of all elements
(clients’ requests) located between these points.

• The frozen parts of the routes (the requests which are
already ultimately assigned to vehicles) are not altered
by the GA operators.

• 4 best specimen (1% of the population) are always
selected unaltered by mutation and cross-over operators.
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D. Tabu Search

Application of Tabu Search (TS) metaheuristic to solving
DVRP was also proposed by Hanshar and Ombuki-Berman
in the same paper [13]. The same problem representation as
in the case of the GA method is used. The solution space is
searched by choosing the best neighbor of the current solution
except for those being on a tabu list and therefore unavailable
for choosing. The neighborhood of the current solution is
randomly selected (with probabilities equal to 0.6 and 0.4,
respectively) to be one of the two following choices:
• 100 random solutions created by a mutation operator

(inversion) described in the previous subsection, or
• the set of solutions created by the Osman and

Christofides [28] λ− interchange operation. In short, this
operation has two parameters: k and l and for each pair of
vehicles used in the current solution (say vehi and vehj)
it considers k requests assigned to the first vehicle and
l requests assigned to the other vehicle and inserts them
into the other vehicle’s route in all possible combinations
of their new positions, i.e. k requests are moved from
vehi to vehj and l requests are moved from vehj to vehi
and placed in all possible combinations of respectively k
positions in vehj route and l positions in vehi route).

The implementation details of both GA and TS approaches
can be found in [13].

Due to their one-phase characteristics all three of the
above-mentioned population-based approaches utilize the cost
function that directly optimizes the total length of the final
tours:

COST3(r1, r2, . . . , rn) =

n∑
i=1

|ri|∑
j=2

ρ(ij , ij−1) (11)

E. DAPSO/MAPSO/MEMSO Algorithms

A Dynamic Adapted PSO (DAPSO) and its multi-swarm
equivalents: Multiswarm Adaptive Memory PSO (MAPSO)
and Multi-Environmental Multi-Swarm Optimizer (MEMSO)
proposed by Khouadjia et al. [4], [26], [17] require modifica-
tion of the PSO algorithm allowing their proper application in
a discrete search space of the DVRP. The main characteristic
features of the Khouadjia et al.’s approach are listed below:
• Each particle represents an integer vector containing

identifiers of vehicles respectively assigned to requests
to be served (see section IV-F).

• The route for each of the vehicles is constructed by
a greedy insertion algorithm and improved by the 2-OPT
method [29].

• All particles are propagated to the next time slice (and
subsequently updated according to the newly-arrived re-
quests).

An example of MEMSO route representation together with
position and velocity coding is presented in Fig. 3. In MEMSO
algorithm the velocity of each particle is calculated in real
values, according to SPSO 2007 (see eq. (2)) and rounded to
the nearest integer. This integer velocity vector is afterwards
added to the integer state (position) vector modulo n, where

Fig. 3. An example solution for the problem with 10 requests and 3 vehicles.
The depot is located in the center of the figure. The MEMSO particle position
and velocity encoding are presented below the solution. The initial routes (with
no longer active edges marked in dotted red) are 0− 4− 3− 1− 5− 2− 0,
0−6−7−8−0 and 0−10−9−0, respectively. The routes after particles’
movement (marked in black) are 0− 4− 3− 1− 2− 0, 0− 6− 7− 0 and
0− 5− 10− 8− 9− 0, respectively. Zeros in the routes represent the depot.
In MEMSO encoding position is a Zm

n vector and velocity is a Rm vector.
Velocity is rounded to the nearest integer and added modulo n to the previous
position.

n is the number of vehicles. This way a new position (vehicle
assignment) is obtained.

Then the fitness function value is calculated as a sum of all
vehicles routes’ lengths optimized with the 2-OPT method:

COST2(r1, r2, . . . , rn) =

n∑
i=1

|ri|∑
j=2

ρ(ri2OPTj
, ri2OPTj−1)

(12)
The MAPSO/MEMSO approach is the main point of refer-

ence for our algorithm and therefore its specificity and more
detailed comparison with our approach will yet be discussed
in several further sections devoted to presentation of particular
aspects of these methods.

IV. TWO-PHASE MULTI-SWARM PSO METHOD (2MPSO)
A very distinctive feature differing our approach from other

CI-based methods is a clear separation of the clustering task
(assignment of requests to vehicles) from the routes’ optimiza-
tion task (optimal ordering of requests assigned to a given
vehicle). This section starts with a detailed presentation of the
method, followed by its comparison with MEMSO/MAPSO
and 2PSO (a single-swarm version published previously).

A. Pseudocode of 2MPSO

In each time step, the method considers the set Ct of the
requests known at the time t and not ultimately assigned to
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1: {Ct a set of requests known at time t which are not ultimately assigned}
2: while time ≤ end do
3: radius⇐ 2 max

l1,l2=k+1,...,k+m
ρ(l1, l2)

4: for all swarm ∈ swarms do
5: FIRST PHASE:
6: {heuristicSolution is created in order to increase particles’ diversity and to keep solution in reasonable bounds}
7: heuristicSolution⇐ CapacitatedMinimalSpanningForest(Ct)
8: if t = 0 then
9: bestSolution⇐ heuristicSolution

10: end if
11: {first particle in the swarm is initialized with heuristicSolution in order to keep bestSolution in reasonable bounds}
12: {every tenth particle in the swarm is initialized with the bestSolution in order to preserve information about previous

solution}
13: {all other particles in the swarm are initialized within a given radius from the bestSolution}
14: swarm <= InitializeSwarm(heuristicSolution, bestSolution, radius)
15: for i = 1, 2, . . . ,maxAssignmentIterations do
16: PerformOptimizationStep(swarm)
17: end for
18: swarmBestSolution = GetBestSolution(swarm) {swarmBestSolution is treated as a set of vehicles with

assigned initial routes}
19: SECOND PHASE:
20: for all vehicle ∈ swarmBestSolution do
21: vehicle.route⇐ EnhanceWith2OPT (vehicle.route)
22: vehicleSwarm⇐ InitializeV ehicleSwarm(vehicle.route)
23: for i = 1, 2, . . . ,maxRouteIteration do
24: PerformOptimizationStep(vehicleSwarm)
25: end for
26: vehicle.route⇐ GetBestRoute(vehicleSwarm)
27: vehicle.route⇐ EnhanceWith2OPT (vehicle.route)
28: end for
29: {reassign in a greedy way all requests violating time constraint of the problem (see eq. (9))}
30: swarmBestSolution = RepairBestSolution(swarmBestSolution)
31: {if the situation has not changed between t and t− 1, we preserve the bestSolution if it was better}
32: if Ct ⊆ Ct−1 and swarmBestSolution > bestSolution then
33: swarmBestSolution⇐ bestSolution
34: end if
35: end for
36: bestSolution = ChooseBestSolution(swarms)
37: end while

