Spis treści

Wstęp

1 Liczby zespolone 1
 1.1 Definicja i działania, liczby sprzężone 1
 1.2 Moduł, argument, postać trygonometryczna 2
 1.3 Działania na liczbach w postaci trygonometrycznej 4
 1.4 Pierwiastkowanie liczb zespolonych 5
 1.5 Trudniejsze przykłady 7
 1.6 Zadania 9

2 Funkcje elementarne zmiennej zespolonej 11
 2.1 Funkcja wykładnicza 11
 2.2 Funkcja logarytmiczna 12
 2.3 Funkcje trygonometryczne 13
 2.4 Funkcje hiperboliczne 14
 2.5 Funkcja potęgowa 14
 2.6 Trudniejsze przykłady 15
 2.7 Zadania 16

3 Wielomiany 17
 3.1 Definicja wielomianu, działania 17
 3.2 Dzielenie wielomianów, twierdzenie Bezout 17
 3.2.1 Największy wspólny dzielnik wielomianów 18
 3.3 Rozkład wielomianu na czynniki w zbiorze liczb rzeczywistych 19
 3.4 Rozkład wielomianu na czynniki w zbiorze liczb zespolonych 20
 3.5 Wzory Viete’a 22
 3.6 Trudniejsze przykłady 22
 3.7 Zadania 24

4 Macierze i wyznaczniki 26
 4.1 Macierze - definicje i działania 26
 4.2 Macierz transponowana 29
 4.3 Definicja wyznacznika, rozwinięcie Laplace’a 29
 4.4 Algorytm Gausza obliczania wyznaczników 32
 4.5 Macierz odwrotna 32
 4.6 Zadania 34
5 Układy równań liniowych (I)

5.1 Wzory Cramera

5.2 Metoda eliminacji Gaussa dla układów Cramera

5.3 Metoda eliminacji Gaussa dla dowolnych układów równań liniowych

5.4 Zadania

6 Przestrzenie liniowe

6.1 Podstawowe definicje i przykłady

6.2 Liniowa niezależność wektorów, kombinacje liniowe

6.3 Baza i wymiar przestrzeni liniowej

6.3.1 Standardowe bazy i wymiar podstawowych przestrzeni liniowych

6.4 Przedstawienie wektora w bazie

6.5 Zadania

7 Układy równań liniowych (II)

7.1 Minory, rząd macierzy

7.2 Twierdzenie Kroneckera-Capelli

7.3 Zadania

8 Przekształcenia liniowe

8.1 Podstawowe definicje i przykłady

8.2 Jądro i obraz przekształcenia liniowego

8.3 Macierz przekształcenia liniowego

8.4 Wartości własne i wektory własne przekształceń liniowych

8.5 Wartości własne i wektory własne macierzy

8.6 Macierze dodatnio i ujemnie określone

8.7 Zadania

9 Grupy, pierścienie, ciała

9.1 Podstawowe definicje i własności grup

9.1.1 Grupy cykliczne

9.1.2 Podgrupy, warstwy, dzielniki normalne

9.1.3 Homomorfizmy i izomorfizmy

9.2 Grupy permutacji

9.3 Pierścienie

9.4 Ciała

9.5 Zadania
Wstęp

Temat 1
Liczby zespolone

1.1 Definicja i działania, liczby sprzężone

W zbiorze punktów płaszczyzny \((x, y)\) wprowadzamy działania

- **dodawania**: \((x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)\)

- **mnożenia**: \((x_1, y_1) \odot (x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1)\)

Działań te są łączone, przemienne, działanie mnożenia \(\odot\) jest rozdzielne względem działania dodawania \(\oplus\). Działanie dodawania odpowiada dodawaniu wektorów na płaszczyźnie \(\mathbb{R}^2\).

Definicja

Punkt \((x, y)\) oznaczamy jako \(z\) i nazywamy *liczbą zespoloną*. Zbiór wszystkich liczb zespolonych (tzn. punktów płaszczyzny z określonymi na nich działaniami \(\oplus\) oraz \(\odot\)) oznaczamy przez \(\mathbb{C}\).

Punkty położone na osi rzeczywistej postaci \((x, 0)\) utożsamiamy z liczbą rzeczywistą \(x\). Wówczas

\[(1, 0) \approx 1, \quad (x, 0) \approx x.\]

Niech \(i = (0, 1)\). Wtedy

\[i^2 = i \odot i = (0, 1) \odot (0, 1) = (-1, 0) \approx -1.\]

Korzystając z definicji działań możemy dla dowolnej liczby zespolonej \(z = (x, y)\) napisać, że

\[z = (x, y) = (x, 0) \odot (1, 0) \oplus (0, 1) \odot (y, 0) \approx x + iy.\]

(1.1)

Ostatnia równość może być przyjęta jako definicja liczby zespolonej przy uwzględnieniu tożsamości \(i^2 = -1\). Działania na liczbach w postaci (1.1) wykonujemy według reguł obowiązujących dla liczb rzeczywistych ze zwykłymi działaniami dodawania i mnożenia, pamiętając, że \(i^2 = -1\).

Definicja

Liczby rzeczywiste \(x\) oraz \(y\) nazywamy odpowiednio częścią rzeczywistą i częścią urojoną liczby zespolonej \(z\) i oznaczamy

\[x = \text{Re} \, z, \quad y = \text{Im} \, z.\]

(1.2)
TEMAT 1. LICZBY ZESPOŁONE

Zauważmy, że dla dowolnej liczby zespolonej \(z \neq 0 \) istnieje dokładnie jedna liczba zespolona \(z^{-1} \) taka, że \(z \cdot z^{-1} = z^{-1} \cdot z = 1 \) określona równością

\[
z^{-1} = \frac{x}{x^2 + y^2} - i \frac{y}{x^2 + y^2}.
\]

\[1.3\]

Definicja

Liczbę zespoloną \(\overline{z} = x - iy \) nazywamy liczbą sprzężoną do liczby \(z = x + iy \). Z powyższej definicji wynika natychmiast, że

\[
\overline{z} = x - iy = x + iy = z.
\]

\[1.4\]

Zauważmy, że iloczyn \(z \overline{z} = (x + iy)(x - iy) = x^2 + y^2 \) jest zawsze nieujemną liczbą rzeczywistą.

Przykłady

1. Wykonać działanie \((5 + 3i)(-7 + 7i)\).

Rozwiązanie

Korzystając z rozdzielności mnożenia względem dodawania oraz przemienności działań, otrzymujemy

\[(5 + 3i)(-7 + 7i) = -35 + 35i - 21i + 21i^2 = -35 + 14i - 21 = -56 + 14i = 14(-4 + i)\].

2. Wykonać działanie \(\frac{5+3i}{-7-7i}\).

Rozwiązanie

Rozszerzając powyższy ułamek przez liczbę sprzężoną z mianownikiem tzn. \((-7 + 7i)\) otrzymujemy

\[
\frac{5+3i}{-7-7i} = \frac{(5+3i)(-7+7i)}{(-7-7i)(-7+7i)} = \frac{-56+14i}{49+49} = \frac{14(-4+i)}{98} = \frac{1}{7}(-4+i)
\]

1.2 Moduł, argument, postać trygonometryczna

Definicja

Modułem liczby zespolonej \(z = x + iy \) nazywamy liczbę rzeczywistą \(|z| \) określoną wzorem

\[
|z| = \sqrt{x^2 + y^2}.
\]

Zauważmy, że z powyższej definicji natychmiast wynika równoważność

\[
|z| = 0 \iff z = 0.
\]

Prawdziwe są również wzory:

\[
|z| = |\overline{z}|, \quad z\overline{z} = |z|^2, \quad |z_1z_2| = |z_1||z_2|, \quad \frac{|z_1|}{|z_2|} = \frac{z_1}{z_2} \text{ dla } z_2 \neq 0.
\]

\[1.5\]
Definicja
Argumentem liczby zespolonej z nazywamy taki kąt φ, że

$$z = |z| (\cos \varphi + i \sin \varphi)$$

Argument liczby zespolonej oznaczamy $\varphi = \arg z$.

Uwaga
Argument liczby zespolonej nie jest wyznaczony jednoznacznie. Jeśli φ jest argumentem liczby zespolonej z, to każda liczba postaci $\varphi + 2k\pi$, gdzie k jest dowolną liczbą całkowitą, jest również argumentem tej liczby. W niektórych sytuacjach wygodne jest jednak jednoznaczne ustalenie argumentu. W związku z tym wprowadzamy pojęcie tzw. *argumentu głównego* liczby zespolonej. *Argumentem głównym* liczby zespolonej z nazywamy ten z jej argumentów, który zawiera się w przedziale $(-\pi, +\pi]$. Oznaczamy go symbolem $\varphi = \text{Arg} z$.

Uwaga
Argument liczby sprzężonej wyznaczamy ze wzoru

$$\arg \bar{z} = - \arg z.$$

Dla liczb zespolonych nie leżących na ujemnej półosi rzeczywistej ($\text{Arg} z \neq \pi$) prawdziwy jest analogiczny wzór dla argumentu głównego

$$\text{Arg} \bar{z} = - \text{Arg} z.$$

Definicja
Wzór (1.6) nazywamy postacią trygonometryczną liczby zespolonej z.

Przykłady
1. Liczbę $z = 10 - i10\sqrt{3}$ przedstawić w postaci trygonometrycznej.

Rozwiązanie
Ponieważ $|z| = \sqrt{10^2 + 3 \cdot 10^2} = \sqrt{400} = 20$, więc liczbę z zapisujemy jako

$$z = 20 \left(\frac{1}{2} - i \frac{\sqrt{3}}{2} \right)$$

a argument φ wyznaczamy z układu równań

$$\cos \varphi = \frac{1}{2}, \quad \sin \varphi = -\frac{\sqrt{3}}{2}.$$
Wystarczy przyjąć \(\varphi = \frac{5}{3} \pi \), zatem postacią trygonometryczną jest

\[
10 - i10\sqrt{3} = 20 \left(\cos \frac{5}{3} \pi + i \sin \frac{5}{3} \pi \right).
\]

2. Wyznaczyć argument główny liczby \(z = -1 + i \).

Rozwiązanie

Ponieważ \(|z| = \sqrt{2} \), zatem \(z = \sqrt{2} \left(-\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right) \). Wyznaczając kąt \(\varphi \) z układu równań

\[\cos \varphi = -\frac{\sqrt{2}}{2}, \quad \sin \varphi = \frac{\sqrt{2}}{2}\]

otrzymujemy, że \(\varphi = \frac{3}{4} \pi \). Kąt ten zawiera się w przedziale \((-\pi, +\pi]\) więc jest argumentem głównym liczby \(z = -1 + i \).

1.3 Działania na liczbach w postaci trygonometrycznej

Niech

\[z_k = r_k \left(\cos \varphi_k + i \sin \varphi_k \right) \quad \text{dla } k = 1, \ldots, n.
\]

Wówczas korzystając z elementarnych wzorów trygonometrycznych łatwo pokazać, że

\[z_1 z_2 \ldots z_n = r_1 r_2 \ldots r_n \left(\cos (\varphi_1 + \varphi_2 + \ldots + \varphi_n) + i \sin (\varphi_1 + \varphi_2 + \ldots + \varphi_n) \right) \quad (1.8)
\]

tzn., że modułem iloczynu liczb zespolonych jest iloczyn modułów (jest to zgodne ze wzorem (1.5)), zaś argumentem iloczynu liczb zespolonych jest suma argumentów wszystkich tych liczb.

Analogiczny wzór można wyprowadzić dla dzielenia liczb zespolonych w postaci trygonometrycznej. Jeśli \(z_1 = r_1 \left(\cos \varphi_1 + i \sin \varphi_1 \right) \) oraz \(z_2 = r_2 \left(\cos \varphi_2 + i \sin \varphi_2 \right) \neq 0 \), to

\[
\frac{z_1}{z_2} = \frac{r_1}{r_2} \left(\cos (\varphi_1 - \varphi_2) + i \sin (\varphi_1 - \varphi_2) \right) \quad (1.9)
\]

Powyższy wzór oznacza, że przy dzieleniu liczb zespolonych w postaci trygonometrycznej, moduł ilorazu równy jest ilorazowi modułów ow, zaś argument ilorazu równy jest różnicy argumentów.

Bezpośrednim wnioskiem ze wzoru (1.8) jest tzw. wzór de Moivre’a na potęgowanie liczby zespolonej w postaci trygonometrycznej. Jeżeli

\[z = r \left(\cos \varphi + i \sin \varphi \right),\]

to dla dowolnego \(n \in \mathbb{N} \) prawdziwa jest równość

\[z^n = r^n \left(\cos n\varphi + \sin n\varphi \right) \quad (1.10)\]
P r z y k ł a d y

1. Obliczyć wartość wyrażenia $(1 + i)^{25}$

Rozwiązanie
Przedstawiając liczbę $1 + i$ w postaci trygonometrycznej otrzymujemy

$$1 + i = \sqrt{2} \left(\cos \frac{1}{4} \pi + i \sin \frac{1}{4} \pi \right),$$

zatem na mocy wzoru de Moivre’a (1.10) zachodzi równość

$$(1 + i)^{25} = \left(\sqrt{2} \right)^{25} \left(\cos \frac{25}{4} \pi + i \sin \frac{25}{4} \pi \right) = 2^{25} \left(\cos \frac{1}{4} \pi + i \sin \frac{1}{4} \pi \right) = 2^{12} (1 + i).$$

2. Obliczyć wartość wyrażenia $\frac{(1+i)^{100}}{(\sqrt{3} - i)^{50}}$

Rozwiązanie
Postępując podobnie jak poprzednim przykładzie, wyznaczamy najpierw $(1 + i)^{100}$ oraz $\left(\sqrt{3} - i \right)^{50}$.

$$(1 + i)^{100} = 2^{50} \left(\cos \frac{100}{4} \pi + i \sin \frac{100}{4} \pi \right) = -2^{50},$$

$$(\sqrt{3} - i)^{50} = 2^{50} \left(\cos \left(-\frac{50}{6} \pi \right) + i \sin \left(-\frac{50}{6} \pi \right) \right) = 2^{50} \left(\frac{1}{2} - i \frac{\sqrt{3}}{2} \right).$$

W takim razie, na mocy wzoru (1.9) wykonujemy dzielenie liczb zespolonych, dzieląc moduły i odejmując argumenty

$$\frac{(1 + i)^{100}}{(\sqrt{3} - i)^{50}} = \frac{2^{50} \left(\cos \left(\frac{50}{6} \pi \right) + i \sin \left(\frac{50}{6} \pi \right) \right)}{2^{50} \left(\frac{1}{2} - i \frac{\sqrt{3}}{2} \right)} = -\frac{1}{2} - i \frac{\sqrt{3}}{2}.$$

1.4 Pierwiastkowanie liczb zespolonych

Niech $z = r \left(\cos \varphi + i \sin \varphi \right)$. Wyznaczmy wszystkie liczby zespolone postaci $w = \rho \left(\cos \alpha + i \sin \alpha \right)$ takie, że $w^n = z$, tzn. wyznaczamy pierwiastki stopnia n z liczby zespolonej z. Na mocy wzoru de Moivre’a (1.10) otrzymujemy, że

$$\rho^n = r, \quad \cos n\alpha = \cos \varphi, \quad \sin n\alpha = \sin \varphi,$$

skąd wynikają następujące równości

$$\rho = \sqrt[n]{r}, \quad \alpha = \frac{\varphi + 2k\pi}{n}, \quad \text{dla } k = 0, 1, \ldots, n - 1$$

(gdy $k \geq n$ otrzymujemy powtórzenia wartości funkcji $\cos \alpha$ oraz $\sin \alpha$). Oznacza to, że każda liczba zespolona $z \neq 0$ ma n różnych pierwiastków zespolonych stopnia n określonych wzorami

$$w_k = \sqrt[n]{r} \left(\cos \frac{\varphi + 2k\pi}{n} + i \sin \frac{\varphi + 2k\pi}{n} \right) \quad \text{dla } k = 0, 1, \ldots, n - 1.$$ \hspace{1cm} (1.11)

Wzór (1.11) nazywa się wzorem de Moivre’a na pierwiastki.
Przykłady

1. Wyznaczyć $\sqrt[4]{1}$

Rozwiązanie
Zgodnie z powyższymi rozważaniami, najpierw przedstawiamy liczbę 1 w postaci trygonometrycznej. Otrzymujemy $r = 1$, $\varphi = 0$. Zatem zgodnie ze wzorem de Moivre’a liczba 1 ma cztery pierwiastki stopnia czwartego określone jako

$$w_0 = \cos 0 + \sin 0 = 1$$

$$w_1 = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2} = i$$

$$w_2 = \cos \pi + i \sin \pi = -1$$

$$w_3 = \cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} = -i$$

2. Rozwiązać równanie $z^6 (1 - i)^4 = 1$.

Rozwiązanie
Równanie powyższe zapisujemy jako

$$z^6 = \frac{1}{(1 - i)^4}$$

Obliczając wartość wyrażenia $\frac{1}{(1 - i)^4}$, dostajemy

$$\frac{1}{(1 - i)^4} = \frac{1}{4 (\cos (-\pi) + i \sin (-\pi))} = -\frac{1}{4}.$$

W takim razie rozwiązaniami równania są pierwiastki stopnia szóstego z liczby $-\frac{1}{4}$. Wyznaczając te pierwiastki zgodnie ze wzorem (1.11), otrzymujemy $(r = \frac{1}{4}, \varphi = \pi)$

$$w_0 = \frac{1}{\sqrt{2}} \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right) = \frac{1}{\sqrt{2}} \left(\frac{\sqrt{3}}{2} + i \frac{1}{2} \right)$$

$$w_1 = \frac{1}{\sqrt{2}} \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right) = \frac{1}{\sqrt{2}}i$$

$$w_2 = \frac{1}{\sqrt{2}} \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right) = \frac{1}{\sqrt{2}} \left(-\frac{\sqrt{3}}{2} + i \frac{1}{2} \right)$$

$$w_3 = \frac{1}{\sqrt{2}} \left(\cos \frac{7\pi}{6} + i \sin \frac{7\pi}{6} \right) = \frac{1}{\sqrt{2}} \left(-\frac{\sqrt{3}}{2} - i \frac{1}{2} \right)$$

$$w_4 = \frac{1}{\sqrt{2}} \left(\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} \right) = -\frac{1}{\sqrt{2}}i$$

$$w_5 = \frac{1}{\sqrt{2}} \left(\cos \frac{11\pi}{6} + i \sin \frac{11\pi}{6} \right) = \frac{1}{\sqrt{2}} \left(\frac{\sqrt{3}}{2} - i \frac{1}{2} \right)$$
1.5 Trudniejsze przykłady

1. Wyrazić funkcję \(\cos 5x \) za pomocą \(\sin x \) i \(\cos x \).

Rozwiązanie
Zastosujemy wzór de Moivre’a \([1.10]\). Uwzględniając, że \(i^2 = -1, \ i^3 = -i, \ i^4 = 1, \ i^5 = i \), otrzymujemy

\[
\cos 5x + i \sin 5x = (\cos x + i \sin x)^5 = \cos^5 x + 5i \cos^4 x \sin x - 10 \cos^3 x \sin^2 x + \\
-10i \cos^2 x \sin^3 x + 5 \cos x \sin^4 x + i \sin^5 x.
\]

Porównując części rzeczywiste, mamy

\[
\cos 5x = \cos^5 x - 10 \cos^3 x \sin^2 x + 5 \cos x \sin^4 x.
\]

Zauważmy, że niejako „przy okazji” wyprowadziliśmy drugi wzór na

\[
\sin 5x = \sin^5 x - 10 \sin^3 x \cos^2 x + 5 \sin x \cos^4 x.
\]

2. Wykazać, że

\[
\cos \frac{\pi}{11} + \cos \frac{3\pi}{11} + \cos \frac{5\pi}{11} + \cos \frac{7\pi}{11} + \cos \frac{9\pi}{11} = \frac{1}{2}.
\]

Rozwiązanie
Niech \(U = \cos \frac{\pi}{11} + \cos \frac{3\pi}{11} + \cos \frac{5\pi}{11} + \cos \frac{7\pi}{11} + \cos \frac{9\pi}{11} \), \(z = \cos \frac{\pi}{11} + i \sin \frac{\pi}{11} \), \(V = \sin \frac{\pi}{11} + \sin \frac{3\pi}{11} + \sin \frac{5\pi}{11} + \sin \frac{7\pi}{11} + \sin \frac{9\pi}{11} \).

