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Abstract

Capacitated Vehicle Routing Problem (CVRP) is a
well-known NP-hard optimization problem. In this
paper, a dynamic version of the CVRP is consid-
ered which takes into account traffic jams (TJ). TJ
occur randomly according to pre-defined intensity
and length distributions. In effect, the static VRP
is transformed into a non-deterministic scheduling
problem with high uncertainty factor and variable,
changing in time internal problem parameters.

Our proposed solution to CVRP with TJ (CVR-
PwTJ) relies on the UCT (Upper Confidence
Bounds applied to Trees) method. UCT is a
simulation-based algorithm and currently a state-
of-the-art approach to some popular games, which
are intractable in the classical ways (rooted in the
alpha-beta type search). In short, UCT is an ex-
tension of the Monte Carlo Tree Search (MCTS)
method, however, unlike MCTS which makes use
of uniformly distributed simulations in a game tree
(in order to find the most promising move), the
UCT algorithm aims at maintaining an optimal bal-
ance between exploration and exploitation which
results in more frequent visits to and deeper expan-
sion of the most promising branches of a game tree.

The paper is the first attempt of applying the UCT
algorithm in the domain of dynamic transporta-
tion problems. The most challenging issue here is
finding a suitable mapping of the CVRPwTJ onto
a tree-like problem representation required by the
UCT. Furthermore, in order to prevent the size of
the tree from explosive growth, an efficient mecha-
nism for child nodes selection must be applied.

Our approach is compared with two heuristic meth-
ods, which rely on 2-OPT-type local route op-
timizations intended to avoid traversing jammed
edges if a low-cost local reordering of clients is
possible. Initial results are very promising and give
hope for wider applicability of the proposed solu-
tion in the domain of dynamic optimization prob-
lems.

1 Introduction
Vehicle Routing Problem [Dantzig and Ramser, 1959] along
with its numerous variants (e.g. Capacitated Vehicle Routing
Problem) is a widely known combinatorial optimization task.
Its practical (industrial) background and relevance provokes
strong ongoing interest of Artificial Intelligence (AI) com-
munity in finding new efficient methods of its solving despite
some already existing and well-established heuristic and ap-
proximate ones.

Upper Confidence Bounds applied to Trees (UCT)
method [Kocsis et al., 2006; Browne et al., 2012], is cur-
rently a state-of-the-art approach to game playing in the case
of games for which a compact and easily computable position
assessment function is not known.

The main advantage of using UCT in games is its adapt-
ability (to the changing game situation) and long-term relia-
bility of position assessment. An additional asset of UCT is
its “knowledge-free” nature [Mańdziuk, 2010] - there is no
requirement for domain-specific knowledge, except for the
formal game definition, which is indispensable in the move
generation process and for detection and evaluation of the fi-
nal states of the game.

In the view of the above-listed UCT qualities we conducted
research on possible ways of incorporating the UCT algo-
rithm, in its basic or modified form, into specific class of Ve-
hicle Routing Problems in which frequent traffic jams may
occur while traversing the edges of the problem’s solution.
In particular, this research aims at verification of the UCT
capability to flexibly address the so-called “exploration vs.
exploitation dilemma”, i.e. the issue of balancing the usage
of discovered best solutions vs. finding the new ones with re-
spect to highly variable work conditions. Such a “plasticity”
of the solution method seems to be indispensable for efficient
solving of the CVRP with Traffic Jams (CVRPwTJ).

It is worth underlying that, to the best of our knowledge,
this paper presents the first attempt to solving the CVRPwTJ
by means of the UCT method. Therefore, we had to make
several decisions related to particular implementation and us-
age of the method in a given application domain. The main
issue was related to the CVRPwTJ problem representation in
the form of a graph (which is a desirable representation for
a UCT tree-search method), and definition of the set of UCT
actions (possible “moves” in a given state of a partial solu-
tion) and their interpretation per analogy to game moves. An-



other critical decision was introduction of combined actions
involving two vehicles and simultaneous modification of their
partial solutions / routes.