Fig. 4. High-level pseudocode of the 2MPSO algorithm.

any vehicle (although they may be a part of the proposed
solution). Until the end of the day (line 2) a multi-swarm
PSO optimization (line 4) is performed. For each swarm
a heuristicSolution for assignment problem is constructed
and part of the swarm is initialized on the basis of this
heuristicSolution and based on the bestSolution found in
the previous step (or part of this solution as the number
of necessary vehicles might be larger then in previous time
step). Then for the maxAssignmentIterations the system
performs the PSO-based optimization (simultaneously for all
swarms).

Subsequently, the swarmBestSolution is chosen (line 18)
and its routes are optimized (lines 20-28). First the 2-OPT
algorithm is applied (which is an optional step if 2-OPT
had already been used for assessing the lengths of possible

routes in the assignment phase) and afterwards another PSO
optimization is performed separately for each of the routes
(lines 22-26). The best solution is additionally optimized with
2-OPT algorithm (line 27).

The final optimization procedure (line 30) applied to each
swarm is aimed at repairing unfeasible routes (violating time
constraint from eq. (9)) by means of greedy reassignment of
requests. In addition the previous bestSolution is used instead
of a current swarmBestSolution if the current set of clients
is identical to previous one (lines 32-(line 33)).

At the end of a time step (in line 36) the new bestSolution
is chosen among all swarmBestSolutions. In the event
scheduler module the bestSolution is used to dispatch ve-
hicles (which must be committed at this step due to time
constraints). Furthermore, if more vehicles seem to be needed
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in the next time step, the bestSolution is extended by adding
new vehicles and new (randomly positioned) vehicles’ centers
of operation. The number of necessary vehicles is estimated
based on the heuristicSolution.

2-OPT
Route

optimization

Fig. 5. Example of an assignment encoding and a position change of a
single particle in one iteration of the first phase of the 2MPSO algorithm.
The top figure presents the assignment space division (dashed lines) generated
by a single particle having 6 dimensions corresponding to 3 cluster centers
coordinates. Each cluster center is represented by a pentagon (there are three
of them and each has a velocity vector denoted by an arrow). The middle figure
presents the situation after updating the particles’ position (gray dashed lines
present the previous division/assignment of requests). Please note, that the
insertion of new requests into the route is performed on the basis of requests
rank in the previous assignment. The bottom figure presents the routes after
the 2-OPT optimization. These routes (requests-to-vehicles assignments) will
be evaluated by the PSO algorithm in the next iteration of the first phase.
Dotted red arrows represent the initial route, before its enhancement by the
2-OPT method.

B. Auxiliary clustering heuristic

Please observe that in order to achieve higher quality of
solutions in each time slice one of the PSO particles is
initialized at the centers of clusters found by an auxiliary
heuristic aimed at solving the clients-to-vehicles assignment

2

1

4

3

Fig. 6. Example of the route encoding in the second phase of the 2MPSO
algorithm. One of the routes is composed of the assignments (1, 2, 3, 4). Their
order in the route at iteration t−1 (denoted in dotted red) was 0−4−3−1−
2− 0, where 0 denotes the depot. This order is defined by the xt−1 values
considered in the ascending order. Next, based on (2) the velocity vt−1 is
calculated and added to the position vector, leading to a new position xt

representing the following order: 0 − 4 − 1 − 2 − 3 − 0, which is induced
by ordering the xt elements.

problem (cf. lines 7-10 in Fig. 4). This heuristic uses the
Kruskal algorithm [30] but, unlike in the original formulation,
stops linking separate trees when the sum of weights of their
nodes would exceed vehicle’s capacity. Such an approach
may be also interpreted as the modification of a procedure
of hierarchical clustering with a single-linkage criterion4.

All the remaining particles are initialized based on the
bestSolution found in the previous time slice or the Kruskal
solution in the case of the first time slice (lines 12-13).

C. First-Phase problem encoding

In the first phase each particle is represented as a real
number vector whose elements denote centers of clusters of
requests assigned to vehicles (see section IV-F). The area of
clients’ requests is divided among vehicles on the basis of the
Euclidean distances from the client’s location to the cluster
centers (i.e. a request is assigned to a vehicle which serves
the nearest cluster). The number of clusters assigned to each
vehicle is a parameter of the 2MPSO algorithm.

The estimated solution assessment (fitness function) in the
first phase is calculated as one of the following (see Fig. 7):

• a sum of distances from the inter-cluster requests to the
clusters’ centers (a measure of quality of a clustering) and
the twice the distances from the clusters’ centers to the
depot location (a measure of a cost of reaching a cluster
and returning to the depot in the end of a route).

• a total length of all vehicles’ routes from the proposed
clusters, formed with the use of 2-OPT.

The particle’s position update procedure in the first phase is
depicted in Fig. 5.

4Due to the space limits the Kruskal method is not revised here. Please
consult [30] for its detailed formulation.
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Fig. 7. Example of a DVRP problem with 2 vehicles and 5 clients’ requests. Solid lines represent possible routes, whose lengths are used as an evaluation
function by MEMSO, 2MPSO2 and 2MPSO3. Dashed lines represent estimated cluster cost (quality), which is used as an evaluation function by 2MPSO1.
Dotted line separates the two operating areas assigned to vehicles. Right figure shows a solution which is non-representable by single cluster per vehicle
encoding used by 2MPSO1 and 2MPSO2 since the sets of requests assigned to vehicles are not linearly-separable.

In the first case the cost function is of the form (13):

COST1(r1, r2, . . . , rn) =

n∑
i=1

|ri|∑
j=1

ρ(rij , i) (13)

where i represents the coordinates of the estimated center of
the cluster of requests assigned to the ith vehicle. In the latter
case the COST2 function (the same one as in MEMSO) is
applied.