Wówczas stosując wzór na sumę skończonego ciągu geometrycznego oraz wzór de Moivre’a \([1.10]\), otrzymujemy

\[
U + iV = \sum_{k=0}^{4} \left(\cos \frac{2k+1}{11} \pi + i \sin \frac{2k+1}{11} \pi \right) = \sum_{k=0}^{4} z^{2k+1} = \frac{1 - z^{10}}{1 - z^2} = \\
= \left(\cos \frac{\pi}{11} + i \sin \frac{\pi}{11} \right) \frac{1 - \cos 10 \frac{\pi}{11} - i \sin 10 \frac{\pi}{11}}{1 - \cos 2 \frac{\pi}{11} - i \sin 2 \frac{\pi}{11}} = \\
= \left(\cos \frac{\pi}{11} + i \sin \frac{\pi}{11} \right) \frac{2 \sin^2 \frac{5 \pi}{11} - 2i \sin \frac{5 \pi}{11} \cos \frac{5 \pi}{11}}{2 \sin^2 \frac{1 \pi}{11} - 2i \sin \frac{1 \pi}{11} \cos \frac{1 \pi}{11}} = \\
= \left(\cos \frac{\pi}{11} + i \sin \frac{\pi}{11} \right) \frac{\sin \frac{5 \pi}{11} \left(\sin \frac{5 \pi}{11} - i \cos \frac{5 \pi}{11} \right)}{\sin \frac{1 \pi}{11} \left(\sin \frac{1 \pi}{11} - i \cos \frac{1 \pi}{11} \right)} = \\
= \left(\cos \frac{\pi}{11} + i \sin \frac{\pi}{11} \right) \frac{\sin \frac{5 \pi}{11} \left(\cos \frac{5 \pi}{11} + i \sin \frac{5 \pi}{11} \right)}{\sin \frac{1 \pi}{11} \left(\cos \frac{1 \pi}{11} + i \sin \frac{1 \pi}{11} \right)} = \\
\sin \frac{5 \pi}{11} \left(\cos \frac{5 \pi}{11} + i \sin \frac{5 \pi}{11} \right) = \frac{\sin \frac{5 \pi}{11}}{\sin \frac{1 \pi}{11}}
\]

zatem

\[
U = \Re (U + iV) = \frac{\sin \frac{5 \pi}{11} \cos \frac{5 \pi}{11}}{\sin \frac{1 \pi}{11}} = \frac{1 \sin \frac{10 \pi}{11}}{2 \sin \frac{1 \pi}{11}} = \frac{1}{2},
\]

co kończy dowód.
3. Udowodnić wzór

\[\sum_{k=1}^{n} \cos k \varphi = \frac{\cos \frac{n+1}{2} \varphi \sin \frac{n}{2} \varphi}{\sin \frac{1}{2} \varphi} \]

Rozwiązanie

Niech \(U \) oznacza lewą stronę powyższego wzoru, tzn. \(U = \sum_{k=1}^{n} \cos k \varphi \). Niech \(V \) oznacza odpowiednią sumę sinusów \(V = \sum_{k=1}^{n} \sin k \varphi \). Rozważmy wyrażenie \(U + iV \).

\[U + iV = \sum_{k=1}^{n} \cos k \varphi + i \sum_{k=1}^{n} \sin k \varphi = \sum_{k=1}^{n} (\cos k \varphi + i \sin k \varphi). \]

Na mocy wzoru de Moivre’a na potęgi (1.10) otrzymujemy

\[U + iV = \sum_{k=1}^{n} (\cos \varphi + i \sin \varphi)^k. \]

Ostatnie wyrażenie można przekształcić stosując wzór na sumę skończonego ciągu geometrycznego

\[\sum_{k=1}^{n} z^k = \frac{1 - z^n}{1 - z}, \quad \text{gdzie} \quad z = \cos \varphi + i \sin \varphi. \]

Otrzymujemy

\[\sum_{k=1}^{n} z^k = (\cos \varphi + i \sin \varphi) \frac{1 - (\cos \varphi + i \sin \varphi)^n}{1 - (\cos \varphi + i \sin \varphi)} = (\cos \varphi + i \sin \varphi) \frac{1 - (\cos n \varphi + i \sin n \varphi)}{1 - (\cos \varphi + i \sin \varphi)} = \]

\[= (\cos \varphi + i \sin \varphi) \frac{1 - \cos n \varphi - i \sin n \varphi}{1 - \cos \varphi - i \sin \varphi} = (\cos \varphi + i \sin \varphi) \frac{2 \sin^2 \frac{n \varphi}{2} - i 2 \sin \frac{n \varphi}{2} \cos \frac{n \varphi}{2}}{2 \sin^2 \frac{\varphi}{2} - i 2 \sin \frac{\varphi}{2} \cos \frac{\varphi}{2}} = \]

\[= (\cos \varphi + i \sin \varphi) \frac{\sin \frac{n \varphi}{2} (\sin \frac{n \varphi}{2} - i \cos \frac{n \varphi}{2})}{\sin \frac{\varphi}{2} (\sin \frac{\varphi}{2} - i \cos \frac{\varphi}{2})} = \]

\[= (\cos \varphi + i \sin \varphi) \frac{\sin \frac{n \varphi}{2} (\sin \frac{n \varphi}{2} - i \cos \frac{n \varphi}{2}) (\sin \frac{\varphi}{2} + i \cos \frac{\varphi}{2})}{\sin \frac{\varphi}{2} (\sin \frac{\varphi}{2} - i \cos \frac{\varphi}{2}) (\sin \frac{\varphi}{2} + i \cos \frac{\varphi}{2})} = \]

\[= (\cos \varphi + i \sin \varphi) \sin \frac{n \varphi}{2} \cos \frac{(n-1) \varphi}{2} + i \sin \frac{(n-1) \varphi}{2}. \]

Ponieważ \(U = \text{Re} \left(\sum_{k=1}^{n} z^k \right) \), więc

\[U = \frac{\sin \frac{n \varphi}{2} (\cos \varphi \cos \frac{(n-1) \varphi}{2} - \sin \varphi \sin \frac{(n-1) \varphi}{2})}{\sin \frac{\varphi}{2}} = \]

\[= \frac{\cos \frac{(n+1)}{2} \varphi \sin \frac{n}{2} \varphi}{\sin \frac{\varphi}{2}}, \]

co kończy dowód.
1.6 Zadania

1. Wykonać następujące działania na liczbach zespolonych:

(a) \(\frac{3+2i}{3-i} \)
(b) \(\left(\frac{2+i}{3+i} \right) (5 - 2i) + (8 - i) (2 + 3i) \)
(c) \((4 + i) (1 - i) (2 + 3i) \)
(d) \(\frac{(1+i)^3}{(1-i)^7} \)
(e) \(\frac{(1-i)^5-1}{(1+i)^5+i} \)

2. Sprowadzić do postaci trygonometrycznej następujące liczby zespolone:

(a) \(1 + i, 1 + i\sqrt{3} \)
(b) \(-1 + i\sqrt{3}, \sqrt{3} - i \)

3. Obliczyć stosując wzór de Moivre’a:

(a) \((1 + i)^{25} \)
(b) \(\left(\frac{1+i\sqrt{3}}{1-i} \right)^{30} \)
(c) \(\frac{(-1+i\sqrt{3})^{15}}{(1-i)^{30}} + \frac{(-1-i\sqrt{3})^{15}}{(1+i)^{30}} \)

4. Obliczyć:

(a) \((1 + i)^n \) dla \(n = 1, 2, 3, 4 \)
(b) \(i^n \) dla \(n \) całkowitych
(c) \(\frac{(1+i)^n}{(1-i)^{n-2}} \) dla \(n \) naturalnych

5. Rozwiązać następujące równania w zbiorze \(\mathbb{C} \):

(a) \(|z| - z = 1 + 2i \)
(b) \(|z| + z = 2 + i \)
(c) \(z^2 - 2z + 5 = 0 \)
(d) \(z^2 - (2 + i)z + (-1 + 7i) = 0 \)
(e) \(z\overline{z} + (z - \overline{z}) = 3 + 2i \)
(f) \(i(z + \overline{z}) + i(z - \overline{z}) = 2i - 3 \)

6. Rozwiązać układ równań

\[
\begin{align*}
(1 + i) x + (2 - i) y & = 2 - 2i \\
(1 - i) x - (3 + i) y & = -3 + 3i
\end{align*}
\]

7. Obliczyć (za pomocą układu równań) wartości wyrażeń:

(a) \(\sqrt{-8 + 6i} \)
(b) $\sqrt{3 - 4i}$
(c) $\sqrt{-11 + 60i}$

8. Korzystając ze wzoru de Moivre’a na pierwiastki, obliczyć:

(a) $\sqrt[4]{-4}$, $\sqrt[4]{1}$, $\sqrt[4]{16}$
(b) $\sqrt[3]{-i}$, $\sqrt[6]{\frac{1-i}{\sqrt{3}+i}}$, $\sqrt[8]{\frac{1+i}{\sqrt{3}-i}}$

9. Rozwiązać następujące równania w zbiorze \mathbb{C}:

(a) $z^3 - 1 = 0$
(b) $z^6 + 27 = 0$
(c) $(1 - i)^4 z^4 = -1$

10. Korzystając ze wzoru Eulera $\exp(x + iy) = \exp(x)(\cos y + i \sin y)$, udowodnić wzory:

(a) $\sum_{k=1}^{n} \sin k\varphi = \frac{\sin \frac{n+1}{2}\varphi}{\sin \frac{1}{2}\varphi}$
(b) $\left(\frac{1+i\tan\frac{\varphi}{2}}{1-i\tan\frac{\varphi}{2}}\right)^n = \frac{1+i\tan\frac{n\varphi}{2}}{1-i\tan\frac{n\varphi}{2}}$ dla n całkowitych

11. Wyprowadzić wzory dla sum:

(a) $\cos \varphi + 2 \cos 2\varphi + \ldots + n \cos n\varphi$
(b) $\sin \varphi + 2 \sin 2\varphi + \ldots + n \sin n\varphi$

Wsk.: Pokazać najpierw przez indukcję, że $z + 2z^2 + \ldots + nz^n = z\frac{1-(n+1)z^n+nz^{n+1}}{(1-z)^2}$

12. Udowodnić, że:

(a) $\sin \frac{2\pi}{n} + \sin \frac{4\pi}{n} + \ldots + \sin \frac{2n\pi}{n} = 0$
(b) $\cos \frac{2\pi}{n} + \cos \frac{4\pi}{n} + \ldots + \cos \frac{2n\pi}{n} = 0$
(c) $\cos \frac{2\pi}{11} + \cos \frac{4\pi}{11} + \cos \frac{6\pi}{11} + \cos \frac{8\pi}{11} + \cos \frac{10\pi}{11} = -\frac{1}{2}$
(d) $\cos \frac{\pi}{13} + \cos \frac{3\pi}{13} + \ldots + \cos \frac{11\pi}{13} = \frac{1}{2}$

13. Funkcje $\sin 6x$ oraz $\cos 7x$ wyrazić za pomocą funkcji $\sin x$ i $\cos x$.

14. Przedstawić w postaci wielomianu pierwszego stopnia od funkcji trygonometrycznych wielokrotności kąta φ następujące wyrażenia:

(a) $\cos^6 \varphi$
(b) $\cos^4 \varphi$
(c) $\sin^4 \varphi$
Temat 2
Funkcje elementarne zmiennej zespolonej

2.1 Funkcja wykładnicza
Niech \(z = x + iy \), wówczas definiujemy funkcję wykładniczą \(e^z \) jako
\[
e^z = e^x (\cos y + i \sin y).
\] (2.1)
Funkcję wykładniczą oznaczamy również symbolem \(\exp(z) \).
Wzór (2.1) zwany jest również \textit{wzorem Eulera}.
Częścią rzeczywistą i urojoną funkcji \(e^z \) są funkcje \(u(x, y) \) i \(v(x, y) \) określone wzorami
\[
u(x, y) = \text{Re}(e^z) = e^x \cos y, \quad v(x, y) = \text{Im}(e^z) = e^x \sin y.
\] (2.2)
Z powyższej definicji wynika, że dla dowolnego \(z \in \mathbb{C} \) zachodzi
\[
e^z \neq 0.
\]
Przedstawiając liczby zespolone w postaci trygonometrycznej i stosując elementarne wzory trygonometryczne można pokazać, że prawdziwe są wszystkie wzory obowiązujące dla argumentów rzeczywistych, w szczególności
\[
e^{z_1+z_2} = e^{z_1} e^{z_2},
\]
e^{z_1-z_2} = \frac{e^{z_1}}{e^{z_2}}.
Funkcja wykładnicza zmiennej zespolonej jest okresowa, dla dowolnego \(z \in \mathbb{C} \), i \(k \) całkowitego prawdziwy jest wzór (wynika on bezpośrednio z definicji (2.1))
\[
e^{z+2k\pi i} = e^z.
\]

Przykłady
1. Obliczyć wartość wyrażenia \(e^{2i} \).

Rozwiązanie
Zgodnie z definicją (2.1)
\[
e^{2i} = e^0 (\cos 2 + i \sin 2) = \cos 2 + i \sin 2.
\]
2. Obliczyć wartość wyrażenia $e^{1-\pi i}$.

Rozwiązanie

$$e^{1-\pi i} = e^1 (\cos \pi 0 - i \sin \pi) = -e.$$

2.2 Funkcja logarytmiczna

Niech

$$e^w = z.$$

Dla zadanej liczby zespolonej $z \neq 0$, będziemy poszukiwać liczby zespolonej w spełniającej powyższy warunek. Liczbę tę nazywać będziemy logarytmem naturalnym z liczby zespolonej z i oznaczać symbolem $\ln z$.

Przedstawiając z jako

$$z = |z| (\cos \varphi + i \sin \varphi)$$

i w jako

$$w = u + iv,$$

otrzymujemy

$$e^{u+iv} = e^u (\cos v + i \sin v) = |z| (\cos \varphi + i \sin \varphi),$$

a stąd

$$u = \ln |z|, \ v = \arg z,$$

gdzie $\ln |z|$ oznacza logarytm naturalny z dodatniej liczby rzeczywistej $|z|$.

Zatem logarytmem naturalnym z liczby zespolonej z nazywać będziemy wyrażenie

$$w = \ln z = \ln |z| + i \arg z. \quad (2.3)$$

Uwaga

Ponieważ wartość $\arg z$, zgodnie z definicją (1.6) nie jest jednoznacznie wyznaczona, więc również wartość logarytmu zespolonego nie jest jednoznacznie wyznaczona. Funkcja logarytmiczna jest przykładem tzw. funkcji wieloznacznej. Jeśli potrzebne jest jednoznaczne określenie wartości logarytmu, wtedy możemy się posłużyć tzw. logarytmem głównym zdefiniowanym wzorem

$$\text{Ln } z = \ln |z| + i \text{Arg } z, \quad (2.4)$$

gdzie $\text{Arg } z$ oznacza argument główny liczby zespolonej z.

Dla $z \in \mathbb{C}$ takich, że $\Re z > 0$ zachodzą wzory opisujące część rzeczywistą i urojoną logarytmu głównego

$$u(x, y) = \Re (\ln z) = \ln |z|, \ v(x, y) = \arctg \frac{y}{x}. \quad (2.5)$$
P r z y k ł a d y

1. Wyznaczyć \(\ln(-1) \).

R o z w i à z a n i e
Zgodnie ze wzorem (2.4) możemy napisać, że
\[
\ln(-1) = \ln|1| + i \arg(-1) = 0 + i\pi = i\pi.
\]

2. Wyznaczyć \(\ln(1+i) \) oraz \(\ln(1+i) \).

R o z w i à z a n i e
Podobnie jak w poprzednim przykładzie, stwierdzamy
\[
\ln(1+i) = \ln|\sqrt{2}| + i \arg(1+i) = \frac{1}{2} \ln 2 + i \frac{\pi}{4},
\]
\[
\ln(1+i) = \ln|\sqrt{2}| + i \arg(1+i) = \frac{1}{2} \ln 2 + i \left(\frac{\pi}{4} + 2k\pi \right),
\]
dla \(k \) całkowitych.

2.3 Funkcje trygonometryczne

Funkcje trygonometryczne zmiennej zespolonej definiujemy jako
\[
\cos z = \frac{1}{2} (e^{iz} + e^{-iz}), \quad \sin z = \frac{1}{2i} (e^{iz} - e^{-iz}). \tag{2.6}
\]

Dla tak zdefiniowanych funkcji trygonometrycznych prawdziwe są wszystkie podstawowe wzory obowiązujące dla funkcji rzeczywistych takie, jak np.:
\[
\sin^2 z + \cos^2 z = 1, \tag{2.7}
\]
\[
\sin (z_1 \pm z_2) = \sin z_1 \cos z_2 \pm \cos z_1 \sin z_2
\]
\[
\cos (z_1 \pm z_2) = \cos z_1 \cos z_2 \mp \sin z_1 \sin z_2
\]
\[
\sin \left(\frac{\pi}{2} + z \right) = \cos z
\]

itd.

Funkcje te są również okresowe.

Dla funkcji trygonometrycznych zmiennej zespolonej nie jest prawdą, że \(|\cos z| \leq 1\) oraz \(|\sin z| \leq 1\).

P r z y k ł a d y

1. Wyznaczyć wartość \(\cos 2i \).

R o z w i à z a n i e
Z definicji (2.6) wynika, że
\[
\cos 2i = \frac{1}{2} (e^{-2} + e^{2}).
\]
Liczba ta jest rzeczywista i większa od jedności.
2. Wyznaczyć wartość \(\sin(1+i) \).

Rozwiązanie
Z definicji wynika, że
\[
\sin (1 + i) = \frac{1}{2i} (e^{-1+i} - e^{1-i}) = \frac{1}{2i} \left(e^{-1} (\cos 1 + i \sin 1) + e (\cos 1 - i \sin 1) \right) = \\
\frac{1}{2i} \left((e^{-1} + e) \cos 1 + i \sin 1 \left(e^{-1} - e \right) \right) = \\
\frac{1}{2} \left(e^{-1} - e \right) \sin 1 - \frac{1}{2i} (e^{-1} + e) \cos 1.
\]

2.4 Funkcje hiperboliczne

Podobnie jak w przypadku funkcji rzeczywistych, definiujemy funkcje hiperboliczne (\textit{cosinus hiperboliczny} i \textit{sinus hiperboliczny}) zmiennej zespolonej wzorami
\[
\text{ch} z = \frac{1}{2} (e^z + e^{-z}), \quad \text{sh} z = \frac{1}{2} (e^z - e^{-z}). \tag{2.8}
\]

Prawdziwe pozostają wszystkie wzory dotyczące własności funkcji hiperbolicznych argumentu rzeczywistego w szczególności tzw. \textit{jedynka hiperboliczna}
\[
\text{ch}^2 z - \text{sh}^2 z = 1. \tag{2.9}
\]

Pomiędzy funkcjami trygonometrycznymi i funkcjami hiperbolicznymi zachodzą następujące zależności
\[
\cos z = \text{ch} (iz), \quad \sin z = \frac{1}{i} \text{sh} (iz) = -i \text{sh} (iz). \tag{2.10}
\]

Wzory te wynikają bezpośrednio z definicji (2.6) i (2.8).

2.5 Funkcja potęgowa

Niech \(\alpha \) będzie ustaloną liczbą zespoloną, \(z \in \mathbb{C} \) - bieżącym argumentem. Potęgę \(z^\alpha \) definiujemy wzorem
\[
z^\alpha = e^{\alpha \ln z}. \tag{2.11}
\]

Funkcja ta nie jest jednoznaczna i jej wartość zależy od wyboru logarytmu (a więc i argumentu) liczby \(z \).

Przykłady

1. Wyznaczyć wartość wyrażenia \(i^i \).

Rozwiązanie
Zgodnie z definicją (2.11) należy najpierw wyznaczyć wartość \(\ln i \). Ponieważ
\[
\ln i = \ln |i| + i \arg i = \ln 1 + i \left(\frac{\pi}{2} + 2k\pi \right) = i \left(\frac{\pi}{2} + 2k\pi \right),
\]
zatem
\[
i^i = e^{i^2 \left(\frac{\pi}{2} + 2k\pi \right)} = e^{-\pi \left(2k + \frac{1}{2} \right)}.
\]

Ponieważ \(k \) może być dowolną liczbą całkowitą, więc \(i^i \) może przyjmować nieskończenie wiele różnych wartości. W tym przypadku wszystkie one są liczbami rzeczywistymi.
2. Wyznaczyć wartość wyrażenia \(z^{\frac{1}{n}} \), gdzie \(n \in \mathbb{N} \).

Rozwiązanie
Zgodnie ze wzorem \((2.11) \), mamy

\[
z^{\frac{1}{n}} = e^{\frac{1}{n} \ln z} = e^{\frac{1}{n} (\ln|z| + i \arg z)} = e^{\frac{1}{n} \ln|z| + \frac{1}{n} i \arg z} = (\text{na mocy wzoru } (2.1))
\]

\[
e^{\frac{1}{n} \ln|z| \left(\cos \left(\frac{1}{n} \arg z \right) + i \sin \left(\frac{1}{n} \arg z \right) \right)}
\]

Ponieważ możemy napisać, że \(\arg z = \text{Arg } z + 2k\pi \) dla pewnego \(k \), całkowite, więc ostatni wzór możemy zapisać jako

\[
z^{\frac{1}{n}} = \sqrt[n]{|z|} \left(\cos \frac{\text{Arg } z + 2k\pi}{n} + i \sin \frac{\text{Arg } z + 2k\pi}{n} \right).
\] \((2.12) \)

Dla \(k \) przyjmujących kolejno wszystkie wartości całkowite, wyrażenie określone wzorem \((2.12) \) przyjmuje tylko \(n \) różnych wartości (np. dla \(k = 0, 1, \ldots, n - 1 \)). Wzór \((2.12) \) jest identyczny z wcześniej omówionym wzorem de Moivre’a na pierwiastki \((1.11) \).

Dla dowolnej liczby zespolonej \(z \), wyrażenie \(z^{\frac{1}{n}} \) określa zbiór wszystkich pierwiastków stopnia \(n \) z liczby \(z \).

2.6 Trudniejsze przykłady

Każda funkcja zmiennej zespolonej o wartościach zespolonych może być traktowana jako odwzorowanie geometryczne na płaszczyźnie \(\mathbb{R}^2 \). Zapisując funkcję \(f(z) \) w postaci

\[f(z) = u(z) + iv(z), \]

gdzie funkcje \(u(z) \) oraz \(v(z) \) przyjmują wartości rzeczywiste, oraz stosując utożsamienie liczby zespolonej \(z \) punktem \((x, y)\) na płaszczyźnie, możemy traktować \(f(z) \) jako odwzorowanie określone na podzbiórze płaszczyzny \(\mathbb{R}^2 \) o wartościach w \(\mathbb{R}^2 \), określone wzorami

\[u = u(x, y), \quad v = v(x, y). \]

Poniżej rozważymy dwa przykłady takich odwzorowań.

1. Niech \(D = \{(x, y) : x \in \mathbb{R} \land -\pi \leq y \leq \pi \} \). Znaleźć obraz zbioru \(D \) przy odwzorowaniu \(f(z) = e^z \).

Rozwiązanie

Ponieważ \(e^z = e^x (\cos y + i \sin y) \), więc dla ustalonego \(x \in \mathbb{R} \) i zmiennego \(y \) mamy ustaloną wartość \(r = |e^x| = e^x \). Gdy \(y \) zmienia się w zakresie od \(-\pi\) do \(\pi \), to punkt \(e^z \) porusza się po okręgu o środku w \((0, 0)\) i promieniu \(r \), przebiegając ten okrąg począwszy od punktu \((-r, 0)\) w kierunku przeciwprzeciw do ruchu wskaźówek zegara i kończąc w tym samym punkcie.