The rest of the paper is organized as follows: in the next
section a formal definition of the CVRPwTJ is provided. Sec-
tions 3 and 4, respectively summarize the UCT method and
the way we propose to apply it to solving CVRPwTJ. Sec-
tion 5 is devoted to presentation of an experimental setup,
simulation results and their comparison with two heuristic ap-
proaches. A summary of the main contribution and directions
for future research conclude the paper.

2 Capacitated Vehicle Routing Problem with
Traffic Jams

Vehicle Routing Problem was formally formulated in
1959 [Dantzig and Ramser, 1959] and subsequently proved
to be NP-hard in 1981 [Lenstra and Kan, 1981]. In short the
problem consists in assigning a number of homogenous ve-
hicles to a number of clients, where each client has a certain
2D location and a certain demand of (homogeneous) goods
and the goal (optimization objective) is to deliver demanded
goods to all clients while minimizing the sum of vehicles
routes’ costs (lengths). There are a few additional constraints
which must be fulfilled, i.e. each client must be served by ex-
actly one vehicle and each vehicle’s route must start and end
in the depot (defined by its 2D coordinates).

The basic formulation of VRP does not impose any limit on
the number of clients that can be served by a given vehicle.
For practical reasons, however, the upper limit on vehicles’
capacity is often imposed, leading to the Capacitated Vehicle
Routing Problem (CVRP) definition.

Since VRP/CVRP is NP-Hard, no polynomial method of
solving the problem is known and perfect solutions can only
be obtained for relatively small-size problems. For the real-
life problem instances approximation algorithms must be ap-
plied. Among the exact algorithms, one can distinguish the
following three main approaches: full tree search (e.g. span-
ning tree and shortest path relaxations method [Christofides
et al., 1981]), dynamic programming (e.g. [Eilon et al., 1976]
in the case of problems with an a priori known number of re-
quired vehicles) and integer programming (e.g. three-index
vehicle flow formulation [Fisher and Jaikumar, 1978]). There
are multiple approximation algorithms for VRP/CVRP, most
of them designed to address specific problem formulations.
For example, Savings algorithm [Clarke and Wright, 1964]
assumes that the number of vehicles is not limited. Other
well-known methods include Multi-route improvement algo-
rithm [Breedam, 1994], Sweep algorithm [Gillett and Miller,
1974], Ant Colony optimization [Dorigo, 1992] or Particle
Swarm Optimization [Khouadjia et al., 2010; Okulewicz and
Mańdziuk, 2013; 2014].

The variant of CVRP considered in this paper differs sig-
nificantly from the above-mentioned static versions by intro-
ducing a high degree of uncertainty by means of traffic jams,
which may dynamically occur on the particular edges (atomic
parts) of the planned vehicles’ routes. The existence of a traf-
fic jam increases the cost of traversing a certain edge, usu-
ally to the extent that requires some re-modeling of the cur-

rently planned route. In the proposed solution, these dynamic
changes are handled on-line by appropriate actions taken to
alleviate their impact (see section 5.3 for the details). Gener-
ally speaking, the times of occurrences, intensities and time
spans of the traffic jams are generated according to some
probability distributions whose parameters (but not the actual
realizations) are pre-defined (see section 5.1).

3 Upper Confidence Bounds Applied to Trees
UCT is a simulation-based algorithm, which proved to be
successful mainly in multi-step decision-making (acting) un-
der uncertainty, in particular in the case of building play-
ing agents for several demanding games, such as Go [Gelly
and Silver, 2011; Browne et al., 2012] or Havannah [Teytaud
and Teytaud, 2010]. The UCT is also a state-of-the-art ap-
proach to the so-called General Game Playing [Genesereth et
al., 2005; Świechowski and Mańdziuk, 2014; Walȩdzik and
Mańdziuk, 2014].

The method consists in performing multiple simulations of
possible continuations of the game from the current state. In-
stead of performing fully random rollouts, as is the case of
the MCTS method, it proposes a more selective approach to
choosing continuations worth analyzing, making the obtained
results more meaningful. In each state, UCT advises to first
try each action once and then, whenever the same position is
analyzed again, choose move a* according to the following
formula:

a∗ = arg max
a∈A(s)

{
Q(s, a) + C

√
ln [N(s)]

N(s, a)

}
(1)

where A(s) is a set of all actions available in state s,
Q(s, a) denotes the average result of playing action a in state
s in the simulations performed so far, N(s) - a number of
times state s has been visited andN(s, a) - a number of times
action a has been sampled in this state. Constant C controls
the balance between exploration and exploitation, since the
formula postulates choosing actions with the highest expected
rewards and, at the same time, avoiding repetitive sampling
of the same actions while others might yet prove more bene-
ficial.