D. Second-Phase problem encoding

In the second phase each particle represents the order of
requests assigned to a given vehicle (each cluster/vehicle is
solved by a separate PSO instance). The order is obtained by
sorting coordinates of each of the particles in the ascending
order (cf. Fig. 6).

The solution assessment in the second phase (in each of the
PSO instances) is equal to the length of a route (for a given
vehicle) defined by the proposed ordering.

The final cost value is equal to the sum of the assessments
of the best solutions found by each of the PSO instances.

E. Three versions of the 2MPSO method

In the experiments reported in this paper the following three
combinations of the fitness functions and first-phase encodings
of the DVRP were considered:
• 2MPSO1 - the algorithm with COST1 evaluation func-

tion and one cluster of requests per vehicle.
• 2MPSO2 - the algorithm with COST2 evaluation func-

tion and one cluster of requests per vehicle.
• 2MPSO3 - the algorithm with COST2 evaluation func-

tion and up to three clusters of requests per vehicle.
Let us denote by m the number of requests (50 ≤ m ≤ 199

in the benchmarks used), by n the number of available vehicles
(n was equal to 50 in all tested benchmarks), by n̂ the
estimated number of required vehicles (usually around n

3 ),
by c the number of clusters per vehicle (c = 1 was used
in 2MPSO1 and 2MPSO2, and c = 3 in 2MPSO3).
Additionally, let us denote by b the number of spare vehicles
(with respect to the estimation provided by the single-linkage

clustering algorithm - cf. section IV-B) - we used b = 4
based on results of the pilot study. The theoretical and the
experimental dimension sizes of the three variants of 2MPSO
method and the MEMSO method are as follows:

Algorithm Type Theoret. size Exper. size
MEMSO Discrete m [50, 199]
2MPSO1 Continuous 2n 100
2MPSO2 Continuous 2(n̂+ b) [20, 40]
2MPSO3 Continuous 2 · 3(n̂+ b) [60, 120]

F. Comparison of MEMSO and 2MPSO Encodings

For a better explanation of the differences between
MEMSO and 2MPSO requests assignment encodings, Fig. 7
presents an example of DVRP with 2 vehicles and 5 requests.
The encodings of MEMSO and 2MPSO are as follows:

For the left subfigure:

MEMSO 1 2 2 2 1

2MPSO1/2 Veh1x Veh1y Veh2x Veh2y

For the right subfigure:

MEMSO 1 2 2 1 2

2MPSO1/2
Encoding does not exist

(assignments are not linearly-separable)

where Vehnk, n = 1, 2, k = x, y denotes coordinate k of the
nth cluster center.

In addition, Fig. 7 also presents the way the fitness function
is calculated in each of the algorithms. In MEMSO, 2MPSO2

and 2MPSO3 algorithms it is the sum of solid-line edges
while in the 2MPSO1 algorithm the sum of dashed-line
edges.

G. Multi-swarm approach vs. single-swarm one

Our initial approach to solving DVRP, the 2PSO method
proposed in [15] was a single-swarm PSO implementation
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TABLE I
COMPARISON OF MULTI-SWARM ALGORITHMS (2MPSO2, 2MPSO3) WITH A SINGLE-SWARM APPROACH (2PSO2, 2PSO3) WITH ADEQUATELY

ENLARGED SWARM SIZE. FOR EACH BENCHMARK THE BEST RESULT AMONG THE TESTED METHODS IS BOLDED. THE BOXPLOTS PRESENT THE
SUMMARY OF THE LENGTH OF SOLUTIONS FOR SINGLE AND MULTI-SWARM ALGORITHMS NORMALIZED BY THE BEST KNOWN RESULT FOR EACH OF

THE BENCHMARKS.

2PSO2 2MPSO2 2PSO3 2MPSO3

(50 ∗ 1 ∗ (4 ∗ 104)) (50 ∗ 8 ∗ (0.25 ∗ 104)) (50 ∗ 1 ∗ (4 ∗ 104)) (50 ∗ 8 ∗ (0.25 ∗ 104))
Min Avg Min Avg Min Avg Min Avg

c50 571.35 593.97 558.07 600.54 566.14 595.50 569.23 591.55
c75 877.30 921.90 894.96 926.52 884.99 913.07 888.66 920.68

c100 904.52 959.15 918.79 961.61 919.64 960.73 898.16 958.90
c100b 826.47 851.70 827.85 860.38 825.14 847.53 825.65 859.64
c120 1068.73 1129.74 1068.69 1110.71 1059.31 1103.18 1072.54 1123.45
c150 1114.90 1170.14 1129.86 1185.54 1125.64 1167.95 1123.10 1170.00
c199 1384.92 1447.94 1389.48 1450.49 1406.54 1443.75 1383.07 1429.01

f71 279.83 295.32 280.78 298.32 279.64 299.32 279.95 298.86
f134 12208.09 12860.23 11997.78 12541.47 12216.92 12918.91 11984.50 12525.63

tai75a 1724.58 1858.52 1739.35 1872.40 1716.76 1847.95 1744.01 1873.52
tai75b 1451.89 1536.39 1455.66 1530.52 1450.98 1524.83 1428.16 1521.33
tai75c 1465.90 1568.25 1465.14 1569.06 1481.41 1551.81 1470.97 1550.25
tai75d 1432.47 1479.90 1434.41 1474.14 1430.21 1462.88 1422.94 1471.94

tai100a 2198.02 2310.03 2195.04 2298.33 2209.33 2329.67 2222.80 2303.29
tai100b 2095.52 2172.50 2064.50 2171.76 2084.03 2179.42 2068.86 2176.57
tai100c 1527.46 1583.03 1517.45 1596.35 1509.79 1579.96 1526.07 1588.78
tai100d 1712.53 1793.97 1746.34 1821.29 1705.47 1783.77 1742.76 1813.23
tai150a 3529.25 3751.09 3495.08 3731.86 3438.45 3677.48 3395.02 3658.90
tai150b 2988.54 3132.40 3072.90 3152.98 3017.96 3148.42 3017.35 3119.40
tai150c 2620.78 2789.79 2624.62 2777.28 2631.29 2790.87 2631.67 2754.52
tai150d 2942.62 3141.15 2996.00 3135.51 2963.41 3106.85 3023.47 3122.89

relying on one swarm composed of 40 particles, whereas the
2MPSO is a multi-swarm approach with 8 swarms consisting
of 40 particles each.