Gdy z kolei ustalimy \(y \) i będziemy zmieniać \(x \) od \(-\infty\) do \(+\infty\), to punkt \(e^z \) porusza się po owartej półprostej wychodzącej z punktu \((0, 0)\) takiej, że dla \(z \) należących do tej półprostej spełniony jest warunek \(\arg z = y \). Punkt \(e^z \) może więc przyjąć dowolne położenie na płaszczyźnie za wyjątkiem punktu \((0, 0)\).

Oznacza to, że obrazem zbioru \(D \) przy odwzorowaniu \(f(z) = e^z \) jest zbiór \(D_1 = \mathbb{R}^2 \setminus \{(0, 0)\} \).

Obrazem prostych o równaniach \(y = -\pi \) i \(y = \pi \) jest otwarta półos rzeczywista ujemna.
2. Niech $D = \{(x, y) : x > 0 \land y > 0\}$. Znaleźć obraz zbioru D przy odwzorowaniu $f(z) = z^2$.

Rozwiązanie
Wykorzystamy przedstawienie liczby zespolonej w postaci trygonometrycznej (1.6). Niech $z = r(\cos \varphi + i \sin \varphi)$. Wówczas, zgodnie ze wzorem de Moivre’a na potęgowanie (1.10),

$$z^2 = r^2(\cos 2\varphi + i \sin 2\varphi),$$

tzn. argument liczby zespolonej z ulega podwojeniu. Oznacza to, że obrazem otwartej półprostej, której jednym końcem jest punkt $(0, 0)$, określonej warunkiem

$$\text{Arg } z = \varphi$$

jest otwarta półprosta, określona warunkiem

$$\text{Arg } z = 2\varphi.$$

Obrazem zbioru D jest zbiór $D_1 = \{(x, y) : y > 0\}$.

2.7 Zadania

1. Wyznaczyć część rzeczywistą i urojoną funkcji

 (a) $w = z^4$
 (b) $w = \frac{z^2 + 1}{z - 1}$
 (c) $w = \frac{1}{1 - z^2}$

2. Określić jaką krzywą przedstawia równanie

 (a) $\text{Im } z^2 = \alpha$
 (b) $\text{Re } \frac{1}{z} = \alpha$
 (c) $|\frac{z - 1}{z + 1}| = \alpha$

3. Dana jest funkcja $w = \frac{1}{z}$. Zbadać, czym jest przy tym odwzorowaniu obraz krzywej określonej równaniem

 (a) $x^2 + y^2 = 1$
 (b) $y = 0$
 (c) $x = 1$
 (d) $(x - 1)^2 + y^2 = 1$

4. Obliczyć wartość wyrażeń

 (a) $\ln(-i), \ln(-i), \ln(1 + i), \ln(-1)$
 (b) $\cos(1 + i), \sin(1 + 2i), \tan(2 - i)$
 (c) $\exp\left(2 - \frac{1}{3}\pi i\right), \cos 2i, \cos ni$
 (d) $i^{2n}, i^{n\pi}, i^{\frac{1}{2}}$
Temat 3
Wielomiany

3.1 Definicja wielomianu, działania

D e f i n i c j a
Wielomianem jednej zmiennej x nazywamy funkcję postaci

$$W(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n,$$

gdzie $a_i \in \mathbb{C}$ dla $i = 0, 1, \ldots, n$ oraz $a_0 \neq 0$. Liczbę n nazywamy stopniem wielomianu. Zmienna x może przebiegać dziedzinę rzeczywistą lub zespoloną.

Działania na wielomianach określone są w sposób naturalny, zgodnie z działaniami na liczbach rzeczywistych lub zespolonych. Wynika stąd bezpośrednio prawdziwość następującej uwagi.

U w a g a
Jeśli $W(x)$ jest wielomianem stopnia n, a $U(x)$ jest wielomianem stopnia m, to
stopień $(W(x) + U(x)) \leq n + m,$
stopień $(W(x) \cdot U(x)) = nm.$

3.2 Dzielenie wielomianów, twierdzenie Bezout

D e f i n i c j a
Mówimy, że wielomian $W(x)$ jest podzielny przez wielomian $U(x) \iff$ istnieje wielomian $Q(x)$ taki, że $W(x) = U(x)Q(x)$. Wielomian $Q(x)$ nazywamy ilorazem wielomianów $W(x)$ i $U(x)$. Podzielnosc $W(x)$ przez $U(x)$ zapisujemy symbolicznie $U(x)|W(x)$.

D e f i n i c j a
Liczbę z_0 nazywamy pierwiastkiem wielomianu $W(x) \iff W(z_0) = 0$.

Jeśli stopień $(W(x)) >$stopień $(U(x))$, to możemy zawsze napisać, że

$$W(x) = U(x)Q(x) + R(x), \quad (3.1)$$

gdzie stopień $(R(x)) <$ stopień $(U(x))$. Wielomian $R(x)$ nazywamy resztą z dzielenia $W(x)$ przez $U(x)$.

Rozważmy teraz przypadek szczególny wzoru (3.1) w przypadku, gdy $U(x) = x - a$. W tym przypadku $R(x)$ jako wielomian stopnia zerowego jest po prostu stałą, tzn. $R(x) \equiv r$. Możemy zatem napisać

$$W(x) = (x - a)Q(x) + r. \quad (3.2)$$
Podstawiając w powyższej równości \(x = a \), otrzymujemy, że \(W(a) = r \), zatem

\[
W(x) = (x - a)Q(x) + W(a).
\]
(3.3)

Równość (3.3) można sformułować w postaci następującego twierdzenia.

Twierdzenie

Rozsoka z dzielenia wielomianu \(W(x) \) przez dwumian \(x - a \) jest równa \(W(a) \).

Bezpośrednim wnioskiem z powyższego twierdzenia jest twierdzenie Bezout.

Twierdzenie (Bezout)

Liczba \(z_0 \) jest pierwiastkiem wielomianu \(W(x) \) ⇔ \((x - z_0) | W(x) \).

Załóżmy teraz, że \(z_0 \) jest pierwiastkiem wielomianu \(W(x) \). Przyjmujemy następującą definicję.

Definicja

Krotnością pierwiastka \(z_0 \) wielomianu \(W(x) \) nazywamy największą liczbę naturalną \(n \) taką, że \((x - z_0)^n | W(x) \).

Uwaga

Można łatwo pokazać, że krotność pierwiastka wielomianu może być określona poprzez badanie zachowania się jego pochodnych w punkcie \(z_0 \). Pierwiastek \(z_0 \) jest pierwiastkiem \(n \)-krotnym wielomianu \(W(x) ⇔ W(z_0) = 0, W'(z_0) = 0, \ldots, W^{(n-1)}(z_0) = 0, W^{(n)}(z_0) \neq 0 \).

3.2.1 Największy wspólny dzielnik wielomianów

Definicja

Największym wspólnym dzielnikiem wielomianów \(W(x) \) i \(U(x) \) nazywamy taki wielomian \(d(x) \), który jest wspólnym dzielnikiem wielomianów \(W(x) \) i \(U(x) \), i który jest podzielny przez każdy inny wspólny dzielnik tych wielomianów. Największy wspólny dzielnik oznaczamy symbolem \(d(x) = (W(x), U(x)) \).

Z powyższej definicji wynika, że największy wspólny dzielnik wielomianów wyznaczony jest z dokładnością do czynnika stałego. Opierając się na rozumowaniu analogicznym do tzw. algorytmu Euklidesa można udowodnić prawdziwość następującego twierdzenia.

Twierdzenie

Jeśli \(d(x) = (W(x), U(x)) \), to istnieją takie wielomiany \(p(x) \) i \(r(x) \), że

\[
W(x)p(x) + U(x)r(x) = d(x),
\]

przy czym stopień \((p(x)) < \) stopień \((U(x))\) oraz stopień \((r(x)) < \) stopień \((W(x))\).

W szczególności, jeśli wielomiany \(W(x) \) i \(U(x) \) są względnie pierwsze, tzn. \((W(x), U(x)) = 1 \), to istnieją wielomiany \(p(x) \) i \(r(x) \) takie, że

\[
W(x)p(x) + U(x)r(x) = 1.
\]

Przykłady

1. Nie wykonując dzielenia, znajdź resztę z dzielenia wielomianu \(W(x) = x^{10} + x^4 + x^2 + x + 1 \) przez \(U(x) = x^2 - 1 \).
Rozwiązanie
Zgodnie ze wzorem (3.1), reszta $R(x)$ z dzielenia $W(x)$ przez $U(x)$ jest wielomianem stopnia pierwszego, zatem możemy zapisać, że $R(x) = ax + b$ i otrzymujemy

$$W(x) = (x^2 - 1) Q(x) + ax + b.$$

Podstawiając $x = 1$ oraz $x = -1$ i uwzględniając fakt, że $W(1) = 5$, zaś $W(-1) = 3$ dostajemy układ równań

$$\begin{align*}
a + b &= 5 \\
-a + b &= 3,
\end{align*}$$

z którego wynika, że $a = 1$, $b = 4$. Szukana reszta jest postaci $R(x) = x + 4$.

2. Ile wynosi krotność pierwiastka $z_0 = 2$ dla wielomianu $W(x) = x^5 - 5x^4 + 7x^3 - 2x^2 + 4x - 8$?

Rozwiązanie
Zgodnie z uwagą, wyznaczamy pochodne wielomianu $W(x)$.

$$W'(x) = 5x^4 - 20x^3 + 21x^2 - 4x + 4,$$
$$W''(x) = 20x^3 - 60x^2 + 42x - 4,$$
$$W'''(x) = 60x^2 - 120x + 42,$$
$$W''''(x) = 120x - 120,$$
$$W''''''(x) = 120,$$
$$W''''''(x) \equiv 0.$$

Ponieważ $W(2) = W'(2) = W''(2) = 0$ oraz $W'''(2) = 42 \neq 0$, więc $z_0 = 2$ jest trzykrotnym pierwiastkiem wielomianu $W(x)$.

3.3 Rozkład wielomianu na czynniki w zbiorze liczb rzeczywistych

Z poprzednich rozważań wynika bezpośrednio następujące twierdzenie.

Twierdzenie
Jeśli z_1, z_2, \ldots, z_m są różnymi pierwiastkami wielomianu $W(x)$ stopnia n, o krotnościach odpowiednio równych k_1, k_2, \ldots, k_m ($k_1 + k_2 + \ldots + k_m \leq n$), to

$$W(x) = (x - z_1)^{k_1} (x - z_2)^{k_2} \cdots (x - z_m)^{k_m} Q(x),$$

gdzie $Q(x)$ jest wielomianem stopnia $n - (k_1 + k_2 + \ldots + k_m)$, który nie posiada pierwiastków rzeczywistych.

Prawdziwe jest również następujące twierdzenie będące wnioskiem z tzw. podstawowego twierdzenia algebry, które zostanie omówione dalej.

Twierdzenie
Każydzi wielomian $W(x)$ o współczynnikach rzeczywistych może być przedstawiony w postaci iloczynu wielomianów o współczynnikach rzeczywistych stopnia co najwyżej drugiego.
Przykłady

1. Rozłożyć na czynniki rzeczywiste stopnia drugiego wielomian \(x^4 + 1\).

Rozwiązanie
Stosujemy przekształcenie
\[
x^4 + 1 = x^4 + 2x^2 + 1 - 2x^2 = (x^2 + 1)^2 - (x\sqrt{2})^2 =
= (x^2 - x\sqrt{2} + 1) \left(x^2 + x\sqrt{2} + 1\right).
\]

2. Rozłożyć na czynniki rzeczywiste stopnia drugiego wielomian \(x^6 + 1\).

Rozwiązanie
Stosujemy przekształcenie
\[
x^6 + 1 = (x^2 + 1) (x^4 - x^2 + 1) = (x^2 + 1) (x^4 + 2x^2 + 1 - 3x^2) =
= (x^2 + 1) \left[(x^2 + 1)^2 - (x\sqrt{3})^2\right] =
= (x^2 + 1) (x^2 - x\sqrt{3} + 1) \left(x^2 + x\sqrt{3} + 1\right).
\]

3.4 Rozkład wielomianu na czynniki w zbiorze liczb zespolonych

Najważniejsze własności wielomianów w zbiorze liczb zespolonych wynikają z następującego *podstawowego twierdzenia algebry* po raz pierwszy sformułowanego i udowodnionego przez wielkiego niemieckiego matematyka Gaussa.

Twierdzenie (podstawowe twierdzenie algebry)
Każdy wielomian \(W(x)\) stopnia \(n \geq 1\) o współczynnikach zespolonych ma pierwiastek w zbiorze liczb zespolonych.

Z podstawowego twierdzenia algebry i z twierdzenia Bezout wynika następujący wniosek.

Twierdzenie
Każdy wielomian \(W(x)\) stopnia \(n \geq 1\) o współczynnikach zespolonych ma \(n\) pierwiastków w zbiorze liczb zespolonych (licząc każdy pierwiastek tyle razy ile wynosi jego krotność).

Wniosek
Rozkład na czynniki wielomianu \(W(x)\) stopnia \(n\) o współczynnikach zespolonych w zbiorze liczb zespolonych jest postaci
\[
W(x) = a_0 \left(x - z_1\right)^{k_1} \left(x - z_2\right)^{k_2} \cdots \left(x - z_m\right)^{k_m}, \tag{3.5}
\]
gdzie \(z_1, z_2, \ldots, z_m\) są różnymi pierwiastkami tego wielomianu, \(k_1 + k_2 + \ldots + k_m = n\), \(a_0\) jest współczynnikiem przy najwyższej potędze.

Dla wielomianów o współczynnikach rzeczywistych łatwo wykazać prawdziwość następującego twierdzenia.
Twierdzenie
Jeśli liczba zespolona z_0 jest pierwiastkiem n-krotnym wielomianu $W(x)$ o współczynnikach rzeczywistych, to liczba sprzężona $\overline{z_0}$ jest także pierwiastkiem n-krotnym tego wielomianu.

Uwaga
Ponieważ iloczyn $(x - z_0)(x - \overline{z_0}) = x^2 - x \cdot 2 \text{Re} z_0 + |z|^2 \quad (3.6)$ jest zawsze wielomianem o współczynnikach rzeczywistych, więc wynika stąd natychmiast prawdziwość wzoru (3.4).

W celu znajdowania wymiernych pierwiastków wielomianów o współczynnikach całkowitych wykorzystuje się następujące twierdzenie.

Twierdzenie
Jeśli wielomian $W(x) = a_0x^n + a_1x^{n-1} + \ldots + a_{n-1}x + a_n$, którego wszystkie współczynniki są liczbami całkowitymi, ma pierwiastki wymienne postaci $x_0 = \frac{p}{q}$, to $p \mid a_n$ i $q \mid a_0$.

Przykłady
1. Rozłożyć na czynniki w zbiorze \mathbb{R} i w zbiorze \mathbb{C} wielomian $W(x) = x^4 + 4$

Rozwiązanie
Aby uzyskać rozkład w zbiorze liczb rzeczywistych wystarczy zastosować przekształcenie $x^4 + 4 = x^4 + 4x^2 + 4 - 4x^2 = (x^2 + 2)^2 - (2x)^2 = (x^2 - 2x + 2)(x^2 + 2x + 2)$.

Dla uzyskania rozkładu w zbiorze liczb zespolonych należy znaleźć pierwiastki zespolone równania $x^4 + 4 = 0$. Stosując np. wzór de Moivre’a na pierwiastki (1.11) otrzymujemy, że pierwiastkami tymi są liczby $z_1 = 1 + i$, $z_2 = -1 + i$, $z_3 = -1 - i$, $z_4 = 1 - i$, zatem szukany rozkład jest następujący

$x^4 + 4 = (x - 1 - i)(x + 1 - i)(x + 1 + i)(x - 1 + i)$.

Łatwo zauważyć, że zgodnie ze wzorem (3.6) zachodzą równości $(x - 1 - i)(x - 1 + i) = x^2 - 2x + 2$ oraz $(x + 1 - i)(x + 1 + i) = x^2 + 2x + 2$.

2. Zbudować wielomian najmniejszego stopnia o współczynnikach rzeczywistych, jeśli dane są jego pierwiastki: podwójny 1, pojedyncze $2, 3, 1 + i$.

Rozwiązanie
Z jednego z powyższych twierdzeń wynika, że pierwiastkiem szukanego wielomianu musi być również liczba $1 - i$. Oznacza to, że poszukiwany wielomian musi być stopnia szóstego. Wielomianem spełniającym warunki zadania jest np.

$W(x) = (x - 1)^2(x - 2)(x - 3)(x - 1 - i)(x - 1 + i) =$
$= (x - 1)^2(x - 2)(x - 3)(x^2 - 2x + 2) =$
$= x^6 - 9x^5 + 33x^4 - 65x^3 + 74x^2 - 46x + 12$.
TEMAT 3. WIELOMIANY

3.5 Wzory Viete’a

Rozważmy wielomian \(W(x) \) stopnia \(n \) opisany wzorem

\[
W(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n, \text{gdzie } a_0 \neq 0. \tag{3.7}
\]

T w i e r d z e n i e

Niech \(z_1, z_2, \ldots, z_n \) oznaczają pierwiastki wielomianu (3.7), przy czym każdy pierwiastek występuje w tym ciągu tyle razy ile wynosi jego krotność. Wówczas zachodzą wzory (tzw. wzory Viete’a):

\[
a_1 a_0 = - (z_1 + z_2 + \ldots + z_n),
\]

\[
a_2 a_0 = z_1 z_2 + z_1 z_3 + \ldots + z_1 z_n + z_2 z_3 + \ldots + z_2 z_n + \ldots + z_{n-1} z_n,
\]

\[
a_3 a_0 = - (z_1 z_2 z_3 + z_1 z_2 z_4 + \ldots + z_{n-2} z_{n-1} z_n),
\]

\[
\vdots
\]

\[
a_n a_0 = (-1)^n z_1 z_2 \ldots z_n.
\]

Wzory te są uogólnieniem wzorów Viete’a dla trójmianu kwadratowego. Pozwalają one w łatwy sposób określić współczynniki wielomianu w przypadku, gdy dane są jego pierwiastki.

P r z y k ł a d

1. Znaleźć wielomian \(W(x) \) czwartego stopnia, którego pierwiastkami są liczby: 5, -2, 3, 3 (3 jest pierwiastkiem podwójnym).

R o z w i ą z a n i e

Możemy założyć dla prostoty, że \(a_0 = 1 \). Wtedy, zgodnie z wzorami (3.8), otrzymujemy

\[
a_1 = - (5 - 2 + 3 + 3) = -9,
\]

\[
a_2 = 5 \cdot (-2) + 5 \cdot 3 + 5 \cdot 3 + (-2) \cdot 3 + (-2) \cdot 3 + 3 = 17,
\]

\[
a_3 = - (5 \cdot (-2) \cdot 3 + 5 \cdot (-2) \cdot 3 + 5 \cdot 3 \cdot 3 + (-2) \cdot 3 \cdot 3) = 33,
\]

\[
a_4 = 5 \cdot (-2) \cdot 3 \cdot 3 = -90,
\]

a więc \(W(x) \) jest postaci

\[
W(x) = x^4 - 9x^3 + 17x^2 + 33x - 90.
\]

3.6 Trudniejsze przykłady

1. Przedstawić w postaci iloczynu wielomianów o współczynnikach rzeczywistych, wielomian \(W(x) = x^{2n} - 2x^n + 2 \) dla \(n \in \mathbb{N} \).
Rozwiązanie
W celu rozwiązania zadania, musimy najpierw wyznaczyć pierwiastki wielomianu \(W(x) \) w zbiorze \(\mathbb{C} \). Podstawiając w równaniu
\[
x^{2n} - 2x^n + 2 = 0
\]
nową niewiadomą \(t = x^n \), otrzymujemy
\[
t^2 - 2t + 2 = 0
\]
skąd wynika, że \(t = 1+i \) lub \(t = 1-i \). W takim razie pierwiastkami równania \(x^{2n} - 2x^n + 2 = 0 \) są liczby \(w_k \) i \(v_k \) (dla \(k = 0, 1, 2, \ldots, n-1 \)) takie, że
\[
w_k^n = 1+i \quad \text{oraz} \quad v_k^n = 1-i.
\]
Zgodnie ze wzorem de Moivre’a na pierwiastki (1.11), liczby \(w_k \) i \(v_k \) mogą być zapisane w postaci
\[
w_k = 2^{n/2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right), \quad v_k = 2^{n/2} \left(\cos \frac{-\pi}{4} + i \sin \frac{-\pi}{4} \right)
\]
dla \(k = 0, 1, 2, \ldots, n-1 \). Ponieważ liczby te są wzajemnie sprzężone, tzn. \(v_k = w_{n-k} \), więc odpowiedni rozkład na czynniki rzeczywiste uzyskamy łącząc w pary wyrażenia
\[(x - w_k)(x - v_k) = (x - w_k)(x - w_{n-k})\]
Zgodnie ze wzorem (3.6), otrzymujemy
\[
P_k(x) = (x - w_k)(x - w_{n-k}) = x^2 - 2^{n/2} \cos \left(\frac{\pi}{4} + 2k\pi \right) x + 2.
\]
Oznacza to, że \(W(x) \) równy jest iloczynowi wielomianów postaci \(P_k(x) \) dla \(k = 0, 1, 2, \ldots, n-1 \).

2. Wykazać, że dla dowolnych liczb \(m, n, p \in \mathbb{N} \) wielomian \(W(x) = x^{3m} + x^{3n+1} + x^{3p+2} \) dzieli się przez \(U(x) = x^2 + x + 1 \).