Direct implementation of the approach described above is,
however, impossible due to memory limitations. With suffi-
cient time it would lead directly to storing the whole game
tree in memory, which is unfeasible, except for the simplest
games. Therefore, each simulation (rollout) actually consists
of two phases: a strict UCT phase and a Monte-Carlo (MC)
phase, the latter one consisting in truly random rollouts. In-
memory game tree is built iteratively and in each internal sim-
ulation the UCT strategy, i.e. formula (1) is applied only until
the first not-yet-stored game state is reached. It is, then, added
to the in-memory game tree and strictly random MC rollout
is performed further down the tree (see Figure 1, reprinted
from [Chaslot et al., 2008]).

With the UCT simulations finished in a given time step,
choosing the next move is simply a matter of finding the ac-
tion with the highest Q(s, a) value in the current state.

Recently, UCT gained attention in the area of probabilis-
tic planning implemented by the Markov Decision Process



Figure 1: Operational scheme of the UCT method. First a
UCT tree is traversed until a leaf node is reached (Selection),
then the tree is expanded by adding a new leaf (Expansion),
next a random rollout is performed until the end-of-game
state (Play-out) and finally the result is propagated back in
the UCT tree (including the newly added leaf). This scheme
is repeated a given number of times. Each such realization is
called and internal UCT iteration.

(MDP) model [Kolobov et al., 2012; Keller and Eyerich,
2012; Feldman and Domshlak, 2014]. Successful application
of UCT in this area motivated our work on CVRPwTJ.

4 UCT in CVRP with Traffic Jams
The UCT method, due to its generality and “knowledge-free”
nature [Mańdziuk, 2010], seems to be a good candidate for
a general-purpose widely-applicable metaheuristic in the do-
main of decision-making problems if only they can be trans-
formed into tree-based representation. In this section the pro-
posed way of applying the UCT method to the CVRP with
Traffic Jams is presented. Before description of the method
let us present the way the static CVRP benchmarks are trans-
formed into stochastic CVRPwTJ instances.

For a given benchmark problem the solution search pro-
cess is divided into a number of discrete time steps and in
each of them all active trucks (i.e. those which left the de-
pot) move to their next clients. The process ends when all
vehicles move back to the depot after having visited all the
customers. The initial conditions (i.e. the number of available
trucks, their capacity, clients’ requests and the coordinates of
the depot and the clients) are given in the benchmark set def-
inition. What makes the CVRPwTJ different from the above
(static) CVRP definition is considering road conditions (traf-
fic jams). Specifically, at each time step, for each edge (a di-
rect link between two clients or a client and a depot) the TJ
is imposed with probability P . If TJ happens to appear on a
given edge a it is assigned a randomly selected intensity I(a)
and length L(a) (measured in time steps).

Therefore, for each edge a of cost c(a), if a traffic jam
TJ(a) with intensity I(a) and length L(a) appears on that
edge, its current cost is modified to c(a) · I(a) for the next
L(a) time steps and reduced to the previous value c(a), after-
wards. If a TJ happens to be selected for an edge a which is
currently jammed (was jammed k time steps before, for some
k, with the TJ length L(a) > k and intensity I(a)), then the
length of the TJ on that edge is increased by the newly se-
lected TJ’ length, but the cost of that edge is not increased
- it remains at the level of c(a) · I(a) (though, for a longer

time period). This way we avoid TJ intensity multiplications
which might otherwise have easily led to explosive growth.

The above TJ assignment (with probability P ) is applied
at the beginning of each time step and for all edges. Since at
time zero there are no TJ imposed yet, we start our algorithm
by finding an initial solution to the static version of the CVRP
problem.