The obvious advantage of a multi-swarm design is using
8 times greater number of particles, but what could be even
more important, using several largely independent swarms
may potentially allow better exploration of the search space.
In order to verify whether the use of multi-swarm approach
actually improves the algorithm’s performance, we have tested
the 2MPSO2 and 2MPSO3 with 8 swarms (each composed
of 40 particles) against their 2PSO counterparts (with 1 and 3
clusters per vehicle, respectively) with one swarm composed
of 320 particles.

In order to assure the same level of overall internal particles’
connectivity in all tested variants the following reasoning
was applied. Since in a multi-swarm approach a probability
that particle x is a neighbor of particle y equals 0.5, in the
single (large) swarm approach, for each particle a set of 40
potential neighbors was randomly selected and then the actual
neighbors were chosen with probability 0.5 from this selection.
No neighbors were defined outside this set.

The comparison results are presented in Table I. In short,
out of 21 benchmarks the 2PSO2, 2MPSO2, 2PSO3 and
2MPSO3 were the winners (in terms of finding the shortest
solution) in 5, 4, 6 and 6 problems respectively. In terms of
the best average (based on 30 trials per test set) the numbers
of wins were equal to 1, 2, 9 and 9, respectively. Since no
significant differences in average results between the single-
swarm and the multi-swarm methods were observed, the latter
one remained our approach of choice due to more efficient
parallelization, allowing for nearly 8 times speed gain. Clearly,
in both cases the methods with up to 3 clusters per vehicle
are superior over their 1 cluster counterparts.

Another difference between a single- and multi- swarm
versions is a need for problems instances synchronization

between swarms in the latter case. This issue is discussed
below in section IV-I.

H. Novelty of the 2MPSO method

In our initial Two-Phase Particle Swarm Optimization
(2PSO) approach [15], we used standard (continuous) version
of the single-swarm PSO and proposed splitting the process of
solving DVRP into two phases: a clustering phase, in which
requests are assigned to particular vehicles, and an ordering
phase, in which the tour for each vehicle was found with the
use of (a separate instance of) the PSO algorithm. In 2MPSO
approach we extend that method by applying a multi-swarm
approach and testing, in the clustering phase, different fitness
functions and different DVRP encodings.

Moreover, for the first time in the literature a single-linkage
capacitated clustering method / minimum spanning forest is
used (line [6] in Fig. 4) instead of a greedy or random
assignment, as an auxiliary heuristic in swarm initialization
procedure at each time slice.

A novelty of proposed approach also lies in the possibility
of assigning more than one cluster of requests per vehicle. In
effect, the algorithm takes into account a trade-off between
a simple one-cluster heuristic (which assigns pairwise close
requests to the same vehicle) and multi-cluster approach which
allows more flexible assignment, however, at the cost of
increasing a search space dimension (the size of a vector
representing the cluster centers).

Our method also differs significantly from the works of
Khouadjia et al. [4], [26], [17] which use a discrete coding
of the DVRP, hence a version of the PSO suitable for discrete
search spaces.

Additionally, our method is methodologically simpler than
MEMSO as we avoid the necessity of direct on-line swarm
synchronization. Unlike in the comparative algorithm, where
some number of particles was migrated between swarms, we
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maintain the swarms separately with no communication within
a single slice time span.

In our opinion, the main incentive of using the 2MPSO
method is its generality, which stems from its “natural capac-
ity” to incorporate other than PSO continuous optimization
metaheuristics in both phases. Thanks to the proposed problem
encoding and the lack of specific memory requirements (only
the hitherto best solution is maintained between slices) the use
of the PSO as the baseline method is not mandatory.

Finally, to the best of our knowledge, the two-phase ap-
proach was previously applied in the vehicle routing optimiza-
tion literature exclusively for solving the static version (VRP)
of the problem [6], [5], [7].

I. Knowledge Transfer and Swarms Synchronization

In dynamic problems, one of the crucial tasks is efficient
transfer of knowledge from partial (incomplete) problems to
the final solution. Generally, it is assumed that solutions
obtained for the two problem instances which are close in
time should not differ much and therefore knowledge transfer
may, in principle, be very advantageous.

Another critical issue is the efficient usage of parallel
or distributed architecture and knowledge transfer between
partial problems within the same problem instance (time slot).
Both discussed PSO-based methods (i.e. MAPSO/MEMSO
and 2MPSO) deal with these two issues differently.

Knowledge Transfer Between Time Slices: In the MEMSO
algorithm it is proposed to add a memory to each particle in
order to store its best known solution (the vector of vehicles’
identifiers assigned to requests) from the previous time slice.
When new requests arrive, they are processed in a random
order and assigned to vehicles by a greedy algorithm, thus
forming the initial swarm locations for the PSO method.

In the 2MPSO algorithm a different approach is taken. Since
the solution of the first phase in the previous time slot consists
of locations of clusters centers, these coordinates are treated as
reliable estimations of the clusters centers after the arrival of
new requests (in the next time slice). Therefore initial swarm
location is defined around the center of the previous best
known solution within a given radius.

Please note that the above-described single-solution-based
knowledge transfer is, in principle, more general than that
of the MAPSO/MEMSO as it allows for using virtually any
optimization algorithm for finding the currently best solution,
not necessarily the population-based method.

Knowledge Transfer Between Swarms/Swarms Synchroniza-
tion: In the MEMSO algorithm knowledge is transferred
between swarms by migrating particles. In every iteration each
particle can migrate with some small probability to another
swarm. As MEMSO allows for a distributed way of solving
the problem there is, in general, no guarantee that at a given
moment all swarms are solving the same problem instance
(from the same time slice). Therefore a particle after migration
may need to wait to be incorporated into a new swarm or must
be re-initialized with newly received requests.

The 2MPSO algorithm assumes that the problem is solved in
a parallel way on a single multi-threaded computer. Therefore,

we take an easy approach in which, within a given time slice,
each thread works in isolation and at the end of allotted
time (slice time span) all threads are synchronized and the
best solution found is spread out among the threads. Such
an approach is motivated by an assumption that at the end
of a time slice some vehicles are already committed to serve
certain sets of requests and it would be meaningless to solve
problem instances not synchronized with the current state of
the problem instance.