Rozwiązanie
Zgodnie z twierdzeniem Bezout, wystarczy wykazać, że pierwiastki wielomianu \(U(x) \) są jednocześnie pierwiastkami wielomianu \(W(x) \). Rozwiązuje równanie \(U(x) = 0 \) i przedstawiając pierwiastki \(x_1 \) i \(x_2 \) w postaci trygonometrycznej, otrzymujemy
\[
x_1 = -\frac{1}{2} + i\frac{\sqrt{3}}{2} = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}, \quad x_2 = -\frac{1}{2} - i\frac{\sqrt{3}}{2} = \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}.
\]
Korzystając ze wzoru de Moivre’a na potęgowanie (1.10) i uwzględniając okresowość funkcji trygonometrycznych, dostajemy
\[
W(x_1) = \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right)^{3m} + \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right)^{3n+1} + \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right)^{3p+2} = \left(\cos 0 + i \sin 0 \right) + \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} \right) + \left(\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3} \right) = 1 - \frac{1}{2} + i\frac{\sqrt{3}}{2} - \frac{1}{2} - i\frac{\sqrt{3}}{2} = 0.
\]
Analogicznie dowodzimy, że \(W(x_2) = 0 \). Wynika stąd, że \(U(x) | W(x) \).
3.7 Zadania

1. Rozłożyć na czynniki w zbiorze \(\mathbb{R} \) i w zbiorze \(\mathbb{C} \) wielomiany:

 (a) \(W(x) = x^5 - 3x^4 + 2x^3 - 6x^2 + x - 3 \)

 (b) \(W(x) = x^8 + x^4 + 1 \)

2. Rozłożyć na czynniki w zbiorze \(\mathbb{R} \) wielomian \(W(x) = x^{2n} + x^n + 1 \) dla \(n \in \mathbb{N} \)

3. Zbudować wielomian najmniejszego stopnia o współczynnikach rzeczywistych, jeśli dane są jego pierwiastki:

 (a) potrójny \(2 - 3i \)

 (b) podwójny \(i \), pojedynczy \(-1 - i \)

4. Dla jakich wartości parametrów \(a \) i \(b \) wielomian \(W(x) = x^4 + ax^3 + 2x^2 + x + b \) jest podzielny przez trójmian \(x^2 + x + 1 \)?

5. Znalazć największy wspólny dzielnik wielomianu \(W(x) \) i jego pochodnej (bez obliczania pochodnej), jeżeli:

 (a) \(W(x) = (x - 1)^3 (x + 1)^2 (x - 3) \)

 (b) \(W(x) = (x - 1) (x^2 - 1) (x^3 - 1) (x^4 - 1) \)

6. Ile wynosi krotność pierwiastka \(x_0 \) dla wielomianu \(W(x) \), jeżeli:

 (a) \(x_0 = -2, W(x) = x^5 + 7x^4 + 16x^3 + 8x^2 - 16x - 16 \)

 (b) \(x_0 = i, W(x) = x^4 + (1 - 3i) x^3 - 3 (1 + i) x^2 - (3 - i) x + i \)

 (c) \(x_0 = 1, W(x) = nx^n+1 - (n + 1) x^n + 1 \) dla \(n \in \mathbb{N} \)

7. Wyznaczyć wartość parametru \(a \) tak, aby liczba \(x_0 = -1 \) była pierwiastkiem wielomianu \(x^5 - ax^2 - ax + 1 \) o krotności co najmniej 2.

8. Liczba 3 jest dwukrotnym pierwiastkiem wielomianu \(W(x) = x^4 - 3x^3 + ax^2 + bx - 18 \). Znajdź pozostałe pierwiastki tego wielomianu.

9. Wyznaczyć współczynniki \(m \) oraz \(n \) tak, aby wielomian \(x^3 + 8x^2 + 5x + m \) był podzielny przez wielomian \(x^2 + 3x + n \).

10. Dla jakich wartości parametrów \(m \) i \(n \) wielomian \(W(x) = x^4 + 2x^3 + mx^2 + nx + 1 \) jest kwadratem pewnego wielomianu \(Q(x) \)?

11. Wielomian \(W(x) \) przy dzieleniu przez \(x - 1 \), \(x - 2 \), \(x - 3 \) daje odpowiednio reszty 1, 2, 3. Wyznacz resztę z dzielenia tego wielomianu przez iloczyn \((x - 1)(x - 2)(x - 3) \).

12. Dla jakich wartości parametrów \(a \) i \(b \) reszta z dzielenia wielomianu \(W(x) \) przez \(Q(x) \) jest równa \(R(x) \), jeżeli:

 (a) \(W(x) = x^3 + 2x^2 + ax + b, Q(x) = x^2 + x - 2, R(x) = 4x - 3 \)

 (b) \(W(x) = ax^3 + x^2 + (3a - b) x + 10, Q(x) = x^2 + x - 6, R(x) = 3x + 4 \)
TEMAT 3. WIELOMIANY
25

(c) $W(x) = x^4 + (a + b)x^3 + x^2 + (2a - b)x - 15$, $Q(x) = x^2 + 2x - 3$, $R(x) = 2x - 3$

13. Nie wykonując dzielenia, znajdź resztę z dzielenia wielomianu $W(x)$ przez $Q(x)$ jeżeli:

(a) $W(x) = x^8 - 1$, $Q(x) = x^2 + 4$
(b) $W(x) = x^6 - 1$, $Q(x) = x^3 + x$

14. Wyznaczyć wartość parametrów A i B tak, aby wielomian $W(x)$ dzielił się przez $(x - 1)^2$, jeżeli:

(a) $W(x) = Ax^4 + Bx^3 + 1$
(b) $W(x) = Ax^{n+1} + Bx^n + 1$ dla $n \in \mathbb{N}$
Temat 4
Macierze i wyznaczniki

4.1 Macierze - definicje i działania

Definicja
Macierzą rzeczywistą (zespoloną) wymiaru $m \times n$, gdzie $m, n \in \mathbb{N}$, nazywamy prostokątną tablicę liczb rzeczywistych (zespolonych) ustawionych w m wierszach i n kolumnach.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Przyjmujemy ponadto następujące określenia szczegółowe odnoszące się do macierzy specjalnych postaci.

1. Macierz wymiaru $m \times n$, której wszystkie elementy są równe zero nazywamy macierzą zerową wymiaru $m \times n$.

2. W przypadku, gdy $m = n$, to macierz taką nazywamy macierzą kwadratową stopnia n. Przekątną macierzy kwadratowej tworzą elementy, których numer wiersza i kolumny jest taki sam (a_{ii}).

3. Macierz kwadratową stopnia $n \geq 2$, której wszystkie elementy znajdujące się nad (pod) główną przekątną są równe zero, nazywamy macierzą trójkątną dolną (górną).

4. Macierz kwadratową stopnia n, której wszystkie elementy znajdujące się poza główną przekątną są równe zero, nazywamy macierzą diagonalną. Macierz diagonalną, której wszystkie elementy na przekątnej równe są 1 nazywamy macierzą jednostkową i oznaczamy I lub I_n.

Definicja
Niech $A = [a_{ij}]$ i $B = [b_{ij}]$ będą macierzami wymiaru $m \times n$. Sumą (różnicą) macierzy A i B nazywamy macierz $C = [c_{ij}]$, której elementy określone są wzorem $c_{ij} = a_{ij} \pm b_{ij}$ dla $i = 1, 2, \ldots, m$, $j = 1, 2, \ldots, n$. Sumę (różnicę) macierzy A i B zapisujemy jako $C = A \pm B$.

Definicja
Niech $A = [a_{ij}]$ będzie macierzą wymiaru $m \times n$ oraz niech c będzie liczbą rzeczywistą (zespoloną). Iloczynem macierzy A przez liczbę c nazywamy macierz $B = [b_{ij}]$, której elementy są
określone wzorem $b_{ij} = ca_{ij}$ dla $i = 1,2,\ldots,m$, $j = 1,2,\ldots,n$. Iloczyn ten zapisujemy jako $B = cA$.

Twierdzenie (własności dodawania macierzy i mnożenia macierzy przez liczby)

Niech A, B i C będą macierzami, zaś α, β liczbami rzeczywistymi (zespolonymi). Wówczas zachodzą wzory:

1. $A + B = B + A$
2. $A + (B + C) = (A + B) + C$
3. $A + 0 = 0 + A = A$ (0 oznacza macierz zerową)
4. $A + (-A) = 0$
5. $\alpha (A + B) = \alpha A + \alpha B$
6. $(\alpha + \beta) A = \alpha A + \beta A$
7. $1 \cdot A = A$
8. $(\alpha \beta) A = \alpha (\beta A)$

Definicja

Niech macierz $A = [a_{ij}]$ ma wymiar $m \times n$, a macierz $B = [b_{ij}]$ ma wymiar $n \times k$ (tzn. macierz A ma tyle kolumn, ile macierz B ma wierszy). Iloczynem macierzy A i B nazywamy macierz $C = [c_{ij}]$ wymiaru $m \times k$, której elementy określone są wzorem

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{im}b_{mj} = \sum_{k=1}^{n} a_{ik}b_{kj}.$$ \hspace{1cm} (4.1)

Wzór (4.1) wyraża iloczyn i-tego wiersza macierzy A i j-tej kolumny macierzy B. Iloczyn macierzy A i B zapisujemy jako $C = AB$.

Przykłady

1. Obliczyć iloczyn $C = AB$, jeśli

$$A = \begin{bmatrix} 2 & 1 & 5 \\ -1 & 3 & -2 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & i \\ -1 & 0 \\ 2 & 1 - i \end{bmatrix}.$$

Rozwiązanie

Zgodnie ze wzorem (4.1), iloczyn $C = AB$ będzie macierzą wymiaru 2×2 określoną następująco

$$C = AB = \begin{bmatrix} 2 & 1 & 5 \\ -1 & 3 & -2 \end{bmatrix} \begin{bmatrix} 3 & i \\ -1 & 0 \\ 2 & 1 - i \end{bmatrix} =$$

$$= \begin{bmatrix} 2 \cdot 3 + 1 \cdot (-1) + 5 \cdot 2 & 2 \cdot i + 1 \cdot 0 + 5 \cdot (1 - i) \\ (-1) \cdot 3 + 3 \cdot (-1) + (-2) \cdot 2 & (-1) \cdot i + 3 \cdot 0 + (-2) \cdot (1 - i) \end{bmatrix} = \begin{bmatrix} 15 & 5 - 3i \\ -10 & 2 + i \end{bmatrix}.$$
2. Rozwiązać równanie macierzowe

\[
X \cdot \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 2 & 3 \\ 0 & -3 \end{bmatrix}
\]

Rozwiązanie
Zgodnie ze wzorem (4.1) szukana macierz \(X\) musi być wymiaru \(3 \times 2\). Oznaczając jej elementy jako

\[
X = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}
\]

i wykonując mnożenie, dostajemy układ równań

\[
\begin{bmatrix} a+2b & 3b \\ c+2d & 3d \\ e+2f & 3f \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 2 & 3 \\ 0 & -3 \end{bmatrix},
\]

skąd wynika, że \(a = 1, b = 1, c = 0, d = 1, e = 2, f = -1\), zatem

\[
X = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 2 & -1 \end{bmatrix}.
\]

Twierdzenie (własności iloczynu macierzy)

1. Jeśli macierz \(A\) jest wymiaru \(m \times n\), a macierze \(B\) i \(C\) są wymiaru \(n \times k\), to

\[
A(B + C) = AB + AC.
\]

2. Jeśli macierze \(A\), \(B\) są wymiaru \(m \times n\), a macierz \(C\) jest wymiaru \(n \times k\), to

\[
(A + B)C = AC + BC.
\]

3. Jeśli macierz \(A\) jest wymiaru \(m \times n\), a macierz \(B\) jest wymiaru \(n \times k\), \(\alpha\) jest liczbą rzeczywistą lub zespoloną, to

\[
A(\alpha B) = (\alpha A)B = \alpha (AB).
\]

4. Jeśli macierz \(A\) jest wymiaru \(m \times n\), macierz \(B\) jest wymiaru \(n \times k\), a macierz \(C\) jest wymiaru \(k \times l\), to

\[
(AB)C = A(BC).
\]

5. Jeśli macierz \(A\) jest wymiaru \(m \times n\), \(I_n\) i \(I_m\) oznaczają macierze jednostkowe stopnia \(n\), to

\[
AI_n = I_mA = A.
\]

Uwaga
Mnożenie macierzy zdefiniowane równością (4.1) nie jest na ogół przemienne, tzn. najczęściej \(AB \neq BA\). Równość \(AB = BA\) zachodzi tylko w pewnych szczególnych przypadkach.
4.2 Macierz transponowana

Definicja
Niech \(A = [a_{ij}] \) będzie macierzą wymiaru \(m \times n \). Macierzą transponowaną do macierzy \(A \) nazywamy macierz \(B = [b_{ij}] \) wymiaru \(n \times m \), której elementy są określone wzorem \(b_{ij} = a_{ji} \) gdzie \(i = 1, 2, \ldots, n \), \(j = 1, 2, \ldots, m \). Macierz transponowaną do macierzy \(A \) oznaczamy symbolem \(A^T \).

Twierdzenie (własności macierzy transponowanych)

1. Jeśli \(A \) i \(B \) są macierzami wymiaru \(m \times n \), to \((A + B)^T = A^T + B^T \).

2. Jeśli \(A \) jest macierzą wymiaru \(m \times n \), to \((A^T)^T = A \).

3. Jeśli \(A \) jest macierzą wymiaru \(m \times n \), \(\alpha \) jest liczbą rzeczywistą lub zespoloną, to \((\alpha A)^T = \alpha A^T \).

4. Jeśli \(A \) jest macierzą wymiaru \(m \times n \), a \(B \) jest macierzą wymiaru \(n \times k \), to \((AB)^T = B^T A^T \).

5. Jeśli \(A \) jest macierzą kwadratową, \(k \) jest liczbą naturalną, to \((A^k)^T = (A^T)^k \).

4.3 Definicja wyznacznika, rozwinięcie Laplace’a

Niech \(A \) będzie macierzą kwadratową stopnia \(n \). Poniżej podamy definicję wyznacznika macierzy za pomocą indukcji względem stopnia macierzy. Nie będziemy omawiać definicji permutacyjnej.

Definicja
Wyznacznikiem macierzy kwadratowej \(A \) nazywamy funkcję \(\det A \) określoną na zbiorze macierzy kwadratowych o wartościach liczbowych zdefiniowaną następującym wzorem indukcyjnym:

1. Jeśli macierz \(A \) ma stopień \(n = 1 \) (tzn. \(A = [a_{11}] \)), to \(\det A = a_{11} \);
2. Jeśli macierz A ma stopień $n \geq 2$, to

$$\det A = (-1)^{i+1} a_{11} \det A_{11} + (-1)^{i+2} a_{12} \det A_{12} + \ldots + (-1)^{i+n} a_{1n} \det A_{1n},$$

gdzie A_{ij} oznacza macierz stopnia $n - 1$ otrzymaną z macierzy A przez skreślenie i-tego wiersza i j-tej kolumny.

Wyznacznik macierzy A oznaczamy także symbolami $\det [a_{ij}]$ lub $|A|$.

Uwaga

W przypadku $n = 2$ zachodzi wzór

$$\det A = \det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc,$$

w przypadku $n = 3$ można posłużyć się tzw. **regułą Sarrusa**.

Dla $n = 2$ wyznacznik ma prostą interpretację geometryczną, liczba $|\det A|$ przedstawia pole równoległoboku rozpiętego na wektorach $[a, b]$ i $[c, d]$.

W przypadku $n = 3$ wartość bezwzględna wyznacznika

$$\det A = \det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & k \end{bmatrix}$$

przedstawia objętość równoległościanu rozpiętego na wektorach $[a, b, c]$, $[d, e, f]$, $[g, h, k]$.

Przykład

1. Korzystając z definicji obliczyć wyznacznik macierzy A, jeśli

$$A = \begin{bmatrix} 2 & 4 & 1 \\ 1 & 0 & -1 \\ 2 & 2 & 3 \end{bmatrix}$$

Rozwiązanie

Zgodnie z definicją (punkt 2) i wzorem na wyznacznik macierzy stopnia drugiego, otrzymujemy

$$\det A = 2 \det \begin{bmatrix} 0 & -1 \\ 2 & 3 \end{bmatrix} - 4 \det \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} + \det \begin{bmatrix} 1 & 0 \\ 2 & 2 \end{bmatrix} =$$

$$= 2 \cdot 2 - 4 \cdot 5 + 2 = -14.$$
gdzie A_{ij} oznacza macierz stopnia $n - 1$ otrzymaną przez skreślenie i-tego wiersza i j-tej kolumny macierzy A.

W celu praktycznego obliczenia wartości wyznacznika, najczęściej korzystamy z tzw. rozwinięcia Laplace’a.

Twierdzenie (rozwinięcie Laplace’a wyznacznika)

Niech $A = [a_{ij}]$ będzie macierzą kwadratową stopnia $n \geq 2$ oraz niech będą ustalone liczby naturalne i oraz j, gdzie $1 \leq i, j \leq n$. Wówczas wyznacznik macierzy A można obliczyć z następujących wzorów

\[
\det A = a_{i1}D_{i1} + a_{i2}D_{i2} + \ldots + a_{in}D_{in} = \sum_{k=1}^{n} a_{ik}D_{ik}, \tag{4.3}
\]

\[
\det A = a_{1j}D_{1j} + a_{2j}D_{2j} + \ldots + a_{nj}D_{nj} = \sum_{k=1}^{n} a_{kj}D_{kj}. \tag{4.4}
\]

Wzór (4.3) nazywamy rozwinięciem Laplace’a wyznacznika względem i-tego wiersza, wzór (4.4) nazywamy rozwinięciem Laplace’a wyznacznika względem j-tej kolumny.

Następne twierdzenie przedstawia niektóre własności wyznaczników.

Twierdzenie (własności wyznaczników)

1. Wyznacznik macierzy trójkątnej dolnej (górnej) jest równy iloczynowi elementów stojących na jego głównej przekątnej.

2. Wyznacznik macierzy kwadratowej, której jeden wiersz (kolumna) składa się z samych zer jest równy zero.

3. Jeśli w macierzy kwadratowej zamienimy miejscami dwa wiersze (kolumny), to wyznacznik zmieni znak na przeciwny.

4. Wyznacznik macierzy kwadratowej, której dwa wiersze (kolumny) są identyczne jest równy zero.

5. Jeśli wszystkie elementy pewnego wiersza (kolumny) zawierają wspólny czynnik, to czynnik ten można wyłączyć przed wyznacznik tej macierzy.

6. Wyznacznik macierzy kwadratowej, której elementy pewnego wiersza (kolumny) są sumami dwóch składników jest równy sumie wyznaczników macierzy, w których elementy tego wiersza (kolumny) są zastąpione tymi składnikami.

7. Wyznacznik macierzy nie zmieni się, jeśli do elementów dowolnego wiersza (kolumny) dodamy odpowiadające im elementy innego wiersza (kolumny) pomnożone przez dowolną liczbę.

8. Wyznacznik dowolnej macierzy kwadratowej A i macierzy transponowanej A^T są równe, tzn. $\det A = \det A^T$.

W praktyce wykorzystujemy najczęściej własność 7 powyższego twierdzenia w celu uzyskania jak największej liczby zer w danym wierszu lub kolumnie, a następnie korzystamy z rozwinięcia Laplace’a (4.3) lub (4.4).
Twierdzenie (Cauchy’ego o wyznaczniku iloczynu macierzy)
Jeśli A i B są macierzami kwadratowymi tego samego stopnia, to
\[
det(A \cdot B) = det A \cdot det B
\] (4.5)

4.4 Algorytm Gaussa obliczania wyznaczników
Załóżmy, że $A = [a_{ij}]$ jest macierzą kwadratową taką, że $a_{11} \neq 0$ (jeśli pierwsza kolumna nie składa się z samych zer, to zamieniając wiersze miejscami zawsze możemy uzyskać taką sytuację).

Wówczas od wiersza o numerze i (gdzie $2 \leq i \leq n$) odejmijmy wiersz o numerze 1 pomnożony przez liczbę $\frac{a_{i1}}{a_{11}}$. Operaacja ta nie spowoduje zmiany wartości wyznacznika, jednakże wszystkie wyrazy w pierwszej kolumnie, począwszy od drugiego wiersza będą równe zero. W takim razie, korzystając z rozwinięcia Laplace’a (4.4) względem pierwszej kolumny, otrzymujemy
\[
\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix} = \begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
0 & b_{22} & \cdots & b_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & b_{n2} & \cdots & b_{nn}
\end{vmatrix},
\] (4.6)
co oznacza, że obliczenie wyznacznika macierzy stopnia n sprowadzamy do obliczenia wyznacznika stopnia $n - 1$. Elementy macierzy stopnia $n - 1$ wyznaczone są ze wzoru
\[
b_{ij} = a_{ij} - a_{1j} \frac{a_{i1}}{a_{11}} \text{ dla } i = 2, \ldots, n, j = 1, 2, \ldots, n.
\] (4.7)
Postępowanie powyższe możemy powtórzyć w odniesieniu do macierzy stopnia $n - 1$ i w ten sposób doprowadzić wyjściową macierz do postaci trójkątnej górnej.

Uwaga
Jeśli w kolejnym kroku okaże się, że w otrzymanej macierzy jedna z kolumn składa się z samych zer, to oznacza to, że wyznacznik macierzy równy jest zero i przerywamy dalsze postępowanie.

Algorytm powyższy odgrywa podstawową rolę w obliczaniu wyznaczników i rozwiązywaniu układów równań liniowych.

4.5 Macierz odwrotna
Definicja
Niez A będzie macierzą kwadratową stopnia n. Macierz odwrotną do macierzy A nazywamy macierz A^{-1} taką, że
\[
AA^{-1} = A^{-1}A = I_n.
\] (4.8)

Definicja
Macierz kwadratową A nazywamy osobliwą, gdy $\det A = 0$, w przeciwnym przypadku mówimy, że A jest nieosobliwa.
Uwaga
Jeśli istnieje macierz A^{-1}, to z twierdzenia Cauchy’ego o wyznaczniku iloczynu macierzy (4.5) wynika że $\det A \neq 0$ i $\det A^{-1} \neq 0$, bowiem $\det A \cdot \det A^{-1} = \det I_n = 1$. Oznacza to, że tylko macierze nieosobliwe mogą być odwracalne, tzn. posiadać macierz odwrotną.