4.1 Initial Solution
The initial solution, in the form of a set of vehicles’ routes
is obtained for the static problem instance with the help of
a modified Clark and Wright [Clarke and Wright, 1964] sav-
ings algorithm [Pichpibul and Kawtummachai, 2012]. Each
route commences and ends in a depot and the routes are pair-
wise separated (except for the initial and final position which
is always a depot). This set of optimized paths, with depot
being the first and the last element, forms the input to the pro-
posed UCT approach.

4.2 UCT Forest
Suppose the initial solution is composed of k routes, i.e. uses
k trucks. Then, as stated above, the initial UCT tree is actu-
ally a forest composed of k trees - each in the form of a path
with the first and the last elements being a depot. The con-
secutive elements on each path denote the clients visited by
respective trucks in subsequent time steps. For example, the
third elements in all paths represent the set of clients visited
in the second step of the solution.

The internal UCT simulations are performed at each time
step simultaneously from all root nodes of all k trees. As ex-
plained in section 3 the trees are gradually extended (one leaf
node at each simulation), though there are two main differ-
ences compared to the “classical” UCT usage.

First of all, the next compound step (movement of all k
trucks) is a result of a combined knowledge obtained from
all k trees. More precisely, in each tree the most promising
action is selected, then these k selected actions are sorted
in descending order based on their UCT values (i.e values

C
√

ln[N(s)]
N(s,a) −Q(s, a) in (2)) and afterwards executed in this

order. Please note, that execution of an action in one tree may
disable some further actions (in subsequent trees). In that case
the next best action in the latter tree is selected instead.

Second of all, since the shorter the solution the better, the
UCT formula (1) is modified to the following version (2),
which favors the shorter average outcomes Q(s, a):

a∗ = arg max
a∈A(s)

{
C

√
ln [N(s)]

N(s, a)
−Q(s, a)

}
(2)

Once the simulation is completed a compound result from all
k trees (the sum of routes of k trucks) is back-propagated to
the root nodes of these k trees.

After a certain number of internal simulations the actual
(real) decision regarding the movement of the k trucks is
made according to the smallestQ(s, a) value among the child
nodes in each of the k trees. These Q(s, a) values are sorted
in an ascending order (i.e. first the action in the tree with the
lowestQ(s, a) is executed, then the action in the tree with the
second-lowest Q(s, a), etc.).



Table 1: Actions level-0 and level-1. Ac. denotes the code of an action, Lev. is level-type, Conditions - is the set of prerequisites
and Action is the actual action taken. +TJ / −TJ denote the fact that the edge currently planned to be traversed is jammed /
not jammed, respectively.

Ac. Lev. Conditions Action
A0 0 −TJ Continue the planned (non-jammed) route.
A1 0 +TJ Continue the planned (jammed) route.
A2 1 +TJ ; New route is not jammed. Move the current client at the end of a route (just before returning to the depot).
A3 1 +TJ Move the current client into locally optimal place in a route - see the main text.
A4 1 +TJ Insert the first found client to whom there is no TJ before the current client (as the first one).
A5 1 −TJ ; The route is not the one originally planned (has been changed already). Insert the client to whom the edge from the current state is the cheapest as the current/first one.
A6 1 +TJ ; After reversal the route does not begin with a TJ. Reverse the route (except for the depot which remains the closing element).

4.3 Possible Actions in the UCT Trees
As stated above, at each step of both the UCT simulations as
well as real decisions regarding the vehicles’ tours, all possi-
ble actions are considered in each of the k root nodes. These
actions take into account whether or not the edge currently
planned to be traversed is jammed and if so what is the inten-
sity of the TJ. In particular there are three types of actions dif-
fering by their complexity: level-0, level-1 and level-2, which
modify 0, 1 and 2 routes, respectively. In each case, there are
some initial pre-conditions under which a given action is le-
gal. Otherwise it is illegal and hence not considered in a given
state. The set of actions level-0 and level-1 used in our ap-
proach is presented in Table 1. All these actions are relatively
simple and self-explained. Please only note that inA3, for the
current clientX we find a new location between clientsB and
C, so as to minimize |BX|+ |XC| − |BC|.