V. EXPERIMENTAL SETUP AND BENCHMARK PROBLEMS

A. Benchmark files

Fig. 8. Spatial and volume distribution of requests (left subfigures), the
plot of cumulative requests’ size and the histogram of requests’ sizes (right
subfigures) of the c50 benchmark set. c50 is characterized by a uniform spatial
distribution of requests that are relatively small and similar in size.

In order to evaluate the performance of the algorithm we
used dynamic versions of Christofides’ [31], Fisher’s [32]
and Taillard’s [7] benchmark sets [33]. Each instance consists
of between 50 and 199 requests to be served by a fleet
of 50 vehicles (the number of requests is included in the
benchmark’s name). The chosen benchmarks are very popular
in DVRP literature and, in particular, were used in all papers
we make a comparison with in this study. Generally speaking,
the benchmark sets are very diverse. They include examples of
very well clustered problems, semi-clustered ones, and com-
pletely unstructured instances. Also the volume distribution
and skewness significantly differ between benchmarks.

Spatial and volume distributions as well as histogram of
requests’ sizes and the plot of their cumulative size over time
in the three exemplar benchmark sets (one from each of the
three sources) are presented in Figs. 8, 9 and 10.

B. Algorithm’s parameters

The following selections of parameters were tested in the
experiments (default values are bolded):
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Fig. 9. Spatial and volume distribution of requests (left subfigures), the
plot of cumulative requests’ size and the histogram of requests’ sizes (right
subfigures) of the f134 benchmark set. f134 is characterized by a semi-
structured spatial distribution of requests with quite a high number of relatively
small requests and several large requests appearing within the first 20% of a
working day time.

Fig. 10. Spatial and volume distribution of requests (left subfigures), the
plot of cumulative requests’ size and the histogram of requests’ sizes (right
subfigures) of the tai150b benchmark set. tai150b is characterized by a
clustered spatial distribution of requests with a relatively high number of
(non-uniformly distributed) large requests. In addition, some of these large
requests appear relatively late, i.e. after the first 25% of a working day time.

Parameter Value(s)
g 0.60
l 2.20
a 0.63

P (X is a neighbor of Y ) 0.50
#clusters {1,3}

#iterations 1st/2nd phase {10/2,50/12, 200/50}
#particles {20,40, 100, 320}
#swarms {1,8}
Tco 0.5
nts {25,50, 100, 320}

Tac 2 ∗ end− start
nts

The values of g , l, a and P where chosen experimentally
based on some number of initial tests. The rationale behind the
remaining parameters’ selections was discussed in the previous
sections.

VI. RESULTS

The properties and the efficacy of the proposed 2MPSO
method were experimentally verified in the three main ex-
periments. First of all, the three variants of 2MPSO were
compared with the competitive CI-based metaheuristic ap-
proaches discussed in section III for approximately the same
number of FFE. In the next experiment the potential for
further improvement of 2MPSO results in the case of increased
number of FFE per time slice was tested. Finally, the third set
of tests aimed at assessing the relevance of particular 2MPSO
components and their contribution to the overall efficacy of
the method.

A. Comparison of 2MPSO with MEMSO/MAPSO and other
CI-based approaches

In the main experiment all methods introduced in sec-
tion III were compared with 2MPSO for the same number
of FFE. Special emphasis was put on a direct comparison
between three versions of the 2MPSO algorithm and the
MAPSO/MEMSO approach, which provided majority of the
best individual and the best average literature results so far.
The number of swarms in all these multi-swarm methods was
equal to 8.

The results are presented in Table II. The best individual
and the best average results are bolded5. It can be seen
from Table II that 2MPSO with COST2 evaluation function
and 3 clusters per vehicle (denoted 2MPSO3) outperforms
MEMSO by approximately 1.5% in the average result and
is able to find new best solutions in 7 out of 21 benchmark
instances (30 experiments per benchmark were performed).
The same method with 1 cluster per vehicle (2MPSO2)
gained a 1% advantage in terms of the average results and
was able to improve the best literature solutions for 3 tested
instances. 2MPSO1 found the new best solution for one test
instance (c120).

Generally speaking, 2MPSO3 and MEMSO appeared
to be the best two methods in the presented evaluation.
The methods found new best individual results for 7/5 test
instances, respectively and each of them attained 6 best aver-
age results. Furthermore, 2MPSO3 also attained the lowest
sum-of-minimum and sum-of-averages values among all 21
benchmarks. In a direct comparison 2MPSO3 accomplished
statistically significantly better results than MEMSO in 7
cases, while in the 8 benchmarks the opposite situation took
place (cf. the shaded results in Table II).

5For the sake of space savings and clarity of the presentation the results
for the ACS method [14] are not presented as ACS appeared to be inferior to
all other methods and in none of the benchmarks was found to be the most
efficient approach.



12

TABLE II
COMPARISON BASED ON 106 FITNESS FUNCTION EVALUATIONS. THE NUMBERS IN THE PARENTHESES RESPECTIVELY DENOTE: THE NUMBER OF TIME

SLICES, THE NUMBER OF SWARMS AND THE NUMBER OF FFE WITHIN EACH SWARM IN EACH TIME SLICE. IN THE CASE OF THE 2MPSO1 METHOD THE
NUMBER OF FFES IS SLIGHTLY INCREASED COMPARED TO THE COMPETITIVE ALGORITHMS SO AS TO MAKE A TIME-COMPENSATION FOR THE LACK OF

THE 2-OPT OPTIMIZATION ROUTINE IN THIS METHOD. THE LAST TWO APPROACHES (GA AND TS) DID NOT USE THE NUMBER OF FFES BUT THE
RUNNING TIME AS EFFICIENCY METRICS [13]. IN THE TABLE, GRAY BACKGROUND DENOTES RESULTS STATISTICALLY SIGNIFICANTLY DIFFERENT IN

2MPSO3 VS. MEMSO, GIVEN BY WILCOXON SIGNED RANK TEST.