Twierdzenie (własności macierzy odwrotnych)
Załóżmy, że macierze kwadratowe A i B są tego samego stopnia, $\alpha \neq 0$, $n \in \mathbb{N}$. Wówczas macierze A^{-1}, A^T, AB, αA, A^n także są odwracalne i prawdziwe są równości:

1. $\det (A^{-1}) = \frac{1}{\det A}$,
2. $(A^{-1})^{-1} = A$,
3. $(A^T)^{-1} = (A^{-1})^T$,
4. $(AB)^{-1} = B^{-1}A^{-1}$,
5. $(\alpha A)^{-1} = \frac{1}{\alpha} (A^{-1})$,
6. $(A^n)^{-1} = (A^{-1})^n$.

Dla znajdowania macierzy odwrotnych wykorzystuje się następujące twierdzenie.

Twierdzenie
Jeśli A jest macierzą kwadratową taką, że $\det A \neq 0$, to macierz odwrotna A^{-1} istnieje i wyraża się wzorem

$$A^{-1} = \frac{1}{\det A} [D_{ij}]^T,$$

gdzie D_{ij} oznaczają dopełnienia algebraiczne elementów a_{ij} macierzy A i są określone wzorem (4.2).

Uwaga
Dla znajdowania macierzy odwrotnej wykorzystać można również tzw. bezwyznacznikowy algorytm znajdowania macierzy odwrotnej oparty na przekształceniach blokowych.

4.6 Zadania

1. Obliczyć:
 (a) \[\begin{bmatrix} 1 & 3 \\ -2 & 1 \end{bmatrix} + 2 \begin{bmatrix} 2 & 1 \\ 0 & 4 \end{bmatrix} \]
 (b) \[3 \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} - \begin{bmatrix} 3 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \]
 (c) \[\begin{bmatrix} 3 & 5 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3 & 29 \\ 2 & 18 \end{bmatrix} \]
 (d) \[\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \]
 (e) \[\begin{bmatrix} 3 \\ -4 \\ 5 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 29 \\ 2 \end{bmatrix} \]
 (f) \[\begin{bmatrix} 1 & 5 & 3 \\ 2 & 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 5 & 3 \\ 2 & -3 & 1 \end{bmatrix} \]
 (g) \[\begin{bmatrix} \sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{bmatrix} \cdot \begin{bmatrix} \sin \beta & \cos \beta \\ -\cos \beta & \sin \beta \end{bmatrix} \]
 (h) \[\begin{bmatrix} \cos \alpha - \sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \cdot \begin{bmatrix} \cos \beta - \sin \beta \\ \sin \beta & \cos \beta \end{bmatrix} \]

2. Obliczyć \(f(A) \), jeżeli:
 (a) \[f(x) = x^2 - x - I, \quad A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 1 & 2 \\ -1 & -1 & 0 \end{bmatrix} \]
 (b) \[f(x) = 3x^2 - 2x + 5I, \quad A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & -4 & 1 \\ 3 & -5 & 2 \end{bmatrix} \]

3. Obliczyć \(A \cdot B - B \cdot A \), jeżeli \(A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 1 \end{bmatrix} \), \(B = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix} \)

4. Rozwiązać równanie macierzowe:
 (a) \[3 \left(\begin{bmatrix} 1 & 2 \\ -i & 0 \end{bmatrix} + X \right) + \begin{bmatrix} -1 & 0 \\ i & 4 \end{bmatrix} = X \]
 (b) \[X + \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = \frac{1}{2} \left(X - \begin{bmatrix} 0 & 0 & 2 \\ 0 & 4 & 0 \end{bmatrix} \right) \]
 (c) \[2X \cdot \begin{bmatrix} 3 & 0 & 1 \\ 0 & 4 & 0 \\ 1 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} + X \cdot \begin{bmatrix} 2 & 0 & 2 \\ 0 & 4 & 0 \\ 2 & 0 & 0 \end{bmatrix} \]
5. Rozwiązać układ równań macierzowych:

(a) \[
\begin{align*}
X + Y &= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \\
2X + 3Y &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.
\end{align*}
\]

(b) \[
\begin{align*}
X + Y &= \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}, \\
X - Y &= \begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \end{bmatrix}.
\end{align*}
\]

(c) \[
\begin{align*}
X + \begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix} \cdot Y &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \\
\begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix} \cdot X + Y &= \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}.
\end{align*}
\]

6. Obliczając kilka początkowych potęg macierzy \(A \) i następnie stosując zasadę indukcji matematycznej pokazać, że \(A^n = B \), jeżeli:

(a) \(A = \begin{bmatrix} i & 1 \\ 0 & -i \end{bmatrix}, \ B = \begin{bmatrix} i^n & \sin \frac{2\pi}{n} \\ 0 & (-i)^n \end{bmatrix} \)

(b) \(A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \ B = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \)

(c) \(A = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix}, \ B = \begin{cases} A \text{ dla } n \text{ nieparzystych} \\
I \text{ dla } n \text{ parzystych} \end{cases} \)

(d) \(A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}, \ B = \begin{bmatrix} \cos n\alpha & -\sin n\alpha \\ \sin n\alpha & \cos n\alpha \end{bmatrix} \)

(e) \(A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}, \ B = \begin{bmatrix} \cos n\alpha & \sin n\alpha \\ -\sin n\alpha & \cos n\alpha \end{bmatrix} \)

(f) \(A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \ B = \begin{bmatrix} 2^{n-1} & 0 & 2^{n-1} \\ 0 & 1 & 0 \\ 2^{n-1} & 0 & 2^{n-1} \end{bmatrix} \)

(g) \(A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \ B = \begin{cases} A \text{ dla } n \text{ nieparzystych} \\
I \text{ dla } n \text{ parzystych} \end{cases} \)

7. Układając odpowiednie układy równań znaleźć wszystkie macierze \(X \) spełniające podane równanie macierzowe:

(a) \(X \cdot \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 5 & 8 \end{bmatrix} \)
(b) \(X^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)

(c) \(\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} \cdot X = \begin{bmatrix} 4 & -6 \\ 2 & 1 \end{bmatrix} \)
(d) \(\begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix} \cdot X = X \cdot \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix} \)

TEMAT 4. MACIERZE I WYZNACZNIKI

(e) \[
\begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 0
\end{bmatrix}
\cdot
\begin{bmatrix}
0 & 2 & 1 \\
1 & 1 & 0
\end{bmatrix}^T
\cdot
\begin{bmatrix}
2 & 2 \\
1 & 2
\end{bmatrix}
\]
(f) \[X = X^T \cdot \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix}\]

(g) \[X - iX^T = \begin{bmatrix} 4i & 0 \\ 6 - 2i & -2 \end{bmatrix}\]

(h) \[
\begin{bmatrix}
1 & 1 \\
2 & 1 \\
3 & 1
\end{bmatrix}
\cdot
\begin{bmatrix}
-1 \\
0 \\
1
\end{bmatrix}
\]

(i) \[
\begin{bmatrix}
1 & 2 \\
0 & 1
\end{bmatrix}
\cdot
\begin{bmatrix}
7 & 3 \\
4 & 1
\end{bmatrix}
\]

(j) \[
\begin{bmatrix}
1 & 1 \\
0 & 1
\end{bmatrix}
\cdot
\begin{bmatrix}
7 & 3 \\
4 & 1
\end{bmatrix}
\]

(k) \[X^2 = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}\]

(l) \[X^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\]

8. Obliczyć następujące wyznaczniki:

(a) \[
\begin{vmatrix}
-1 & 5 & 4 \\
3 & -2 & 0 \\
-1 & 3 & 6
\end{vmatrix}
\]

(b) \[
\begin{vmatrix}
5 & 3 & 4 \\
1 & -2 & 0 \\
-3 & 6 & 1
\end{vmatrix}
\]

(c) \[
\begin{vmatrix}
1 & z & z^2 \\
z^2 & 1 & z \\
z & z^2 & 1
\end{vmatrix}
, \text{ gdzie } z = -\frac{1}{2} + i\frac{\sqrt{3}}{2}
\]

(d) \[
\begin{vmatrix}
i & 1+i & 2 \\
1-2i & 3 & -i \\
-4 & 1-i & 3+i
\end{vmatrix}
\]

(e) \[
\begin{vmatrix}
1 & i & 1+i \\
-1+i & 1 & 0 \\
1-i & 0 & 1
\end{vmatrix}
\]

(f) \[
\begin{vmatrix}
2 & 3 & -3 & 4 \\
2 & 1 & -1 & 2 \\
6 & 2 & 1 & 0 \\
2 & 3 & 0 & 5
\end{vmatrix}
\]

(g) \[
\begin{vmatrix}
1 & -1 & 2 & 0 \\
0 & 1 & 0 & -3 \\
3 & 2 & -2 & 4 \\
2 & 3 & 1 & 1
\end{vmatrix}
\]

(h) \[
\begin{vmatrix}
5 & 6 & 0 & 0 & 0 \\
1 & 5 & 6 & 0 & 0 \\
0 & 1 & 5 & 6 & 0 \\
0 & 0 & 0 & 1 & 5 \\
6 & 0 & 0 & 1 & 5
\end{vmatrix}
\]

(i) \[
\begin{vmatrix}
2 & 5 & 0 & -1 & 3 \\
1 & 0 & 3 & 7 & -2 \\
3 & -1 & 0 & 5 & -5 \\
2 & 6 & -4 & 1 & 2 \\
0 & -3 & -1 & 2 & 3
\end{vmatrix}
\]

9. Niech \(n\) oznacza stopień wyznacznika. Udowodnić następujące tożsamości:

(a) \[
\begin{vmatrix}
x & a & a & \ldots & a \\
a & x & a & \ldots & a \\
a & a & x & \ldots & a \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a & a & a & \ldots & x
\end{vmatrix}
= (x - a)^{n-1} (x + a (n - 1))
\]

(b) \[
\begin{vmatrix}
1 & 2 & 3 & \ldots & n \\
-1 & 0 & 3 & \ldots & n \\
-1 & -2 & 0 & \ldots & n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-1 & -2 & -3 & \ldots & (n - 1) & 0
\end{vmatrix}
= n!
\]

(c) \[
\begin{vmatrix}
5 & 3 & 0 & \ldots & 0 & 0 \\
2 & 5 & 3 & \ldots & 0 & 0 \\
0 & 2 & 5 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 5 & 3 \\
0 & 0 & 0 & \ldots & 2 & 5
\end{vmatrix}
= 3^{n+1} - 2^{n+1}
\]

(d) \[
\begin{vmatrix}
1 & 1 & 1 & \ldots & 1 \\
1 & 2 & 2 & \ldots & 2 \\
1 & 2 & 3 & \ldots & 3 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 2 & 3 & \ldots & n-1 & n-1 \\
1 & 2 & 3 & \ldots & n-1 & n
\end{vmatrix}
= 1
\]
10. Niech \(n \) oznacza stopień wyznacznika. Udowodnić następujące tożsamości:

(a) \[
\begin{vmatrix}
5 & 1 & 0 & \ldots & 0 & 0 \\
4 & 5 & 1 & \ldots & 0 & 0 \\
0 & 4 & 5 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 5 & 1 \\
0 & 0 & 0 & \ldots & 4 & 5
\end{vmatrix} = \frac{4^{n+1} - 1}{3}
\]

(b) \[
\begin{vmatrix}
2 \cos x & 1 & 0 & \ldots & 0 & 0 \\
1 & 2 \cos x & 1 & \ldots & 0 & 0 \\
0 & 1 & 2 \cos x & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 2 \cos x & 1 \\
0 & 0 & 0 & \ldots & 1 & 2 \cos x
\end{vmatrix} = \frac{\sin((n+1)x)}{\sin x} \text{ dla } x \neq k\pi
\]

11. Rozwiązać równania:

(a) \[
\begin{vmatrix}
1 & 1 & 1 & \ldots & 1 \\
1 & 1 & 2 & \ldots & 1 \\
1 & 1 & 2 & \ldots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \ldots & n - x
\end{vmatrix} = 0
\]

(b) \[
\begin{vmatrix}
1 & -2 & 3 & -4 \\
-1 & x & -3 & 4 \cos x \\
1 & -2 & x & -4 \\
-1 & x & -x & x + 3
\end{vmatrix} = 0
\]

12. Wyznaczyć macierze odwrotne do podanych niżej macierzy:

(a) \[
\begin{bmatrix}
3 & -5 \\
6 & 2
\end{bmatrix}
\]
(b) \[
\begin{bmatrix}
1 + i & 1 \\
1 - i
\end{bmatrix}
\]
(c) \[
\begin{bmatrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{bmatrix}
\]
(d) \[
\begin{bmatrix}
2 & 5 & 7 \\
6 & 3 & 4 \\
5 & -2 & -3
\end{bmatrix}
\]
(e) \[
\begin{bmatrix}
1 & 2 & 0 \\
2 & 3 & 0 \\
1 & -1 & 1
\end{bmatrix}
\]
(f) \[
\begin{bmatrix}
2 & 7 & 3 \\
3 & 9 & 4 \\
1 & 5 & 3
\end{bmatrix}
\]

13. Rozwiązać podane równania macierzowe:

(a) \[
X \cdot \begin{bmatrix}
3 & -2 \\
5 & -4
\end{bmatrix} = \begin{bmatrix}
-1 & 2 \\
-5 & 6
\end{bmatrix}
\]

(b) \[
X \cdot \begin{bmatrix}
1 & 2 & 3 \\
0 & 2 & 3 \\
0 & 0 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 4 & 6 \\
0 & 2 & 6 \\
0 & 0 & 3
\end{bmatrix}
\]

(c) \[
\begin{bmatrix}
4 & 2 \\
-1 & 4
\end{bmatrix} \cdot X = 4X + \begin{bmatrix}
-2 & 0 \\
0 & -1
\end{bmatrix}
\]

(d) \[
X \cdot \begin{bmatrix}
5 & 3 & 1 \\
1 & -3 & -2 \\
-5 & 2 & 1
\end{bmatrix} = \begin{bmatrix}
-8 & 3 & 0 \\
-5 & 9 & 0 \\
-2 & 15 & 0
\end{bmatrix}
\]

(e) \[
\begin{bmatrix}
3 & -1 \\
5 & -2
\end{bmatrix} \cdot X \cdot \begin{bmatrix}
5 & 6 \\
7 & 8
\end{bmatrix} = \begin{bmatrix}
14 & 16 \\
9 & 10
\end{bmatrix}
\]

(f) \[
\left(\begin{bmatrix}
0 & 3 \\
5 & -2
\end{bmatrix} + 4 \cdot X \right)^{-1} = \begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}
\]

(g) \[
3 \cdot X + \begin{bmatrix}
1 & 3 \\
-2 & 1
\end{bmatrix} = \begin{bmatrix}
5 & 6 \\
7 & 8
\end{bmatrix} \cdot X
\]

(h) \[
\begin{bmatrix}
1 & 1 & \ldots & 1 \\
0 & 1 & \ldots & 1 \\
0 & 0 & \ldots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{bmatrix} \cdot X = \begin{bmatrix}
1 & 2 & \ldots & n \\
0 & 1 & \ldots & n - 1 \\
0 & 0 & \ldots & n - 2 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{bmatrix}
\]
Temat 5

Układy równań liniowych (I)

D e f i n i c j a
Układem równań liniowych nazywamy układ postaci

\[AX = B, \quad (5.1) \]

dzie \(A = [a_{ij}] \) jest macierzą o wymiarach \(m \times n \), \(X \) jest wektorem kolumnowym niewiadomych \(x_1, x_2, \ldots, x_n \), \(B \) jest kolumną wyrazów wolnych \(b_1, b_2, \ldots, b_n \). Układ (5.1) można zapisać w postaci rozwiniętej jako

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n &= b_1 \\
 a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n &= b_2 \\
 \vdots & \quad \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n &= b_m
\end{align*}
\]

(5.2)

Zakłada się, że elementy macierzy \(A \) i wektora \(B \) są liczbami rzeczywistymi lub zespolonymi.

D e f i n i c j a
Układem Cramera nazywamy układ równań liniowych (5.1), w którym \(A \) jest macierzą kwadratową wymiaru \(n \) i \(\det A \neq 0 \) (\(A \) jest macierzą nieosobliwą).

P r z y k ł a d
1. Zbadać dla jakich wartości parametru \(p \) układ równań

\[
\begin{align*}
 x + 3y + 3z &= px \\
 3x + y + 3z &= py \\
 3x + 3y + z &= pz
\end{align*}
\]

jest układem Cramera.

R o z w i ą z a n i e
Zapisując powyższy układ w postaci równoważnej

\[
AX = \begin{bmatrix}
1 - p & 3 & 3 \\
3 & 1 - p & 3 \\
3 & 3 & 1 - p
\end{bmatrix} \begin{bmatrix}
x \\
y \\
z
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\]

stwierdzamy, że \(\det A = (p + 2)^2(7 - p) \), zatem dla \(p \neq -2 \) i \(p \neq 7 \) układ ten jest układem Cramera.
5.1 Wzory Cramera

Twierdzenie (wzory Cramera)

Układ Cramera (5.1) ma dokładnie jedno rozwiązanie. Rozwiązanie to określone jest wzorem

\[x_i = \frac{\det A_i}{\det A} \quad \text{dla } i = 1, 2, \ldots, n, \]

gdzie \(A_i \) oznacza macierz otrzymaną z macierzy \(A \) przez zastąpienie \(i \)-tej kolumny macierzy \(A \) kolumną wyrazów wolnych \(B \).

Dowód

Zapiszmy rozważany układ w postaci rozwiniętej

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\
 a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \\
 \vdots & \quad \vdots & \quad \vdots & \quad \vdots \\
 a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n &= b_n
\end{align*}
\]

Niech \(D_{1i}, D_{2i}, \ldots, D_{ni} \) oznaczają odpowiednio dopełnienia algebraiczne elementów \(a_{1i}, a_{2i}, \ldots, a_{ni} \) określone wzorem (4.2). Pomnóżmy pierwszy wiersz układu (5.4) przez \(D_{1i} \), drugi przez \(D_{2i} \) itd.

Otrzymamy wtedy układ

\[
\begin{align*}
 a_{11}D_{1i}x_1 + a_{12}D_{1i}x_2 + \cdots + a_{1n}D_{1i}x_n &= b_1D_{1i} \\
 a_{21}D_{2i}x_1 + a_{22}D_{2i}x_2 + \cdots + a_{2n}D_{2i}x_n &= b_2D_{2i} \\
 \vdots & \quad \vdots & \quad \vdots & \quad \vdots \\
 a_{n1}D_{ni}x_1 + a_{n2}D_{ni}x_2 + \cdots + a_{nn}D_{ni}x_n &= b_nD_{ni}
\end{align*}
\]

Dodając stronami wszystkie równania otrzymujemy jedno równanie postaci

\[c_1x_1 + c_2x_2 + \cdots + c_nx_n = \sum_{j=1}^{n} b_jD_{ji}, \]

gdzie

\[c_k = \sum_{j=1}^{n} a_{jk}D_{ji} \quad \text{dla } k = 1, 2, \ldots, n. \]

Na mocy twierdzenia Laplace’a o rozwinięciu wyznacznika (4.4) współczynnik \(c_i \) równy jest \(\det A \), pozostałe współczynniki \(c_k \) dla \(k \neq i \) równe są zero, ponieważ przedstawiają rozwinięcie Laplace’a wyznaczników o dwóch identycznych kolumnach (\(k \)-tej oraz \(i \)-tej). Suma \(\sum_{j=1}^{n} b_jD_{ji} \) równa jest \(\det A_i \), gdzie \(A_i \) oznacza macierz otrzymaną z macierzy \(A \) przez zastąpienie \(i \)-tej kolumny macierzy \(A \) kolumną wyrazów wolnych \(B \). Oznacza to, że równość (5.5) można zapisać jako

\[x_i \det A = \det A_i, \]

co kończy dowód twierdzenia.
P r z y k l a d y

1. Rozwiązać układ równań
\[
\begin{aligned}
& x + 2y - z = 1 \\
& 3x + y + z = 2 \\
& x - 5z = 0
\end{aligned}
\]

R o z w i a ż a n i e
Obliczając odpowiednie wyznaczniki, otrzymujemy
\[
\det A = 28, \quad \det A_1 = 15, \quad \det A_2 = 8, \quad \det A_3 = 3,
\]
zatem \(x = \frac{15}{28}, \ y = \frac{2}{7}, \ z = \frac{3}{28} \).

2. Znaleźć wielomian \(W(x) \), który spełnia warunek
\[
W''(x) + 2W'(x) - 3W(x) = -3x^2 + 13x - 1
\]

R o z w i a ż a n i e
Z treści zadania wynika, że \(W(x) \) musi być wielomianem stopnia drugiego, zatem
\[
W(x) = ax^2 + bx + c.
\]
Obliczając pochodne \(W'(x) \) i \(W''(x) \), otrzymujemy \(W'(x) = 2ax + b, \ W''(x) = 2a \). Po podstawieniu do warunku zadania i pogrupowaniu wyrazów w tych samych potęgach, dochodzimy do równania
\[
-3ax^2 + (4a - 3b)x + 2a + 2b - 3c = -3x^2 + 13x - 1,
\]
skąd wynika układ równań na współczynniki
\[
\begin{aligned}
-3a &= -3 \\
4a - 3b &= 13 \\
2a + 2b - 3c &= -1
\end{aligned}
\]

Ponieważ \(\det A = -27, \ \det A_1 = -27, \ \det A_2 = 81, \ \det A_3 = 81 \), więc \(a = 1, \ b = 3, \ c = 3 \).