Except for the above-mentioned 6 actions there are also
3 more complex, level-2 ones denoted A7, A8 and A9. In
the case of A7 the current route is finished (by immediately
moving to a depot) and a new one is commenced from the
depot. The initial (legality) conditions are the following:

• from the current vehicle location there are TJ to all other
customers planned for this route;

• the edge from the vehicle location to the depot is not
jammed;

• the edge from the depot to the first customer is not
jammed.

The two remaining actions A8 and A9 exchange the cus-
tomers between the two routes. In A8, the replacement is the
smallest possible (the exchange is finished with the first non-
jammed situation). In A9 the exchange is more complex and
aims at exchanging the whole parts of the routes (to some
extent similarly to the crossover operation in Genetic Algo-
rithms). In both cases the following prerequisites must be ful-
filled:

• one of the routes begins with a traffic jam;

• after exchange both routes do not begin with traffic jams;

• after exchange capacity constraint is fulfilled for both
vehicles.

All the above-mentioned actions are based on the follow-
ing underlying rationale: if the currently selected candidate
edge is not jammed then traverse it, otherwise try to enhance
the planned route (by avoiding the traffic jam) by means of
local changes in the planned orders of visiting clients. In the

case of actions A0-A6 the in-route optimization takes place.
Action A5 is the only one which allows to optimize a route
which is not jammed. It may be particularly suitable when the
route is far from optimal due to some changes forced in ear-
lier steps. ActionA7 immediately completes the current route
(since there is neither TJ on the edge leading to the depot nor
on the one from the depot to the next planned customer, the
next turn will potentially be made on an non-jammed edge
starting from the depot). Finally, actionsA8 andA9 exchange
customers between the two routes so as to reach locally (tem-
porarily) non-jammed solution. In theory, one may proceed
with defining more complex and more sophisticated actions,
e.g. the ones involving three or more routes (trucks), but such
approach immediately becomes infeasible due to computa-
tional complexity reasons.

5 Experimental Results
In this section, the experimental setup and traffic jams’ pa-
rameterization are presented along with the results of apply-
ing the proposed approach to a set of popular static CVRP
benchmarks modified by imposing the TJ. The results are
compared with the static solution (not reacting to TJ occur-
rence) and two local-search-based heuristic methods.

5.1 Experimental Setup
In the experiments, the set of static benchmark problems
specified in Table 2 was used. The benchmarks were down-
loaded from the CVRP webpage [NEO. Networking and
Emerging Optmization, 2013] and modified into CVRPwTJ
according to the following TJ uniform probability distribu-
tions:
P ∈ {0.02; 0.05; 0.15}
I = UINT [10, 20]
L = UINT [2, 5]
whereUINT [a, b] denotes random uniform selection of any

integer x such that a ≤ x ≤ b. Based on the initial tests the
value of C in (2) was set to the length of the initial solution
found for the static instance.

A solution to a static version of the P-n101-k4 benchmark
is presented in Figure 2.

5.2 Two Heuristical Approaches
The results of proposed method were compared with the static
solution (obtained with the improved Clark and Wright al-
gorithm [Pichpibul and Kawtummachai, 2012] mentioned in
section 4.1) applied to the dynamic benchmark instance and



Table 2: Static benchmark instances used as a base for defin-
ing CVRPwTJ instances. Columns, from left to right, denote
respectively: the name of a benchmark set, number of clients,
number of vehicles, truck’s capacity, the best (static) solution
rounded to the integer value and the number of UCT internal
simulations per move (performed action) used in the experi-
ments.

Instance #C #V Cap. BEST #Sim.
P-n19-k2 19 2 160 212 80 000
P-n45-k5 45 5 150 510 26 000
A-n54-k7 54 7 100 1167 26 000
A-n69-k9 69 9 100 1168 26 000

A-n80-k10 80 10 100 1764 4 000
P-n101-k4 101 4 400 681 4 000

with two heuristic algorithms which use the following local
optimization mechanisms: (H1) and (H2), respectively.

(H1): In this heuristic the initial solution is traversed step
by step until the TJ occurs on the current edge. In that case
a local 2-OPT optimization improvement is performed and
compared with the cost of traversing the jammed edge.