2MPSO1 2MPSO2 2MPSO3 MAPSO MEMSO GA TS
(50 ∗ 8 ∗ (0.3 ∗ 104)) (50 ∗ 8 ∗ (0.25 ∗ 104)) (50 ∗ 8 ∗ (0.25 ∗ 104)) (25 ∗ 8 ∗ (0.5 ∗ 104)) (25 ∗ 8 ∗ (0.5 ∗ 104)) (25 ∗ 30 seconds) (25 ∗ 30 seconds)

Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg Min Avg
c50 591.82 638.04 558.07 600.54 569.23 591.55 571.34 610.67 577.60 592.95 570.89 593.42 603.57 627.90
c75 903.38 950.76 894.96 926.52 888.66 920.68 931.59 965.53 928.53 962.54 981.57 1013.45 981.51 1013.82

c100 977.57 1058.68 918.79 961.61 898.16 958.90 953.79 973.01 949.83 968.92 961.10 987.59 997.15 1047.60
c100b 828.06 839.59 827.85 860.38 825.65 859.64 866.42 882.39 864.19 878.81 881.92 900.94 891.42 932.14
c120 1068.41 1097.20 1068.69 1110.71 1072.54 1123.45 1223.49 1295.79 1164.63 1284.62 1303.59 1390.58 1331.80 1468.12
c150 1165.50 1231.93 1129.86 1185.54 1123.10 1170.00 1300.43 1357.71 1274.33 1327.24 1348.88 1386.93 1318.22 1401.06
c199 1399.20 1455.68 1389.48 1450.49 1383.07 1429.01 1595.97 1646.37 1600.57 1649.17 1654.51 1758.51 1750.09 1783.43

f71 311.84 358.43 280.78 298.32 279.95 298.86 287.51 296.76 283.43 294.85 301.79 309.94 280.23 306.33
f134 12146.30 12486.97 11997.78 12541.47 11984.50 12525.63 15150.50 16193.00 14814.10 16083.82 15528.81 15986.84 15717.90 16582.04

tai75a 1812.73 1933.26 1739.35 1872.40 1744.01 1873.52 1794.38 1849.37 1785.11 1837.00 1782.91 1856.66 1778.52 1883.47
tai75b 1503.60 1662.52 1455.66 1530.52 1428.16 1521.33 1396.42 1426.67 1398.68 1425.80 1464.56 1527.77 1461.37 1587.72
tai75c 1513.00 1651.96 1465.14 1569.06 1470.97 1550.25 1483.10 1518.65 1490.32 1532.45 1440.54 1501.91 1406.27 1527.80
tai75d 1465.89 1538.89 1434.41 1474.14 1422.94 1471.94 1391.99 1413.83 1342.26 1448.19 1399.83 1422.27 1430.83 1453.50

tai100a 2247.52 2394.65 2195.04 2298.33 2222.80 2303.29 2178.86 2214.61 2170.54 2213.75 2232.71 2295.61 2208.85 2310.37
tai100b 2117.12 2299.38 2064.50 2171.76 2068.86 2176.57 2140.57 2218.58 2093.54 2190.01 2147.70 2215.39 2219.28 2330.52
tai100c 1609.72 1718.61 1517.45 1596.35 1526.07 1588.78 1490.40 1550.63 1491.13 1553.55 1541.28 1622.66 1515.10 1604.18
tai100d 1864.00 1977.35 1746.34 1821.29 1742.76 1813.23 1838.75 1928.69 1732.38 1895.42 1834.60 1912.43 1881.91 2026.76
tai150a 3536.38 3834.82 3495.08 3731.86 3395.02 3658.90 3273.24 3389.97 3253.77 3369.48 3328.85 3501.83 3488.02 3598.69
tai150b 3070.10 3208.90 3072.90 3152.98 3017.35 3119.40 2861.91 2956.84 2865.17 2959.15 2933.40 3115.39 3109.23 3215.32
tai150c 2738.88 2840.73 2624.62 2777.28 2631.67 2754.52 2512.01 2671.35 2510.13 2644.69 2612.68 2743.55 2666.28 2913.67
tai150d 3049.06 3265.03 2996.00 3135.51 3023.47 3122.89 2861.46 2989.24 2872.80 3006.88 2950.61 3045.16 2950.83 3111.43

B. Possible room for 2MPSO results improvement

The next experiment aimed at verification, whether using
higher numbers of FFE per time slice, in the case of the
2MPSO3 method (the most effective variant of 2MPSO)
would lead to further improvement.

The results presented in Table III, show that increasing the
number of FFE by a factor of 10 per time slice (the third
double column of the table) was truly beneficial and allowed
for improving the average results for all but two benchmarks
compared to the previous number of FFE (the second double
column of the table). Further 10-times increase of the number
of FFE resulted in yet better performance and led to the
average results improvement in 17 test sets and allowed finding
new best literature results for 8 benchmarks (cf. Table V).

C. Contributions of particular methods

One of the critical research questions is the estimation
of contributions of particular components of the proposed
2MPSO method. The significance of multi- versus single
swarm approach has already been reported in section IV-G.
In this section we discuss the performance of the method
with particular components being switched off. Experimental
results are presented in Table IV, where 2MPSO3 denotes
the “complete” implementation of the 2MPSO method with
3 clusters per vehicle, 2MPSO3 − Tree does not use aux-
iliary swarms initialization provided by the modified Kruskal
algorithm, 2MPSO3 − 2ndPhase does not use the second
phase of the method (i.e. the routes are built directly on
clusters found in the first phase by means of the 2-OPT
method), Tree + 2OPT represents the method (not using
PSO at all) in which clusters are build based on the modified
Kruskal algorithm and the routes are constructed with 2-OPT,
afterwards.

It can be seen from Table IV that leaving out any of
the 2MPSO components generally causes deterioration of
results. While a complete 2MPSO3 method accomplished to
find 11 best minima and 10 best average scores among 21
tested benchmarks, the least harmful appeared an exclusion
of the 2nd phase of the algorithm (7 minima and 7 best
averages) followed by omitting the additional initialization
of one particle (solution) by the modified Kruskal algorithm
(3 minima and 3 best averages). The exclusive use of both
supportive methods (Kruskal algorithm and 2-OPT) without
the main PSO-based engine led to achieving a single best
average value.

VII. CONCLUSIONS AND FUTURE WORK

The paper describes and experimentally evaluates the PSO-
based algorithm for solving Dynamic Vehicle Routing Prob-
lem. In the considered version of DVRP clients’ requests may
arrive during the whole working day, which makes solving the
problem a challenging task.