U w a g a
Układ Cramera (5.1) może być rozwiązany metodą znalezienia macierzy odwrotnej do macierzy \(A \). Ze wzoru \((4.9) \) wynika, że każda macierz nieosobliwa ma macierz odwrotną \(A^{-1} \). Wówczas rozwiązanie układu Cramera wyraża się wzorem
\[
X = A^{-1}B.
\]
5.2 Metoda eliminacji Gaussa dla układów Cramera

Rozważmy układ Cramera \(AX = B \). Utwórzmy z elementów macierzy \(A \) i kolumny wyrazów wolnych \(B \), tzw. macierz rozszerzoną postaci

\[
[A|B] = \begin{bmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1n} & | & b_1 \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2n} & | & b_2 \\
\vdots & \vdots & \vdots & \ddots & \vdots & | & \vdots \\
a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} & | & b_m
\end{bmatrix}, \quad (5.6)
\]

Następnie, stosując tylko operacje elementarne na wierszach (przestawianie wierszy, mnożenie wierszy przez stałą różną od zera, dodawanie i odejmowanie innych wierszy pomnożonych przez dowolne liczby), sprowadzamy macierz do postaci

\[
[I|X] = \begin{bmatrix}
1 & 0 & 0 & \cdots & 0 & | & x_1 \\
0 & 1 & 0 & \cdots & 0 & | & x_2 \\
\vdots & \vdots & \vdots & \ddots & \vdots & | & \vdots \\
0 & 0 & 0 & \cdots & 1 & | & x_n
\end{bmatrix}, \quad (5.7)
\]

w której ostatnia kolumna jest rozwiązaniem układu. Możliwość doprowadzenia macierzy \((5.6)\) do postaci \((5.7)\) wynika z założenia o nieosobliwości macierzy \(A \).

Metoda ta jest identyczna z bezwyznacznikową metodą znajdowania macierzy odwrotnej i oparta jest na algorytmie Gaussa przekształcania wyznaczników \((4.6)-(4.7)\).

5.3 Metoda eliminacji Gaussa dla dowolnych układów równań liniowych

Rozważmy dowolny układ równań liniowych \((5.1)\) postaci \(AX = B \), gdzie \(A \) jest macierzą wymiaru \(m \times n \). Z elementów macierzy \(A \) i kolumny wyrazów wolnych tworzymy macierz rozszerzoną

\[
[A|B] = \begin{bmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1n} & | & b_1 \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2n} & | & b_2 \\
\vdots & \vdots & \vdots & \ddots & \vdots & | & \vdots \\
a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} & | & b_m
\end{bmatrix}, \quad (5.8)
\]

Na tej macierzy wykonujemy tylko operacje elementarne na wierszach, ale ponieważ nie jest to na ogólnie nieosobliwa macierz kwadratowa, więc nie da się jej sprowadzić do postaci \((5.7)\).

W zależności od \(m \) oraz \(n \) i innych własności macierzy \(A \), dochodzimy na końcu do przedstawienia

\[
[A'|B'] = \begin{bmatrix}
1 & 0 & \cdots & 0 & | & s_{1,r+1} & \cdots & s_{1,n} & | & z_1 \\
0 & 1 & \cdots & 0 & | & s_{2,r+2} & \cdots & s_{2,n} & | & z_2 \\
\vdots & \vdots & \ddots & \vdots & | & \vdots & \ddots & \vdots & | & \vdots \\
0 & 0 & \cdots & 1 & | & s_{r,r+1} & \cdots & s_{r,n} & | & z_r \\
0 & 0 & \cdots & 0 & | & 0 & \cdots & 0 & | & z_{r+1}
\end{bmatrix}, \quad (5.9)
\]

w którym ostatni wiersz może wystąpić lub nie wystąpić.

Poniższe twierdzenie określa zachowanie się układu równań w zależności od postaci przedstawienia \((5.9)\).
1. Jeżeli w przedstawieniu (5.9) wystąpi ostatni wiersz i \(z_{r+1} \neq 0 \), to układ \(AX = B \) jest sprzeczny.

2. Jeżeli w powyższym przedstawieniu nie pojawi się ostatni wiersz oraz \(r = n \), to układ \(AX = B \) jest równoważny układowi Cramera i jest jednoznacznie rozwiązalny (tzw. układ oznaczony).

3. Jeżeli w powyższym przedstawieniu nie pojawi się ostatni wiersz oraz \(r < n \), to układ \(AX = B \) ma nieskończenie wiele rozwiązań (tzw. układ nieoznaczony) przy czym niewiadome \(x_{r+1}, x_{r+2}, \ldots, x_n \) należy przyjąć jako dowolne parametry, zaś niewiadome \(x_1, x_2, \ldots, x_r \) wyznaczyć np. z postaci (5.9).

5.4 Zadania

1. Znaleźć wielomian \(W(x) \) możliwie najniższego stopnia, który dla \(k = 0, 1, 2, 3 \) spełnia warunek
 \[
 W(k) = k!.
 \]

2. Znaleźć współczynniki \(A, B, C, D \) wielomianu trygonometrycznego postaci
 \[
 T(x) = A \sin x + B \cos x + C \sin 2x + D \cos 2x,
 \]
 który spełnia warunek
 \[
 T'''(x) + T(x) = \sin x - \cos x + 8 \sin 2x + \cos 2x.
 \]

3. Dla jakich wartości parametru \(p \in \mathbb{R} \) podane układy równań są układami Cramera?
 a) \[
 \begin{cases}
 (p + 1)x - py & = 1 \\
 2x + (p - 1)y & = 3p
 \end{cases}
 \]
 b) \[
 \begin{cases}
 2px + 4y - pz & = 4 \\
 2x + y + pz & = 1 \\
 (2p + 4)x + 6y + pz & = 3
 \end{cases}
 \]
 c) \[
 \begin{cases}
 px + 3y + pz & = 0 \\
 -px + 2z & = 3 \\
 x + 2y + pz & = p
 \end{cases}
 \]
 d) \[
 \begin{cases}
 x - y - z - t & = px \\
 -x + y - z - t & = py \\
 -x - y + z - t & = pz \\
 -x - y - z + t & = pt
 \end{cases}
 \]

4. Następujące układy równań rozwiązać za pomocą wzorów Cramera oraz metodą macierzą: a)
 \[
 \begin{cases}
 2x - y + z & = 2 \\
 3x + 2y + 2z & = -2 \\
 x - 2y + z & = 1
 \end{cases}
 \]
 b)
 \[
 \begin{cases}
 2x - 4y + 3z & = 1 \\
 x - 2y + 4z & = 3 \\
 3x - y + 5z & = 2
 \end{cases}
 \]
 c)
 \[
 \begin{cases}
 3x + y + z & = 2 \\
 x & = 5z = 0
 \end{cases}
 \]
 d)
 \[
 \begin{cases}
 x + 2y + 3z & = 1 \\
 2x + 3y + z & = 3 \\
 3x + y + 2z & = 2
 \end{cases}
 \]
 e)
 \[
 \begin{cases}
 x + 2y + 3z & = 14 \\
 4x + 3y - z & = 7 \\
 x - y + z & = 2
 \end{cases}
 \]
 f)
 \[
 \begin{cases}
 x + y + z & = 5 \\
 2x + 2y + z & = 3 \\
 3x + 2y + z & = 1
 \end{cases}
 \]
5. Następujące układy równań rozwiązać metodą eliminacji Gaussa:

\[
\begin{align*}
\text{a)} & \quad \begin{cases} x + y &= 1 \\ x + 2y - 3z &= -3 \\ 2x + 4y + z &= 1 \end{cases} & \quad \begin{cases} 2x + 3y + 2z &= 1 \\ 3x + 4y + 2z &= 2 \\ 4x + 2y + 3z &= 3 \end{cases} \\
\text{b)} & \quad \begin{cases} x + y + z + t &= 1 \\ 2x + 2y + z + t &= 0 \\ 3x + 2y + 3z + 2t &= 3 \\ 6x + 4y + 3z + 2t &= 2 \end{cases} & \quad \begin{cases} x + 2y - 3z &= 0 \\ 4x + 8y - 7z + t &= 1 \\ x + 2y - z + t &= 1 \\ -x + y + 4z + 6t &= 0 \end{cases} \\
\text{c)} & \quad \begin{cases} x + 4y + 2z - s &= 3 \\ 2x + 9y + 6z - 2s - 3t &= 5 \\ x + 2y - z - s + 5t &= 5 \\ -2x - 7y + z + 3s - 4t &= -5 \\ -x - 5y - z + 3s + 6t &= 4 \end{cases} & \quad \begin{cases} x - 2y + 3s + t &= 1 \\ 2x - 3y + z + 8s + 2t &= 3 \\ x - 2y + z + 3s - t &= 1 \\ y + 3s + 5t &= 0 \\ -x + 2y - 5s - 8t &= 1 \end{cases} \\
\text{e)} & \quad \begin{cases} 2x + y - z + t &= 1 \\ y + 3z - 3t &= 1 \\ x + y + z - t &= 1 \end{cases} & \quad \begin{cases} x + 2y - z - t &= 1 \\ x + y + z + 3t &= 2 \\ 3x + 5y - z + t &= 3 \end{cases} \\
\text{c)} & \quad \begin{cases} x - y + z - 2s + t &= 0 \\ 3x + 2y - z + s + 3t &= 1 \\ x - 8y + 5z - 9s + t &= -1 \end{cases} & \quad \begin{cases} 2x + y + z &= 1 \\ 3x - y + 3z &= 2 \\ x + y + z &= 0 \\ x - y + z &= 1 \end{cases} \\
\text{e)} & \quad \begin{cases} 5x + y + 2z + s - t + 6u &= 2 \\ -11x - 3y - 9z - 2s + 4t - 15u &= -5 \\ 14x + y + 2z + 3s + 2t + 3u &= 6 \\ 3x - 2y - 7z + s + 6t - 2u &= 1 \\ 2x + 3y + 9z - 7t + 8u &= 1 \end{cases} & \quad \begin{cases} x - 2y + z &= 4 \\ x + y + z &= 1 \\ 2x - 3y + 5z &= 10 \\ 5x - 6y + 8z &= 19 \end{cases} \\
\end{align*}
\]

6. Następujące układy prostokątne rozwiązać metodą eliminacji Gaussa:

\[
\begin{align*}
\text{a)} & \quad \begin{cases} 2x + y - z + t &= 1 \\ y + 3z - 3t &= 1 \\ x + y + z - t &= 1 \end{cases} & \quad \begin{cases} x + 2y - z - t &= 1 \\ x + y + z + 3t &= 2 \\ 3x + 5y - z + t &= 3 \end{cases} \\
\text{c)} & \quad \begin{cases} x - y + z - 2s + t &= 0 \\ 3x + 2y - z + s + 3t &= 1 \\ x - 8y + 5z - 9s + t &= -1 \end{cases} & \quad \begin{cases} 2x + y + z &= 1 \\ 3x - y + 3z &= 2 \\ x + y + z &= 0 \\ x - y + z &= 1 \end{cases} \\
\text{e)} & \quad \begin{cases} 5x + y + 2z + s - t + 6u &= 2 \\ -11x - 3y - 9z - 2s + 4t - 15u &= -5 \\ 14x + y + 2z + 3s + 2t + 3u &= 6 \\ 3x - 2y - 7z + s + 6t - 2u &= 1 \\ 2x + 3y + 9z - 7t + 8u &= 1 \end{cases} & \quad \begin{cases} x - 2y + z &= 4 \\ x + y + z &= 1 \\ 2x - 3y + 5z &= 10 \\ 5x - 6y + 8z &= 19 \end{cases} \\
\end{align*}
\]

7. Przedyskutować rozwiązaność układów równań w zależności od wartości parametru \(p \):

\[
\begin{align*}
\text{a)} & \quad \begin{cases} x + p^2 y + z &= -p \\ x + y - pz &= p^2 \\ y + z &= 1 \end{cases} & \quad \begin{cases} x + 4y - 2z &= -p \\ 3x + 5y - pz &= 3 \\ px + 3py + z &= p \end{cases} \\
\text{c)} & \quad \begin{cases} x + py - z &= 1 \\ x + 10y - 6z &= p \\ 2x - y + pz &= 0 \end{cases} & \quad \begin{cases} px + y + z &= 1 \\ x + py + z &= p \\ x + y + pz &= p^2 \end{cases} \\
\text{e)} & \quad \begin{cases} (p + 1) x + y + z &= p^2 + 3p \\ x + (p + 1) y + (p + 1) z &= p^4 + 3p^3 \end{cases} & \quad \begin{cases} px + y = 2 \\ 3x - y = 1 \\ x + 4y = p \end{cases} \\
\end{align*}
\]
Temat 6
Przestrzenie liniowe

6.1 Podstawowe definicje i przykłady

Niech X będzie zbiorem niepustym, $K = \mathbb{R}$ lub $K = \mathbb{C}$. Przyjmujemy następującą definicję.

Definicja

Zbiór X nazywamy przestrzenią liniową (przestrzenią wektorową) nad K wtedy i tylko wtedy, gdy w zbiorze X określone jest działanie dodawania elementów tego zbioru (dla $u, v \in X$, suma $u + v \in X$) oraz działanie mnożenia elementów zbioru X przez liczby z K (dla $x \in X$, $\lambda \in K$, iloczyn $\lambda \cdot x \in X$) spełniające następujące aksjomaty:

1° $u + v = v + u$ (przemienność dodawania);
2° $(u + v) + z = u + (v + z)$ (łączność dodawania)
3° istnieje $\theta \in X$ taki, że dla każdego $u \in X$, zachodzi $u + \theta = u$ (element neutralny);
4° dla każdego $u \in X$ istnieje $-u \in X$ taki, że $u + (-u) = \theta$ (element przeciwny);
5° dla dowolnego $u \in X$ zachodzi $1 \cdot u = u$;
6° dla dowolnych $\alpha, \beta \in K$, $u \in X$ zachodzi $\alpha (\beta u) = (\alpha \beta) u$;
7° dla dowolnych $\alpha, \beta \in K$, $u \in X$ zachodzi $(\alpha + \beta) u = \alpha u + \beta u$;
8° dla dowolnych $\alpha \in K$, $u, v \in X$ zachodzi $\alpha (u + v) = \alpha u + \alpha v$.

Elementy przestrzeni liniowej X nazywamy wektorami.

Uwaga

Odejmowanie elementów przestrzeni X definiujemy jako dodawanie elementu przeciwnego, tzn.

$$u - v = u + (-v).$$

Przykłady

1. $X = \mathbb{R}^n = \{x = (x_1, x_2, \ldots, x_n) : x_i \in \mathbb{R} \text{ dla } i = 1, 2, \ldots, n\}$ z działaniami

$$x + y = (x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n)$$

$$\lambda \cdot x = (\lambda x_1, \lambda x_2, \ldots, \lambda x_n)$$

jest przestrzenią liniową.
TEMAT 6. PRZESTRZENIE LINIOWE

2. $X = \mathbb{R}^\infty = \{x = (x_1, x_2, \ldots) : x_i \in \mathbb{R} \text{ dla } i = 1, 2, \ldots\}$ z działaniami
 \begin{align*}
x + y &= (x_1 + y_1, x_2 + y_2, \ldots) \\
\lambda \cdot x &= (\lambda x_1, \lambda x_2, \ldots)
\end{align*}
jest przestrzenią liniową.

3. Niech $X = \mathbb{R} [x]$ oznacza zbiór wszystkich wielomianów o współczynnikach rzeczywistych z działaniami określonymi w sposób naturalny, tzn. jako suma wielomianów i iloczyn wielomianu przez liczbę. Zbiór ten jest przestrzenią liniową.

4. Niech $X = \mathbb{R}^n [x]$ oznacza zbiór wszystkich wielomianów o współczynnikach rzeczywistych stopnia co najwyżej n z działaniami określonymi w sposób naturalny, tzn. jako suma wielomianów i iloczyn wielomianu przez liczbę. Zbiór ten jest przestrzenią liniową.

5. Niech $X = C(I)$ będzie zbiorem wszystkich funkcji ciągłych na przedziale $I \subset \mathbb{R}$ o wartościach rzeczywistych. Działania określany w sposób naturalny, tzn. jako sumę funkcji i iloczyn funkcji przez liczbę. Zbiór ten jest również przestrzenią liniową.

6. Niech $X = M_{m \times n}$ będzie zbiorem macierzy o m wierszach i n kolumnach. Jeśli $A = [a_{ij}]$ i $B = [b_{ij}]$, to działania określany w sposób naturalny, tzn.
 \begin{align*}
 A + B &= [a_{ij} + b_{ij}] \\
 \lambda \cdot A &= [\lambda a_{ij}]
\end{align*}
Zbiór $M_{m \times n}$ jest przestrzenią liniową.

Definicja
Niech X będzie przestrzenią liniową nad K. Podzbiór $W \subset X$ nazywamy podprzestrzenią liniową przestrzeni liniowej X wtedy i tylko wtedy, gdy:

1° jest on zamknięty ze względu na działanie dodawania, tzn. dla dowolnych $u, v \in W$, ich suma $u + v \in W$;

2° dla każdego $\lambda \in K$ i dowolnego $u \in W$, iloczyn $\lambda \cdot u \in W$.

6.2 Liniowa niezależność wektorów, kombinacje liniowe

Definicja
Niech X będzie przestrzenią liniową. Mówimy, że wektory $u_1, u_2, \ldots, u_n \in X$ są liniowo niezależne wtedy i tylko wtedy, gdy dla dowolnych współczynników $\alpha_1, \alpha_2, \ldots, \alpha_n \in K$ z warunku
\begin{equation}
\alpha_1 u_1 + \alpha_2 u_2 + \ldots + \alpha_n u_n = \theta \tag{6.1}
\end{equation}
wynika, że
\[\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0.\]
Definicja
Niech \(X \) będzie przestrzenią liniową. Mówimy, że wektory \(u_1, u_2, \ldots, u_n \in X \) są liniowo zależne wtedy i tylko wtedy, gdy istnieją współczynniki \(\alpha_1, \alpha_2, \ldots, \alpha_n \in K \), nie wszystkie równe zero takie, że
\[
\alpha_1 u_1 + \alpha_2 u_2 + \ldots + \alpha_n u_n = \theta.
\]

Definicja
Nieskończony układ wektorów z przestrzeni liniowej jest liniowo niezależny, jeżeli każdy jego skończony podukład jest liniowo niezależny. W przeciwnym przypadku układ taki nazywamy liniowo zależnym.

Definicja
Niech \(X \) będzie przestrzenią liniową. Kombinacją liniową wektorów \(u_1, u_2, \ldots, u_n \) nazywamy każdy wektor \(v \) postaci
\[
v = \alpha_1 u_1 + \alpha_2 u_2 + \ldots + \alpha_n u_n,
\]
gdzie \(\alpha_1, \alpha_2, \ldots, \alpha_n \in K \). Zbiór wszystkich kombinacji liniowych wektorów \(u_1, u_2, \ldots, u_n \) ozna- czamy przez \(\text{lin} (u_1, u_2, \ldots, u_n) \).
Wektory \(u_1, u_2, \ldots, u_n \) nazywamy generatorami zbioru \(\text{lin} (u_1, u_2, \ldots, u_n) \).

Twierdzenie
Niech \(X \) będzie przestrzenią liniową, niech \(v, u_1, u_2, \ldots, u_n \in X \). Niech \(W \subset X \) będzie podprzestrzenią liniową przestrzeni \(X \). Wówczas:
\begin{enumerate}
\item pierwszy układ wektorów przestrzeni \(X \) zawierający wektor zerowy \(\theta \) jest liniowo zależny;
\item jeśli wektory \(u_1, u_2, \ldots, u_n \) są liniowo zależne, to każdy układ wektorów przestrzeni \(X \) zawierający \(u_1, u_2, \ldots, u_n \) jako swój podzbiór, jest także liniowo zależny;
\item jeśli wektory \(u_1, u_2, \ldots, u_n \) są liniowo niezależne, to każdy podzbiór tego układu jest również układem liniowo niezależnym;
\item jeśli wektory \(u_1, u_2, \ldots, u_n \) są liniowo zależne (niezależne) w przestrzeni \(X \), to są również liniowo zależne (niezależne) w podprzestrzeni \(W \);
\item wektory \(u_1, u_2, \ldots, u_n \) są liniowo zależne wtedy i tylko wtedy, gdy co najmniej jeden z nich jest kombinacją liniową pozostałych;
\item jeśli wektory \(u_1, u_2, \ldots, u_n \) są liniowo niezależne, a wektory \(v, u_1, u_2, \ldots, u_n \) są liniowo zależne, to wektor \(v \) jest kombinacją liniową wektorów \(u_1, u_2, \ldots, u_n \).
\end{enumerate}

Twierdzenie (Steinitza)
Niech \(v_1, v_2, \ldots, v_n \in X \), \(W = \text{lin} (v_1, v_2, \ldots, v_n) \). Niech wektory \(w_1, w_2, \ldots, w_k \in W \) będą liniowo niezależne. Wówczas \(k \leq n \).

Przykłady
1. Układ wektorów \((1,0,0,\ldots), (0,1,0,\ldots), (0,0,1,\ldots) \) jest układem liniowo niezależnym w przestrzeni \(\mathbb{R}^\infty \).
2. Układ elementów \(\{1, x, x^2, \ldots\} \) jest układem liniowo niezależnym w \(R[x] \).
3. Układ funkcji postaci \(f_\lambda (x) = e^{\lambda x} \) dla \(\lambda \in \mathbb{R} \) jest układem liniowo niezależnym w \(C(\mathbb{R}) \).
6.3 Baza i wymiar przestrzeni liniowej

Definicja
Bazą przestrzeni liniowej \(X \) nazywamy nazywamy liniowo niezależny zbiór \(B \) wektorów tej przestrzeni taki, że \(X = \text{lin } B \).

Przykłady

1. Zbadaj, czy układ wektorów \(u_1 = (1, 1, 1), u_2 = (1, 0, 0), u_3 = (0, 2, 2) \) jest bazą w \(\mathbb{R}^3 \).

 Rozwiązanie
 Ponieważ \(u_3 = 2u_1 - 2u_2 \), zatem rozważany układ nie jest układem wektorów liniowo niezależnych. Oznacza to, że nie jest bazą w \(\mathbb{R}^3 \).