More precisely, let’s denote by d(x, y) the length of a di-
rect edge from location x to location y and suppose that the
customers (nodes) in the initial solution are numbered con-
secutively from 0 (depot) to n, i.e. the initial route is then of
the form 0− 1− 2− . . .−n− 0. Let’s now assume that after
the first step (moving from 0 to 1) a TJ on the edge (1, 2) is
encountered. In such a case, the node

p = argmin
p
{d(1, p) + d(2, p+ 1)} (3)

is found and an alternative route omitting the edge (1, 2) is
considered (see Figure 3). The new route is accepted if

d(1, p) + d(2, p+ 1) < d(1, 2) + d((p, p+ 1) (4)

Otherwise a jammed edge (1, 2) is traversed in the next step.
(H2): In this heuristic, similarly to H1, the initial solution is
traversed step by step until a TJ occurs on the current edge.
Let’s again assume that there is a TJ on edge (1, 2). In such
a case H2 tries to omit node 2, i.e. proceeds along (1, 3) - if
not jammed - and gets back to node 2 at the earliest possible
occasion in the next steps. If (1, 3) is also jammed the edge
(1, 4) is tried and both 2 and 3 are placed in a waiting queue,
etc.

In effect, the omitted customers are placed in a waiting
line and in the next steps, before proceeding along the current
route H2 verifies if any of these omitted clients can be served
in this step without traversing a jammed edge. The waiting
customers are tried out in the order of their appearance in the
queue (from the latest to the newest).

5.3 Results
For each pair (instance, P ) 50 experiments were performed
for each of the compared approaches (static, H1, H2 and
UCT). Please note, that for a given experimental trial (one out
of 50) the same TJ realizations were used in all approaches.
Clearly these realizations differed across these 50 trials. It

Figure 2: Solution of the P-n101-k4 benchmark problem.

should be noted that these TJ realizations were not known to
the tested algorithms beforehand (i.e. unless the traffic jams
actually materialized in a given time step). Hence, solving the
CVRPwTJ requires truly on-line and self-adaptive probabilis-
tic planning capabilities. The results are presented in Tables 3
and 4.

On a general note, it can be seen that UCT is superior to
other approaches, whereas the static solution is clearly the
worse option. Furthermore, it can be observed that the UCT
solutions are not only the shortest among the competing ap-
proaches but also have the lowest standard deviations. Ad-
ditionally, the superiority of UCT is prevailing when the TJ
probability increases.

The relatively weaker results are obtained in the case of
bigger-size benchmarks with low P . The reasons for that sit-
uation are two-fold: first of all, the number of internal UCT
simulations seems to be too small for the P101 problem in-
stance. Secondly, in the case of big benchmark set with low
probability of TJ the quality of initial solution (which is rel-
atively very high in the case of method used [Pichpibul and
Kawtummachai, 2012]) plays a crucial role in the final result
(due to a low degree of problem’s dynamism). In the case
of efficient initial solution and relatively stable problem in-
stance local 2-OPT type optimization heuristic clearly consti-
tute a strong, competitive approach. We believe, however, that
with a higher number of simulations, UCT would further im-
prove its performance and possibly outperform both H1 and
H2. Verification of this hypothesis is one of our current re-
search goals.

The other situation in which UCT did not show its advan-



Figure 3: 2-OPT local optimization used by heuristic H1. See
description within the text.

tage is the case of the easiest problem P19 and low probabil-
ity of TJ. This problem is easy enough to be solved by lo-
cal optimization methods and therefore all H1, H2 and UCT
performed comparably well for this benchmark. Please note,
however, that all of them showed significant improvement
over the static solution.

6 Conclusions and Directions for Future
Research

In this paper a new approach to the Capacitated Vehicle Rout-
ing Problem with Traffic Jams is presented. The solution is
based on a UCT algorithm which was hitherto applied mainly
in game domain (in particular to games for which a com-
pact and meaningful evaluation function is not known) and to
MDP-based probabilistic planning. Application of the UCT
method to the CVRPwTJ required suitable problem represen-
tation (in the form of a forest of trees) and specific definition
of legal actions to be performed in these trees in order to pre-
vent the method from explosive growth of memory require-
ments.