In our method, similarly to other approaches reported in
the literature, the whole day period is divided into a certain
number of time slices and in each of them a static, currently
available instance of the Vehicle Routing Problem is solved.
However, unlike in majority of the CI-based approaches re-
ported in the literature, in each time slice we split the solving
process into two separate phases: assignment of requests to
vehicles (clustering phase) and route construction for each of
the vehicles (optimization phase). Each of them is solved by a
separate PSO instance. The overall solution implements sim-
ple, but effective, mechanisms of knowledge transfer between
multiple swarms (in-phase), as well as, between consecutive
phases.

Experimental evaluation on a well established set of bench-
mark problems shows potential of our method which, for
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TABLE III
COMPARISON OF MULTI-SWARM ALGORITHMS WITH THREE CLUSTERS OF REQUESTS PER VEHICLE AND VARIOUS NUMBER OF FFE PER TIME SLICE.

THE BEST RESULTS AMONG PRESENTED ALGORITHMS ARE BOLDED. THE NEW BEST LITERATURE RESULTS ARE ADDITIONALLY MARKED IN GRAY. THE
BOXPLOTS PRESENT THE SUMMARY OF THE LENGTH OF SOLUTIONS FOR PRESENTED NUMBER OF FFES NORMALIZED BY THE BEST KNOWN RESULT FOR

EACH OF THE BENCHMARKS.

2MPSO3 2MPSO3 2MPSO3 2MPSO3

(50 ∗ 8 ∗ (0.25 ∗ 103)) (50 ∗ 8 ∗ (0.25 ∗ 104)) (50 ∗ 8 ∗ (0.25 ∗ 105)) (50 ∗ 8 ∗ (0.25 ∗ 106))
Min Avg Min Avg Min Avg Min Avg

c50 569.44 610.19 569.23 591.55 552.47 592.97 558.41 591.29
c75 927.58 983.32 888.66 920.68 880.62 905.62 878.93 904.12

c100 935.69 1013.22 898.16 958.90 891.01 932.35 874.20 920.84
c100b 828.26 880.45 825.65 859.64 822.81 847.22 819.56 839.01
c120 1071.08 1114.08 1072.54 1123.45 1058.03 1144.31 1056.28 1131.30
c150 1181.58 1283.11 1123.10 1170.00 1096.53 1137.57 1097.01 1131.78
c199 1469.70 1540.48 1383.07 1429.01 1366.79 1403.31 1362.84 1415.58

f71 278.65 308.13 279.95 298.86 280.17 297.41 282.69 291.61
f134 12586.83 12925.30 11984.50 12525.63 11970.05 12311.88 11755.58 12038.28

tai75a 1783.83 1980.62 1744.01 1873.52 1704.59 1785.67 1682.90 1766.68
tai75b 1523.66 1653.11 1428.16 1521.33 1416.25 1463.35 1404.29 1447.30
tai75c 1568.29 1663.28 1470.97 1550.25 1470.59 1519.58 1406.59 1498.18
tai75d 1454.32 1563.18 1422.94 1471.94 1406.77 1441.55 1415.79 1439.78

tai100a 2367.61 2525.70 2222.80 2303.29 2166.78 2233.04 2155.42 2215.44
tai100b 2199.71 2353.51 2068.86 2176.57 2022.13 2079.61 2034.82 2102.15
tai100c 1591.10 1686.45 1526.07 1588.78 1470.67 1516.87 1446.10 1493.59
tai100d 1863.38 1964.80 1742.76 1813.23 1688.87 1747.21 1690.32 1753.17
tai150a 3668.87 4012.98 3395.02 3658.90 3355.29 3471.60 3298.91 3394.92
tai150b 3087.92 3321.01 3017.35 3119.40 2928.43 3013.39 2887.88 2992.81
tai150c 2723.78 2930.53 2631.67 2754.52 2529.56 2615.09 2462.96 2551.58
tai150d 3107.45 3331.85 3023.47 3122.89 2913.91 3003.85 2886.12 2941.66

TABLE IV
COMPARISON OF MULTI-SWARM ALGORITHMS WITH THREE CLUSTERS OF REQUESTS PER VEHICLE AND AUXILIARY HEURISTICS OR PSO SWITCHED

OFF. THE NUMBER OF FFES IN THE CASE OF 2MPSO3 − 2nd Phase IS REDUCED PROPORTIONALLY TO THE LACK OF THE 2ND PHASE OF THE
2MPSO3 ALGORITHM, WHICH TAKES 12/62 (APPROXIMATELY 20%) OF THE WHOLE FFE BUDGET. THE BOXPLOTS PRESENT THE SUMMARY OF THE
LENGTH OF SOLUTIONS FOR PRESENTED MODULES OF THE ALGORITHM SWITCHED OFF NORMALIZED BY THE BEST KNOWN RESULT FOR EACH OF THE

BENCHMARKS.

2MPSO3 2MPSO3 − 2ndPhase 2MPSO3 − Tree Tree+ 2OPT
(50 ∗ 8 ∗ (0.25 ∗ 104)) (50 ∗ 8 ∗ (0.2 ∗ 104)) (50 ∗ 8 ∗ (0.25 ∗ 104)) (50 ∗ 8)

Min Avg Min Avg Min Avg Min Avg
c50 569.23 591.55 562.52 592.10 563.43 620.97 683.82 788.68
c75 888.66 920.68 903.71 931.04 902.55 949.10 1101.34 1196.15

c100 898.16 958.90 915.83 957.52 932.31 1009.22 1139.28 1267.02
c100b 825.65 859.64 821.34 861.62 828.21 838.46 828.98 830.18
c120 1072.54 1123.45 1067.06 1112.20 1065.55 1091.58 1087.50 1121.09
c150 1123.10 1170.00 1126.75 1178.81 1130.11 1216.68 1321.63 1496.52
c199 1383.07 1429.01 1377.31 1429.67 1389.69 1478.81 1681.98 1842.93

f71 279.95 298.86 281.05 298.07 311.06 328.98 348.76 411.13
f134 11984.50 12525.63 11821.38 12432.38 12007.06 12225.46 13650.44 14219.83

tai75a 1744.01 1873.52 1777.82 1872.83 1753.90 1877.36 1971.69 2142.12
tai75b 1428.16 1521.33 1476.88 1532.70 1459.49 1539.87 1623.01 1690.74
tai75c 1470.97 1550.25 1477.22 1568.69 1483.88 1599.72 1832.35 2009.34
tai75d 1422.94 1471.94 1430.03 1467.10 1436.70 1478.04 1431.89 1624.71