2. Zbadaj, czy układ wektorów \(u_1 = (1, 1, 0), u_2 = (1, 0, 1), u_3 = (0, 1, 1) \) jest bazą w \(\mathbb{R}^3 \).

 Rozwiązanie
 Sprawdzając liniową niezależność tego układu wektorów, zgodnie z definicją rozważamy warunek \((6.1) \), z którego wynika, że

 \[
 \begin{align*}
 \alpha_1 + \alpha_2 &= 0 \\
 \alpha_1 + \alpha_3 &= 0 \\
 \alpha_2 + \alpha_3 &= 0
 \end{align*}
 \]

 a więc \(\alpha_1 = \alpha_2 = \alpha_3 = 0 \).
 Rozważamy teraz dowolny wektor \(u = (a, b, c) \in \mathbb{R}^3 \). Układ równań

 \[
 \begin{align*}
 \alpha_1 + \alpha_2 &= a \\
 \alpha_1 + \alpha_3 &= b \\
 \alpha_2 + \alpha_3 &= c
 \end{align*}
 \]

 ma dla dowolnych \(a, b, c \) dokładnie jedno rozwiązanie, co oznacza, że \(u \in \text{lin } (u_1, u_2, u_3) \), zatem \(\mathbb{R}^3 = \text{lin } (u_1, u_2, u_3) \). Oznacza to, że rozważany układ jest bazą \(\mathbb{R}^3 \).

Twierdzenie
KaŜda przestrzeń liniowa ma bazę.

Z twierdzenia Steinitza można łatwo wyprowadzić następujące twierdzenie.

Twierdzenie

1° Jeśli baza przestrzeni liniowej składa się z \(n \) wektorów, to każda inna baza tej przestrzeni składa się też z \(n \) wektorów.

2° Jeśli baza przestrzeni liniowej jest nieskończona, to każda inna baza tej przestrzeni jest także nieskończona.

3° Każdy układ wektorów liniowo niezależnych w przestrzeni liniowej można uzupełnić do bazy tej przestrzeni.
Z powyższego twierdzenia wynika poprawność następującej definicji.

Definicja
Wymiarem przestrzeni liniowej X nazywamy liczbę elementów dowolnej bazy tej przestrzeni, o ile baza ta jest skończona, lub ∞, o ile baza tej przestrzeni zawiera nieskończenie wiele wektorów. Wymiar przestrzeni oznaczamy symbolem $\dim X$.

6.3.1 Standardowe bazy i wymiar podstawowych przestrzeni liniowych

Przykłady
1. Bazę przestrzeni \mathbb{R}^n tworzą wektory $e_1 = (1, 0, 0, \ldots, 0), e_2 = (0, 1, 0, \ldots, 0), \ldots, e_n = (0, 0, 0, \ldots, 1)$, $\dim \mathbb{R}^n = n$.
2. Bazę przestrzeni $\mathbb{R}^n[x]$ tworzą wektory: $1, x, x^2, \ldots, x^n$, $\dim \mathbb{R}^n[x] = n + 1$.
3. Bazę przestrzeni $\mathbb{R}[x]$ tworzą wektory 1, x, x^2, \ldots, $\dim \mathbb{R}[x] = \infty$.
4. Bazę przestrzeni $M_{m \times n}$ tworzą macierze, z których każda składa się z jedynki i $mn - 1$ zer, przy czym jedynka przebiega wszystkie możliwe miejsca macierzy. Macierzy takich jest mn. W związku z tym $\dim M_{m \times n} = mn$.

6.4 Przedstawienie wektora w bazie
Niech B będzie bazą przestrzeni liniowej X. Wówczas prawdziwe jest następujące twierdzenie.

Twierdzenie
Każdy wektor v przestrzeni liniowej X ma jednoznaczne przedstawienie w postaci kombinacji liniowej wektorów bazy, tzn. istnieją jednoznacznie określone liczby $\alpha_i \in K$, takie, że
$$v = \alpha_1 b_1 + \alpha_2 b_2 + \ldots + \alpha_n b_n,$$
(6.2)
gdzie $b_i \in B$ dla $i = 1, 2, \ldots, n$.

Dowód
Przypuścimy, że przedstawienie (6.2) nie jest jednoznaczne, tzn., że
$$v = \alpha_1 b_1 + \alpha_2 b_2 + \ldots + \alpha_n b_n = \tilde{\alpha}_1 b_1 + \tilde{\alpha}_2 b_2 + \ldots + \tilde{\alpha}_n b_n$$
dla różnych układów liczb $\alpha_i, \tilde{\alpha}_i$ (niektóre z tych współczynników mogą być równe zero). W takim razie, przenosząc wszystkie wyrazy na jedną stronę, otrzymujemy kombinację liniową
$$(\alpha_1 - \tilde{\alpha}_1) b_1 + (\alpha_2 - \tilde{\alpha}_2) b_2 + \ldots + (\alpha_n - \tilde{\alpha}_n) b_n = \theta$$
równą zero, której nie wszystkie współczynniki są zerowe, przeczy to liniowej niezależności wektorów b_1, b_2, \ldots, b_n.

Definicja
Współrzędnymi wektora v w bazie B nazywamy współczynniki $\alpha_i \in K$ kombinacji liniowej (6.2) $v = \alpha_1 b_1 + \alpha_2 b_2 + \ldots + \alpha_n b_n$ przedstawiającej ten wektor.
Przykłady

1. Niech $X = \mathbb{R}^2$. Znaleźć współrzędne wektora $(5,-4)$ w bazie $B = \{(1,1), (1,0)\}$.

Rozwiązanie
Warunek (6.2) prowadzi do układu równań
\[
\begin{align*}
\alpha_1 + \alpha_2 &= 5 \\
\alpha_1 &= -4,
\end{align*}
\]
którego jedynym rozwiązaniem są liczby $\alpha_1 = -4, \alpha_2 = 9$.

2. Niech $X = \mathbb{R}_2[x]$. Znaleźć współrzędne wektora $w(x) = x + x^2$ w bazie $B = \{1 + x, 1 - x, 1 + x + x^2\}$.

Rozwiązanie
Warunek
\[
x + x^2 = \alpha_1 (1 + x) + \alpha_2 (1 - x) + \alpha_3 (1 + x + x^2)
\]
prowadzi do układu równań
\[
\begin{align*}
\alpha_3 &= 1 \\
\alpha_1 - \alpha_2 + \alpha_3 &= 1 \\
\alpha_1 + \alpha_2 + \alpha_3 &= 0,
\end{align*}
\]
z którego otrzymujemy, że $\alpha_1 = -\frac{1}{2}, \alpha_2 = \frac{1}{2}, \alpha_3 = 1$.

Przy zamianie jednej bazy przestrzeni liniowej na drugą, zmianie ulegają współrzędne wektorów. Do opisu tej zmiany służy tzw. macierz przejścia.

Definicja
Niech X będzie przestrzenią liniową oraz niech $B = \{b_1, b_2, \ldots, b_n\}$, $B' = \{b'_1, b'_2, \ldots, b'_n\}$ będą bazami tej przestrzeni. Macierzą przejścia z bazy B do bazy B' nazywamy macierz kwadratową P stopnia n, której kolejnymi kolumnami są współrzędne kolejnych wektorów bazy B' w bazie B.

Twierdzenie
Niech X będzie przestrzenią liniową oraz niech $v \in X$. Niech $B = \{b_1, b_2, \ldots, b_n\}$, $B' = \{b'_1, b'_2, \ldots, b'_n\}$ będą bazami przestrzeni X, a P macierzą przejścia z bazy B do bazy B'. Wówczas współrzędne $[\alpha'_1, \alpha'_2, \ldots, \alpha'_n]$ wektora v w bazie B' wyrażają się wzorem
\[
\begin{bmatrix}
\alpha'_1 \\
\alpha'_2 \\
\vdots \\
\alpha'_n
\end{bmatrix} = P^{-1}
\begin{bmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_n
\end{bmatrix}
\]
gdzie \([\alpha_1, \alpha_2, \ldots, \alpha_n]\) są współrzędnymi wektora \(v\) w bazie \(B\).

Dowód
Potraktujmy wektory \(b_i\) i \(b'_i\) jako wektory kolumnowe. Z definicji macierzy przejścia z bazy \(B\) do bazy \(B'\) wynika, że

\[
[b'_1, b'_2, \ldots, b'_n] = [b_1, b_2, \ldots, b_n] P.
\]

Ponieważ \(I_n = PP^{-1}\), więc

\[
v = \alpha_1 b_1 + \alpha_2 b_2 + \ldots + \alpha_n b_n = [b_1, b_2, \ldots, b_n]
\]

\[
= [b_1, b_2, \ldots, b_n] (PP^{-1}) = ([b_1, b_2, \ldots, b_n] P) (P^{-1} [\alpha_1 \alpha_2 \ldots \alpha_n])
\]

\[
= [b'_1, b'_2, \ldots, b'_n] P^{-1} [\alpha_1 \alpha_2 \ldots \alpha_n].
\]

Z ostatniej równości wynika, że liczby \(\alpha'_1, \alpha'_2, \ldots, \alpha'_n\) określone równością

\[
\begin{bmatrix}
\alpha'_1 \\
\alpha'_2 \\
\vdots \\
\alpha'_n
\end{bmatrix}
= P^{-1}
\begin{bmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_n
\end{bmatrix}
\]

są współrzędnymi wektora \(v\) w bazie \(B'\).

6.5 Zadania

1. Sprawdzić, że podane zbiory \(W\) są podprzestrzeniami liniowymi odpowiednich przestrzeni liniowych \(V\):
 a) \(W = \{(2x - y, y + z) \in \mathbb{R}^2 : x, y, z \in \mathbb{R}\}, V = \mathbb{R}^2\);
 b) \(W = \{(x, y, z, t) \in \mathbb{R}^4 : x - y = z - t\}, V = \mathbb{R}^4\);
 c) \(W = \{p \in R_2 [x] : p (1) = p'(0)\}, V = R [x];
 d) \(W = \{A \in M_{3 \times 3} : A = A^T\}, V = M_{3 \times 3}\).

2. Opisać wszystkie podprzestrzenie liniowe przestrzeni \(\mathbb{R}^3\).

3. Określić, które z podanych zbiorów \(U, W, X, Y\) są podprzestrzeniami liniowymi wskazanych przestrzeni liniowych \(V\):
TEMAT 6. PRZESTRZENIE LINIOWE

5. Zbadać z definicji liniową niezależność podanych układów wektorów w odpowiednich przestrzeniach:

a) \(V = \mathbb{R}^2, \) \(U = \{ (x, y) : |x - y| \leq 1 \}, \) \(W = \{ (x, y) : \ln(1 - x^2 - y^2) \geq 0 \}, \) \(X = \{ (x, y) : 9x^2 + 12xy + 4y^2 = 0 \}, \) \(Y = \{ (x, y) : 3x^2 + 5xy - 2y^2 = 0 \}. \)

b) \(V = \mathbb{R}^4, \) \(U = \{ (x, y, z, t) : 3|x| = 2|y| \}, \) \(W = \{ (xy, y, x, 0) : x, y \in \mathbb{R} \}, \) \(X = \{ (x, y, z, t) : x^2 + z^6 = 0 \}, \) \(Y = \{ (x, x + y, -x, -y) : x, y \in \mathbb{R} \}. \)

c) \(V = \mathbb{R}^\infty, \) \(U = \left\{ (x_n) : \lim_{n \to \infty} |x_n| = \infty \text{ lub } \lim_{n \to \infty} x_n = 0 \right\}, \)
\(W = \{ (x_n) : \text{ciąg} (x_n) \text{ jest zbieżny lub ograniczony} \}, \)
\(X = \{ (x_n) : \text{istnieje} \ n_0 \in \mathbb{N} \text{ takie, że} x_n = 0 \text{ dla } n \geq n_0 \}, \)
\(Y = \{ (x_n) : x_{n+2} = x_n + x_{n+1} \text{ dla każdego } n \in \mathbb{N} \}. \)

d) \(V = R[x], \) \(U = \{ p : \text{stopień} p \ \text{równy jest} \ 4 \}, \)
\(W = \{ p : 2p(x) = p(2x) \text{ dla każdego } x \in \mathbb{R} \}, \)
\(X = \{ p : p(0) = 0 \text{ lub } p'(0) = 0 \}, \)
\(Y = \{ p : \text{wielomian} p \ \text{jest funkcją parzystą} \}. \)

e) \(V = C(\mathbb{R}), \) \(U = \{ f : \text{funkcja} f \ \text{jest niemalejąca} \}, \)
\(W = \{ f : \text{funkcja} f \ \text{jest różniczkowalna} \}, \)
\(X = \{ f : \text{funkcja} f \ \text{jest stała na zbiorze} \mathbb{N} \}, \)
\(Y = \{ f : f(x + y) = f(x)f(y) \ \text{dla dowolnych} \ x, y \in \mathbb{R} \}. \)

f) \(V = M_{2\times2}, \) \(U = \left\{ A : \det A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}, \)
\(W = \{ A : \det A \geq 0 \}, \)
\(X = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : abcd = 0 \right\}, \)
\(Y = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a + c = b \right\}. \)

4. Wektory \((3, -2, 5), (0, 1, 1) \) przedstawić na wszystkie możliwe sposoby jako \textit{kombinacje liniowe} wektorów:

a) \((3, -2, 5), (1, 1, 1) \); b) \((3, -2, 5), (1, 1, 1), (0, -5, 2) \);
b) \((1, -2, 3), (1, 0, 1), (0, 2, -1) \); d) \((1, -2, 3), (1, 0, 1), (-1, -2, 1) \).

c) \((1, -2, 3), (1, 0, 1), (0, 2, -1) \).

5. Zbadać z definicji \textit{liniową niezależność} podanych układów wektorów w odpowiednich przestrzeniach liniowych:

a) \((1, 4), (2, 3), (1, 1), (5, 6) \) w przestrzeni \(\mathbb{R}^2 \);
b) \((1, -2, 3), (1, 0, 1), (0, 2, -1) \) w przestrzeni \(\mathbb{R}^3 \);
c) \((1, -2, 3), (1, 0, 1), (-1, -2, 1) \) w przestrzeni \(\mathbb{R}^3 \);
d) \(3 - x, 4 + x, 2x + 3 \) w przestrzeni \(R[x] \);
e) \(2 - x^3, 3x + 2, x^2 + x - 1 \) w przestrzeni \(R[x] \);
f) \(1, \cos x, \cos 2x, \cos^2 x \) w przestrzeni \(C(\mathbb{R}) \);
g) \(1, x, \cos x, e^x \) w przestrzeni \(C(\mathbb{R}) \);
h) \(I, A, A^2 \) dla \(A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \) w przestrzeni \(M_{2\times2} \).
6. Uzasadnić liniową zależność podanych wektorów w odpowiednich przestrzeniach liniowych przedstawiając jeden z tych wektorów jako kombinację liniową pozostałych:

a) \((1, 2, 3), (2, 3, 4), (1, 1, 1)\) w przestrzeni \(\mathbb{R}^3\);
b) \(x^5 - x^3 - x^2 - x + 1, x^3 + x^2 + x, x^3 - x^2 + x, x^4 + x^3 + x^2 + x + 1\) w przestrzeni \(R_4[x]\);
c) \(\sin x, \sin \left(\frac{\pi}{2} - x\right), \sin \left(\frac{\pi}{3} - x\right)\) w przestrzeni \(C(\mathbb{R})\);
d) \(\arcsin x, \arcsin \cos x, 1\) w przestrzeni \(C([-1, 1])\).

7. Wektory \(u, v, w, x\) są liniowo niezależne w przestrzeni liniowej \(V\). Zbadać liniową niezależność wektorów:

a) \(u + v, v + w, u + w\);
b) \(u, u + v, u + v + w, u + v + w + x\);
c) \(u - v, v - w, w\);
d) \(u - v, v - w, w - x, x - u\);
e) \(u - 3v + 5w, 2u + v + 3w, 3u + 2v + 4w\);
f) \(2u + 3v + w, u + 2v + x, 4u + 7v + w + 2x\).

8. Uzasadnić liniową niezależność podanych nieskończonych układów wektorów z odpowiednich przestrzeni liniowych:

a) \(\{(1,0,0,\ldots), (1,1,0,\ldots), (1,1,1,\ldots), \ldots\}\) w \(\mathbb{R}^\infty\);
b) \(\{1, x, x^2, \ldots\}\) w \(R[x]\);
c) \(\{p_n \in R[x] : p_n(x) = \frac{x^{n-1}}{x-1} \text{ dla } x \neq 1, n \in \mathbb{N}\}\) w \(R[x]\);
d) \(\{1, \cos x, \cos 2x, \ldots\}\) w \(C(\mathbb{R})\).

9. Wyznaczyć generatory następujących przestrzeni liniowych:

a) \(V = \{(x, y, z) \in \mathbb{R}^3 : 4x - y + 2z = 0\}\);
b) \(V = \{(2r + s - t, t - u, r + 3s + u, s + u, t - u) : r, s, t, u \in \mathbb{R}\}\);
c) \(V = \{(x, y, z, t) \in \mathbb{R}^4 : x - y = y - z = z - t\}\);
d) \(V = \{p \in R_3[x] : p(1) + p(2) = p(3) + p'(0)\}\).

10. Sprawdzić z definicji, czy podane zbiory wektorów są bazami wskazanych przestrzeni liniowych:

a) \(B = \{(2, 5), (3, 1), (6, -7)\}\) w \(\mathbb{R}^2\);
b) \(B = \{(2, 3, -1), (1, -3, 2)\}\) w \(\mathbb{R}^3\);
c) \(B = \{(1, -1, 4), (3, 0, 1), (2, 1, -2)\}\) w \(\mathbb{R}^3\);
d) \(B = \{2x + 4, 3x - x^2, -2x^2 + 4x - 4\}\) w \(R_2[x]\).

11. Wektory \(u, v, w\) tworzą bazę przestrzeni liniowej \(V\). Zbadać z definicji, czy podane zbiory wektorów też są bazami przestrzeni \(V\):

a) \(u - 2v + w, 3u + w, u + 4v - w\);
b) \(u, 2u + v, 3u - v + 4w\);
c) \(v - u, u + 3v, 2v - u\);
d) \(2u, w + u - 2v, w - u\).
12. Dla jakich wartości parametru \(p \in \mathbb{R} \) podane zbiory wektorów stanowią bazy odpowiednich przestrzeni \(\mathbb{R}^n \)?

 a) \(B = \{(p - 2, p), (3, 2 + p)\} \) w \(\mathbb{R}^2 \);

 b) \(B = \{(1, 3, p), (p, 0, -p), (1, 2, 1)\} \) w \(\mathbb{R}^3 \);

 c) \(B = \{(1, 1, 1), (1, p, 2, 3), (1, p^2, 4, 9), (1, p^3, 8, 27)\} \) w \(\mathbb{R}^4 \);

 d) \(B = \{(0, 1, 1, \ldots, 1), (p, 0, 1, \ldots, 1), (p, p, 0, \ldots, 1), \ldots (p, p, p, \ldots, 0)\} \) w \(\mathbb{R}^n \).

13. Wskazać bazy i określić wymiary podanych przestrzeni liniowych:

 a) \(V = \{(x + y + z, x - y, x - z, y - z) : x, y, z \in \mathbb{R} \} \);

 b) \(V = \{(a + 2b + c, 3a - b + 2c, 5a + 3b + 4c) : a, b, c \in \mathbb{R} \} \);

 c) \(V = \{(x, y, z, t) \in \mathbb{R}^4 : 2x - y = z - t = 0 \} \);

 d) \(V = \{p \in R_4 [x] : p(2x) = 4xp'(x) + p(0)\} \);

 e) \(V = \{A = [a_{ij}] \in M_{3 \times 4} : a_{ij} = 0 \text{ dla } i \leq j\} \);

 f) \(V = \text{lin} \{1, e^x, e^{-x}, \sinh x, \cosh x\} \subset C(\mathbb{R}) \).

14. Znaleźć bazy podanych przestrzeni liniowych zawierające wskazane zbiory wektorów:

 a) \(\{(-1, 5, 3)\} \) w \(\mathbb{R}^3 \);

 b) \(\{(1, 0, 1, -1), (2, 3, -1, 2), (3, 3, 2, 1)\} \) w \(\mathbb{R}^4 \);

 c) \(\{2x - 3, x^3 + 4x - 1\} \) w \(R_3 [x] \);

 d) \(\{x^2 + 5, x^2 - 3x, x^4 - 2x^3\} \) w \(R_4 [x] \);

 e) \(\{1, 1 + x^2, 1 + x^2 + x^4, 1 + x^2 + x^4 + x^6, \ldots\} \) w \(R[x] \).

15. Znaleźć z definicji współrzędne podanych wektorów we wskazanych bazach odpowiednich przestrzeni liniowych:

 a) \(v = (1, 4) \in \mathbb{R}^2, B = \{(1, 5), (1, 6)\} \);

 b) \(v = (8, 1, 7, 5) \in \mathbb{R}^4, B = \{(1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1)\} \);

 c) \(p = x^2 - 3x + 3 \in R_2 [x], B = \{x^2 + 3x - 1, -x^2 + x + 3, 2x^2 - x - 2\} \).

16. Wyznaczyć współrzędne wektora \(v \) w podanej bazie \(B' \) pewnej przestrzeni liniowej, mając dane jego współrzędne w bazie \(B \):

 a) \([4, -3], B = \{b_1, b_2\}, B' = \{2b_1 - b_2, b_1 + 2b_2\} \);

 b) \([1, 1, -2], B = \{x, x + 1, x^2 + 1\}, B' = \{1, 1 + x^2, x + x^2\} \);

 c) \([1, 2, \ldots, n], B = \{b_1, b_2, \ldots, b_n\}, B' = \{b_1 - b_2, b_2 - b_3, \ldots, b_{n-1} - b_n, b_n\} \).

17. Obliczyć współrzędne wskazanych wektorów w wybranych bazach podanych przestrzeni liniowych:

 a) \(V = \{(x - 5y, x + y, 2x + y, x + y) : x, y \in \mathbb{R} \}, v = (-2, 4, 7, 4) \);

 b) \(V = \{(x, y, z, t) \in \mathbb{R}^4 : x - 2y = y - 2z = 0\}, v = (8, 4, 2, 9) \);

 c) \(V = \{p \in R_3 [x] : p(1) = p(0)\}, q = 2x^3 - x^2 - x + 5 \);

 d) \(V = \{A = [a_{ij}] \in M_{2 \times 2} : a_{11} + a_{22} = 0\}, B = \begin{bmatrix} 3 & 1 \\ -2 & -3 \end{bmatrix} \).