The UCT-based results were successfully compared with
two heuristic methods, locally optimizing the routes in case of
a traffic jam occurrence. The advantage of our approach gives
hope for its further successful development and usefulness in
the domain of transportation problems.

One of the advantages of proposed approach is the possi-
bility to use any optimization method for finding the initial
solution of the static problem. Our choice was a parallel ver-
sion of the improved savings method [Pichpibul and Kaw-
tummachai, 2012], which proved to be efficient, but should
other methods seemed to be more appropriate there would be

Table 3: The numbers of trials in which a given approach ap-
peared to be the best one. Please note that due to ties, the sums
in rows may exceed 50. The winning algorithm for each pair
(instance, P ) is bolded.

Instance P Static H1 H2 UCT
P19 0.02 19 37 46 45

0.05 9 27 34 38
0.15 1 5 15 37

P45 0.02 5 23 26 28
0.05 1 9 13 38
0.15 0 0 0 50

A54 0.02 1 11 20 35
0.05 0 2 9 39
0.15 0 0 0 50

A69 0.02 0 11 20 31
0.05 0 3 5 42
0.15 0 0 0 50

A80 0.02 0 13 17 27
0.05 0 1 10 39
0.15 0 0 0 50

P101 0.02 0 25 24 10
0.05 0 12 21 20
0.15 0 0 6 44

Table 4: The average values and standard deviations (in
parentheses) across 50 trials. The lowest (best) results are
bolded.

Instance P Static (σ) H1 (σ) H2 (σ) UCT (σ)
P19 0.02 412.4 (204.5) 287.2 (84.6) 269.0 (62.7) 266.9 (51.6)

0.05 582.9 (258.8) 345.2 (126.8) 307.34 (92.4) 283.9 (62.0)
0.15 1291.0 (473.9) 817.9 (403.9) 587.5 (247.3) 451.6 (148.9)

P45 0.02 1016.1 (309.2) 736.6 (207.0) 667.6 (147.6) 607.1 (29.9)
0.05 1372.6 (375.4) 835.1 (221.9) 739.9 (144.1) 623.2 (38.4)
0.15 3650.4 (553.2) 2256.7 (544.9) 1597.5 (402.0) 800.1 (125.7)

A54 0.02 2006.6 (519.7) 1626.2 (483.0) 1441.4 (345.7) 1265.3 (66.7)
0.05 3218.6 (928.8) 2052.2 (422.9) 1798.2 (369.8) 1401.8 (125.8)
0.15 6793.7 (1518.6) 4181.8 (888.4) 3253.4 (823.4) 1738.2 (220.8)

A69 0.02 2144.5 (490.3) 1646.8 (406.4) 1505.9 (373.7) 1284.0 (52.1)
0.05 3275.9 (791.6) 2018.1 (415.1) 1849.3 (423.9) 1436.6 (136.6)
0.15 6937.0 (1048.7) 4401.1 (945.8) 3394.4 (806.2) 1815.8 (222.9)

A80 0.02 2937.6 (689.7) 2231.1 (357.8) 2151.9 (307.2) 1967.0 (86.1)
0.05 4434.0 (976.7) 2865.7 (498.6) 2543.6 (391.4) 2137.1 (133.4)
0.15 9073 (1527.8) 5765.3 (851.4) 4549.0 (816.7) 2594.3 (218.3)

P101 0.02 1538 (283.6) 861.1 (85.9) 848 (84.3) 863.2 (51)
0.05 2337 (439.4) 1035.3 (156.0) 972.3 (128.4) 963.7 (73.8)
0.15 6465 (609.9) 2750.9 (689.6) 1758.0 (319.9) 1379.2 (209.9)

no problem in their application.
Our current focus is on verification of the potential UCT

results’ improvement with the increased number of internal
simulations in the case of P − n101 − k4 benchmark set
(due to memory limitations the number of UCT internal sim-
ulations was relatively low for this problem instance). Fur-
thermore, we plan to compare our method with appropriately
designed and tuned Ant Colony System (ACS) and Particle
Swarm Optimization (PSO) approaches. Our initial compar-
ison with the ACS showed an upper hand of the UCT solu-
tions, however more experimental evaluations are necessary
to confirm these preliminary conclusions.
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