tai100a 2222.80 2303.29 2213.08 2325.78 2213.77 2329.81 2501.11 2916.95
tai100b 2068.86 2176.57 2096.12 2180.66 2047.24 2274.96 2337.91 2656.51
tai100c 1526.07 1588.78 1544.44 1602.49 1531.29 1584.37 1780.80 2000.34
tai100d 1742.76 1813.23 1728.51 1813.22 1750.73 1836.15 2166.62 2366.10
tai150a 3395.02 3658.90 3492.33 3712.50 3427.56 3702.06 3802.01 4069.03
tai150b 3017.35 3119.40 3033.92 3113.32 3059.03 3140.54 3308.89 3657.68
tai150c 2631.67 2754.52 2585.53 2742.37 2621.97 2798.93 2774.54 3003.10
tai150d 3023.47 3122.89 3023.67 3161.49 3020.70 3127.68 3265.74 3559.72

comparable number of FFE, was capable of finding new best
solutions in 11 out of 21 test instances. Further increase of
the number of FFE led to finding yet few more best literature
results, with the final outcome being equal to 17. Table V sum-
marizes all best results reported for considered benchmarks
together with the respective methods and their parameters.
Graphical representation of the routes and vehicles’ timetables
corresponding to 2MPSO2/3 best results are available at our
project’s website [34].

Besides promising numerical results this work provides
several qualitative conclusions related to higher-level observa-
tions of the effectiveness of the PSO method in the discussed
DVRP embodiment. First of all, our studies indicate that the
number of time slices initially proposed by Kilby et al. (25)
is not always an optimal choice and should be adjusted for

the selected optimization algorithm. In many cases increasing
this figure to 50 (with accompanying respective decrease
in the number of internal in-slice calculations of the FFE)
significantly improves the results.

Secondly, as came out from the tests, different test prob-
lems can visibly benefit from the appropriate choice of the
evaluation function and problem encoding used for temporal
evaluation of the partial solutions assessed by the method.
Three such approaches were proposed and verified in this
paper with apparent impact on the quality of obtained solutions
depending on the specificity of a particular test instance.

Thirdly, as came out from the tests, using the multi-swarm
approach is, in general, more beneficial than application of
a single swarm with respectively higher number of particles.
The higher efficiency of several smaller swarms is mainly at-
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TABLE V
BEST OVERALL RESULTS ACHIEVED FOR THE BENCHMARK SETS. THE

RIGHTMOST COLUMN PRESENTS THE PARTICULAR ALGORITHM AND THE
NUMBER OF THE EVALUATION FUNCTION CALCULATIONS DURING THE

WHOLE EXECUTION GIVEN IN THE FORM
SWARMS × TIME SLICES × EVALUATIONS PER TIME SLICE. THE NEW BEST

SOLUTIONS COMPUTED BY 2MPSO CAN BE FOUND IN [34].

Name Best result Algorithm
c50 552.47 2MPSO3 8 ∗ 50 ∗ 0.25 ∗ 105

c75 877.30 2MPSO2 1 ∗ 50 ∗ 0.4 ∗ 105

c100 874.20 2MPSO3 8 ∗ 50 ∗ 0.25 ∗ 106

c100b 819.56 2MPSO3 8 ∗ 50 ∗ 0.25 ∗ 106

c120 1056.28 2MPSO3 8 ∗ 50 ∗ 0.25 ∗ 106

c150 1096.53 2MPSO3 8 ∗ 50 ∗ 0.25 ∗ 105

c199 1362.84 2MPSO3 8 ∗ 50 ∗ 0.25 ∗ 106

f71 278.65 2MPSO3 8 ∗ 50 ∗ 0.25 ∗ 103

f134 11755.58 2MPSO3 8 ∗ 50 ∗ 0.25 ∗ 106

tai75a 1682.90 2MPSO3 8 ∗ 50 ∗ 0.25 ∗ 106

tai75b 1391.74 2MPSO3 8 ∗ 25 ∗ 1.1 ∗ 105

tai75c 1406.27 TabuSearch 25 ∗ 30seconds
tai75d 1342.26 MEMSO 8 ∗ 25 ∗ 0.5 ∗ 104

tai100a 2146.53 2MPSO2 8 ∗ 25 ∗ 1.1 ∗ 105

tai100b 2022.13 2MPSO3 8 ∗ 50 ∗ 0.25 ∗ 105

tai100c 1446.10 2MPSO3 8 ∗ 50 ∗ 0.25 ∗ 106

tai100d 1685.53 2MPSO2 8 ∗ 25 ∗ 1.1 ∗ 105

tai150a 3253.77 MEMSO 8 ∗ 25 ∗ 0.5 ∗ 104

tai150b 2861.91 MAPSO 8 ∗ 25 ∗ 0.5 ∗ 104

tai150c 2462.96 2MPSO3 8 ∗ 50 ∗ 0.25 ∗ 106

tai150d 2844.70 2MPSO2 8 ∗ 25 ∗ 1.1 ∗ 105

tributed to their higher flexibility in space searching due to the
possibility of efficient parallelization with low synchronization
cost.

On a general note, we believe that the proposed method
offers three main advantages: simplicity, multi-cluster charac-
teristics, and partially “method-free” nature. The simplicity is
attributed to the mechanism of knowledge transfer between
swarms and between consecutive phases, which requires min-
imal memory involvement - only the best particle (solution)
needs to be maintained and propagated. The multi-cluster
aspect of the method is manifested by the possibility of assign-
ing several requests’ clusters per vehicle, which significantly
increases the flexibility of possible space clustering, though at
the cost of adequate increase of search space dimensionality.
Finally, the universality of the method stems from the potential
ability of using any global, continuous optimization method in
the second phase of the algorithm. Our choice was to employ
the PSO method at this stage, however, there are no apparent
reasons for not using other candidate methods.

In the future we plan to develop a hyper-heuristic approach
to the parameter/method selection problem. We have already
started to explore this topic with promising initial results and
believe that further studies may lead to development of robust
and effective autonomous self-adaptation procedure. As can be
observed in the example benchmarks’ characteristics presented
in Figs. 8, 9 and 10, spatial and volume distributions of
requests significantly vary between test instances what may
be taken into account in the parameter selection procedure.

We also plan to verify the efficacy of our method on the
real-life data collected by a Warsaw-based delivery company.
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