18. Znaleźć takie bazy odpowiednich przestrzeni liniowych, w których wskazane wektory mają podane współrzędne:

a) \(v = (2, -1, 3) \in \mathbb{R}^3, \ [1, 0, 1]; \)

b) \(v = (1, 1, 1, 1) \in \mathbb{R}^4, V = \{(x, y, z, t) \in \mathbb{R}^4 : x = t, x - 3y + 2z = 0\}, \ [2, 2]; \)

c) \(v = (1, 0, \ldots, 0) \in \mathbb{R}^n, \ [1, 1, \ldots, 1]. \)

19. Napisać macierze przejścia z bazy \(B \) do bazy \(B' \) odpowiedniej przestrzeni liniowej:

a) \(V = \mathbb{R}^3, B = \{(1, 1, 1), (1, 0, 1), (0, 1, 1)\}, B' = \{(1, 0, 1), (0, 1, 1), (0, 0, 1)\}; \)

b) \(V = \mathbb{R}_2[x], B = \{x^2, x, 1\}, B' = \{3x^2 - x, 2x^2 + x - 1, x^2 + 5x - 6\}. \)

20. Wykorzystując macierze przejścia z baz standardowych odpowiednich przestrzeni liniowych do baz zadanych, znaleźć współrzędne podanych wektorów w tych bazach:

a) \(V = \mathbb{R}^2, v = (1, 1), B' = \{(4, 1), (-2, 3)\}; \)

b) \(V = \mathbb{R}^3, v = (-2, 4, 7), B' = \{(1, -2, 3), (2, 1, 4), (-3, 1, -6)\}; \)

c) \(V = \mathbb{R}_3[x], w(x) = 2x^3 - x^2 + 1, \)
\(B' = \{2x^3 + 3x^2 + 2x + 1, 2x^3 + x + 1, x^2 + 2x + 1, 2x^2 + x + 1\}. \)

21. Wektor \(v \) ma w bazie \(\{b_1, b_2, b_3\} \) współrzędne \([0, 1, -2]\). Stosując macierz przejścia z bazy do bazy obliczyć współrzędne tego wektora w bazie:

a) \(\{b_1 + b_2, b_2 + b_3, b_1 + b_3\}; \)

b) \(\{2b_1 + b_2 - 3b_3, 3b_1 + 2b_2 - 5b_3, b_1 - b_2 + b_3\}. \)
Temat 7

Układy równań liniowych (II)

7.1 Minory, rząd macierzy

DEFinicja
Minorem stopnia \(k \) macierzy \(A \in M_{m \times n} \) nazywamy wyznacznik macierzy kwadratowej stopnia \(k \) otrzymanej z macierzy \(A \) przez skreślenie pewnej liczby wierszy i kolumn.

DEFinicja
Rzędem macierzy nazywamy największy stopień jej niezerowego minora.

Rząd macierzy oznaczamy symbolami \(r(A) \), \(rz(A) \) lub rank \((A) \).

Twierdzenie (własności rzędu macierzy)

1. Jeśli \(A \in M_{m \times n} \), to \(0 \leq rz(A) \leq \min(m,n) \).
2. Rząd macierzy i rząd macierzy transponowanej są równe, tzn. \(rz(A) = rz(A^T) \).
3. Zamiana dwóch dowolnych wierszy (kolumn) macierzy nie zmienia jej rzędu.
4. Pomnożenie dowolnego wiersza (kolumny) przez liczbę różną od zera nie zmienia rzędu macierzy.
5. Dodanie do ustalonego wiersza (kolumny) sumy innych wierszy (kolumn) pomnożonych przez dowolne stałe nie zmienia rzędu macierzy.

Dowód powyższego twierdzenia może być łatwo przeprowadzony przy pomocy twierdzeń dotyczących [własności wyznaczników].

Przykłady

1. Zbadać z definicji rząd macierzy

\[
A = \begin{bmatrix}
1 & p & -1 & 2 \\
2 & -1 & p & 5 \\
1 & 10 & -6 & 1
\end{bmatrix}
\]

w zależności od parametru \(p \).

Rozwiązanie

Ponieważ minor \[
\begin{vmatrix}
2 & -1 \\
1 & 10
\end{vmatrix}
\]
\[
\begin{vmatrix}
2 & -1 & 1 & 10 \\
1 & 10 & 1 & 5
\end{vmatrix}
\]
\[
\begin{vmatrix}
1 & -1 & 2 \\
1 & -6 & 1 & 10
\end{vmatrix}
\]
\[
\begin{vmatrix}
p & -1 & 2 \\
10 & -6 & 1
\end{vmatrix}
\]

= 21 \neq 0, więc rząd macierzy \(A\) może być równy 2 lub 3. Rząd ten równy będzie 2 tylko wtedy, gdy wszystkie minory stopnia 3 równe bedą zero, tzn. gdy

\[
\begin{vmatrix}
p & -1 & 2 \\
10 & -6 & 1
\end{vmatrix}
\]

Rozwiązując powyższe równania otrzymujemy kolejno:

\[
p_1, p_2 = -5, +3; \quad p = +3; \quad p_1, p_2 = -13, +3.\]

Oznacza to, że dla \(p = 3\) wszystkie minory stopnia 3 są równe zero, zatem \(\text{rz}(A) = 2\) dla \(p = 3\). Dla \(p \neq 3\) istnieją minory stopnia 3 różne od zera, więc \(\text{rz}(A) = 3\) dla \(p \neq 3\).

2. Korzystając z własności rzędu macierzy obliczyć \(\text{rz}(A)\), gdzie

\[
A = \begin{bmatrix}
1 & 2 & 3 & 4 & 5 \\
5 & 4 & 3 & 2 & 1 \\
7 & 8 & 9 & 10 & 11
\end{bmatrix}
\]

Rozwiązanie

Odejmijmy od trzeciego wiersza sumę drugiego wiersza i pierwszego pomnożonego przez 2. Otrzymamy

\[
\text{rz}(A) = \text{rz}\left(\begin{bmatrix}
1 & 2 & 3 & 4 & 5 \\
5 & 4 & 3 & 2 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}\right) = 2,
\]

ponieważ \[
\begin{vmatrix}
1 & 2 \\
5 & 4
\end{vmatrix}
\]

= -6 \neq 0.

Rząd macierzy można również scharakteryzować przy pomocy następującego twierdzenia.

Twierdzenie

Rząd macierzy równy jest liczbie liniowo niezależnych wierszy (kolumn) tej macierzy.

7.2 Twierdzenie Kroneckera-Capelli

Rozważmy układ równań liniowych postaci

\[AX = B,\]

(7.1)

gdzie \(A = [a_{ij}]\) jest macierzą o \(m\) wierszach i \(n\) kolumnach, \(B\) jest kolumną wyrazów wolnych (prawych stron), \(B = \begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{bmatrix}\), \(X\) jest kolumną niewiadomych, \(X = \begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}\) (por. (5.1)). Niech \([A|B]\) będzie macierzą rozszerzoną tego układu (por. (5.6)). Prawdziwe jest następujące twierdzenie.
Twierdzenie (Kroneckera-Capelli)
Układ równań liniowych (7.1) ma rozwiązanie wtedy i tylko wtedy, gdy
\[\text{rz} \left(\begin{bmatrix} A \end{bmatrix} \right) = \text{rz} \left(\begin{bmatrix} A | B \end{bmatrix} \right). \] (7.2)
Jeśli \(\text{rz} \left(\begin{bmatrix} A \end{bmatrix} \right) = n \) (\(n \) jest liczbą niewiadomych), to układ powyższy jest jednoznacznie rozwiązalny. Jeśli \(\text{rz} \left(\begin{bmatrix} A \end{bmatrix} \right) = r < n \), to układ ten ma nieskończenie wiele rozwiązań zależnych od \(n-r \) parametrów (układ nieoznaczony).

Przykłady
1. Przedyskutować rozwiązalność układu równań
\[
\begin{cases}
x - y + 2z - 3t = 2 \\
2x + y - z + 4t = 1 \\
4x - y + 3z - 2t = 5.
\end{cases}
\]

Rozwiązanie
Zbadamy rzędy macierzy \(A \) i \([A|B] \) przekształcając macierze wierszami (od ostatniego wiersza odejmiemy sumę drugiego wiersza i pierwszego wiersza pomnożonego przez 2).

\[
\text{rz} \left(\begin{bmatrix}
1 & -1 & 2 & -3 & 2 \\
2 & 1 & -1 & 4 & 1 \\
4 & -1 & 3 & -2 & 5
\end{bmatrix} \right) = \text{rz} \left(\begin{bmatrix}
1 & -1 & 2 & -3 & 2 \\
2 & 1 & -1 & 4 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix} \right).
\]

Ponieważ wykonane zostało przekształcenie wyłącznie na wierszach, więc wnioskujemy z ostatniej równości, że \(\text{rz} \left(\begin{bmatrix} A \end{bmatrix} \right) = 2 \) i \(\text{rz} \left(\begin{bmatrix} A | B \end{bmatrix} \right) = 2 \). Oznacza to, że układ powyższy jest układem nieoznaczonym, którego rozwiązania zależą od dwóch parametrów.

2. Przedyskutować rozwiązalność układu równań
\[
\begin{cases}
4x - y + z = 3 \\
2x + 3y - z = 5 \\
2x - 4y + 2z = 2.
\end{cases}
\]

Rozwiązanie
Odejmując od pierwszego wiersza sumę drugiego i trzeciego wiersza, otrzymujemy
\[
\text{rz} \left(\begin{bmatrix}
4 & -1 & 1 & 3 \\
2 & 3 & -1 & 5 \\
2 & -4 & 2 & 2
\end{bmatrix} \right) = \text{rz} \left(\begin{bmatrix}
0 & 0 & 0 & -4 \\
2 & 3 & -1 & 5 \\
2 & -4 & 2 & 2
\end{bmatrix} \right),
\]
zatem \(\text{rz} \left(\begin{bmatrix} A \end{bmatrix} \right) = 2 \), \(\text{rz} \left(\begin{bmatrix} A | B \end{bmatrix} \right) = 3 \), ponieważ
\[
\begin{vmatrix}
0 & 0 & -4 \\
3 & -1 & 5 \\
-4 & 2 & 2
\end{vmatrix} \neq 0.
\]
Oznacza to, że rozważany układ jest sprzeczny, ponieważ nie jest spełniony warunek (7.2) z twierdzenia Kroneckera-Capelli.
7.3 Zadania

1. Wykonując elementarne operacje na wierszach lub kolumnach podanych macierzy, wyznaczyć ich rzędy:

 a) \[
 \begin{bmatrix}
 1 & -3 & 2 & 1 & 2 \\
 2 & 1 & -1 & 3 & 1 \\
 4 & -5 & 3 & 5 & 6
 \end{bmatrix}
 \]

 b) \[
 \begin{bmatrix}
 -2 & 1 & -3 & 1 & -5 \\
 45 & 15 & 30 & -60 & 75 \\
 5 & 3 & 2 & -8 & 7
 \end{bmatrix}
 \]

 c) \[
 \begin{bmatrix}
 3 & 1 & 6 & 2 & 1 \\
 2 & 1 & 4 & 2 & 2 \\
 3 & 1 & 3 & 1 & 3 \\
 2 & 1 & 2 & 1 & 4
 \end{bmatrix}
 \]

 d) \[
 \begin{bmatrix}
 1 & 2 & 3 & 4 \\
 5 & 6 & 7 & 8 \\
 9 & 10 & 11 & 12 \\
 13 & 14 & 15 & 16
 \end{bmatrix}
 \]

2. Znaleźć rzędy podanych macierzy w zależności od wartości parametru \(p \):

 a) \[
 \begin{bmatrix}
 1 & 1 & p \\
 3 & p & 3 \\
 2p & 2 & 2
 \end{bmatrix}
 \]

 b) \[
 \begin{bmatrix}
 1 & p & 2 \\
 1 & -2 & p + 2 \\
 1 & 2p + 2 & - (p + 3)
 \end{bmatrix}
 \]

 c) \[
 \begin{bmatrix}
 p - 1 & p - 1 & 1 & 1 \\
 1 & p^2 - 1 & 1 & p - 1 \\
 1 & p - 1 & p - 1 & 1
 \end{bmatrix}
 \]

 d) \[
 \begin{bmatrix}
 1 & 1 & 1 \\
 1 & 1 & p \\
 1 & p & p & p
 \end{bmatrix}
 \]

3. Rozwiązać następujące układy równań liniowych:

 a) \[
 \begin{aligned}
 2x + y - z &= 2 \\
 x - 2y + 3z &= 1 \\
 3x - y + 2z &= 5
 \end{aligned}
 \]

 b) \[
 \begin{aligned}
 2x + y + z &= 2 \\
 x + 3y + z &= 5 \\
 x + y + 5z &= -7 \\
 2x + 3y - 3z &= 14
 \end{aligned}
 \]

 c) \[
 \begin{aligned}
 x + 2y + 3z &= 4 \\
 2x + y - z &= 3 \\
 3x + 3y + 2z &= 7
 \end{aligned}
 \]

 d) \[
 \begin{aligned}
 x + y - 3z &= -1 \\
 2x + y - 2z &= 1 \\
 x + y + z &= 3 \\
 x + 2y - 3z &= 1
 \end{aligned}
 \]

 e) \[
 \begin{aligned}
 x - 2y + z + t &= 1 \\
 x - 2y + z - t &= -1 \\
 x - 2y + z + 5t &= 5
 \end{aligned}
 \]

 f) \[
 \begin{aligned}
 x + 3y + 2z &= 0 \\
 2x - y + 3z &= 0 \\
 3x - 5y + 4z &= 0 \\
 x + 17y + 4z &= 0
 \end{aligned}
 \]

4. Określić liczbę rozwiązań podanych układów równań liniowych w zależności od wartości parametru \(p \):

 a) \[
 \begin{aligned}
 (2p + 1) x + (p - 3) y &= p + 1 \\
 (p + 2) x - 2y &= 2p
 \end{aligned}
 \]

 b) \[
 \begin{aligned}
 x + py + z &= 1 \\
 2x + y + z &= p \\
 x + y + pz &= p^2
 \end{aligned}
 \]

 c) \[
 \begin{aligned}
 px + y + z &= 1 \\
 x + y - z &= p \\
 x - y + pz &= 1
 \end{aligned}
 \]

 d) \[
 \begin{aligned}
 px + py + pz + pt &= p \\
 x + py + pz + pt &= p \\
 x + y + pz + pt &= p \\
 x + y + z + pt &= p
 \end{aligned}
 \]
5. Rozwiązać i przedyskutować następujące układy równań liniowych w zależności od wartości parametrów \(m \) oraz \(n \):

\[
\begin{aligned}
a) \quad & \begin{cases}
3x - 2y + z = m \\
5x - 8y + 9z = 3 \\
2x + y + nz = -1
\end{cases} \\
b) \quad & \begin{cases}
x + my + z = 3 \\
x + 2my + z = 4
\end{cases}
\\c) \quad & \begin{cases}
x + y = 2 \\
3x - y = 1 \\
x + 4y = m
\end{cases} \\
d) \quad & \begin{cases}
x + y + z = 1 \\
x + my + z = m \\
x + y + mz = m^2
\end{cases}
\end{aligned}
\]

6. Rozwiązać i przedyskutować następujące układy równań liniowych w zależności od wartości parametru \(p \):

\[
\begin{aligned}
a) \quad & \begin{cases}
x + 2y + 3z = -1 \\
3x + 6y + 7z = p \\
x + 2y + 4z = -p
\end{cases} \\
b) \quad & \begin{cases}
x + y - 2z + t = p \\
x + py + z = 3 \\
x + 2y + 2z + pt = 2
\end{cases}
\\c) \quad & \begin{cases}
px + 3y + z + t = 1 \\
2x + py - pz + t = -2 \\
7x + py - 5z + pt = -p
\end{cases} \\
d) \quad & \begin{cases}
px + y + pz = 1 \\
px + y + z = 1 \\
px + (2 - p)y + z = 1 \\
px + y + pz = p^2
\end{cases}
\end{aligned}
\]
Temat 8
Przekształcenia liniowe

8.1 Podstawowe definicje i przykłady

Definicja
Niech \(U \) i \(V \) będą przestrzeniami liniowymi (rzeczywistymi lub zespolonymi). Mówimy, że przekształcenie \(L : U \to V \) jest liniowe wtedy i tylko wtedy, gdy dla dowolnych wektorów \(u_1, u_2 \in U \) i dowolnych skalarów \(\alpha_1, \alpha_2 \in K \) spełniony jest warunek
\[
L(\alpha_1 u_1 + \alpha_2 u_2) = \alpha_1 L(u_1) + \alpha_2 L(u_2).
\] (8.1)

Uwaga
Z warunku (8.1) wynika w szczególności, że:
1. \(L(u_1 \pm u_2) = L(u_1) \pm L(u_2) \);
2. \(L(\alpha u) = \alpha L(u) \) dla \(\alpha \in K, u \in U \);
3. \(L(\theta) = \theta \);
4. \(L(\alpha_1 u_1 + \alpha_2 u_2 + \ldots + \alpha_n u_n) = \alpha_1 L(u_1) + \alpha_2 L(u_2) + \ldots + \alpha_n L(u_n) \), dla \(u_1, u_2, \ldots, u_n \in U, \alpha_1, \alpha_2, \ldots, \alpha_n \in K \).

Przykładami przekształceń liniowych są niektóre odwzorowania geometryczne takie jak symetrie, obroty i jednokładności na płaszczyźnie i w przestrzeni trójwymiarowej, a także przekształcenia określone w poniższych przykładach (1)-(3).

Przykłady
1. \(L : \mathbb{R}^n \to \mathbb{R}^m, L(x) = A \cdot x \), gdzie \(A \) jest dowolną macierzą o \(m \) wierszach i \(n \) kolumnach.
2. \(L : R_k[x] \to R_{k-n}[x], (Lw)(x) = \frac{d^n}{dx^n}w(x) \), dla \(n \leq k \).
3. \(L : C([a,b]) \to R, L(f) = \int_a^b f(x) \, dx \).
4. \(L : M_{n \times n} \to R, L(A) = \det A \) nie jest przekształceniem liniowym.
Twierdzenie
Niech \(\{u_1, u_2, \ldots, u_n\} \) będzie bazą przestrzeni liniowej \(U \) oraz niech \(v_1, v_2, \ldots, v_n \in V \). Wówczas istnieje dokładnie jedno przekształcenie liniowe \(L : U \to V \) takie, że \(L(u_i) = v_i \) dla \(i = 1, 2, \ldots, n \).

Przykłady
1. Przekształcenie liniowe \(L : \mathbb{R}^2 \to \mathbb{R}^2 \) przeprowadza wektor \(u_1 = (3, 1) \) na wektor \(v_1 = (-5, 8) \), a wektor \(u_2 = (6, -1) \) na wektor \(v_2 = (1, 0) \). Znaleźć obraz wektora \(u = (-3, 2) \) w tym przekształceniu.

Rozwiązanie
Wystarczy zauważyć, że układ wektorów \(u_1, u_2 \) stanowi bazę \(\mathbb{R}^2 \). Ponieważ
\[
 u = u_1 - u_2,
\]
więc zgodnie z (8.1)
\[
 L(u) = L(u_1) - L(u_2) = v_1 - v_2 = (-6, 8).
\]

2. Przekształcenie liniowe \(L : R_2 [x] \to R_2 [x] \) przeprowadza wektor \(p_0 = x-1 \) na wektor \(q_0 = 1 \), wektor \(p_1 = x^2 - x \) na wektor \(q_1 = x \) oraz wektor \(p_2 = 3 - x^2 \) na wektor \(q_2 = x^2 \). Znaleźć obraz wektora \(p = x^2 - 2x + 3 \) w tym przekształceniu.

Rozwiązanie
Układ wielomianów \(p_0, p_1, p_2 \) jest liniowo niezależny, zatem stanowi bazę w \(R_2 [x] \). Ponieważ
\[
 p = 2p_1 + p_2,
\]
więc, podobnie jak w poprzednim przykładzie, wnioskujemy, że
\[
 L(p) = 2L(p_1) + L(p_2) = 2q_1 + q_2 = x^2 + 2x.
\]

8.2 Jądro i obraz przekształcenia liniowego

Definicja
Jądrem przekształcenia liniowego \(L : U \to V \) nazywamy zbiór Ker \(L \) określony wzorem
\[
 \text{Ker} L = \{ u \in U : L(u) = \theta \}. \tag{8.2}
\]

Definicja
Obrazem przekształcenia liniowego \(L : U \to V \) nazywamy zbiór Im \(L \subseteq V \) określony wzorem
\[
 \text{Im} L = \{ L(u) : u \in U \}. \tag{8.3}
\]

Uwaga
Z powyższych definicji wynika natychmiast, że Ker \(L \) jest podprzestrzenią liniową przestrzeni \(U \), zaś Im \(L \) jest podprzestrzenią liniową przestrzeni \(V \).
Twierdzenie (o wymiarze jądra i obrazu przekształcenia liniowego)

Niech U i V będą skończenie wymiarowymi przestrzeniami liniowymi, niech $L: U \rightarrow V$ będzie przekształceniem liniowym. Wtedy

$$\dim (\ker L) + \dim (\operatorname{im} L) = \dim U,$$

w szczególności zawsze zachodzi nierówność $\dim (\operatorname{im} L) \leq \dim U$ (przekształcenie liniowe nie podnosi wymiaru przestrzeni).

Przykłady

1. Wyznaczyć wymiar jądra i obrazu przekształcenia liniowego $L: \mathbb{R}^3 \rightarrow \mathbb{R}^2$ określonego wzorem $L(x, y, z) = (x - 3y + 2z, -2x + 6y - 4z)$.

 Rozwiązanie

 Zgodnie ze wzorem (8.4), wystarczy wyznaczyć $\ker L = \{(x, y, z) \in \mathbb{R}^3 : L(x, y, z) = (0, 0)\}$. Rozwiązując układ równań

 $$\begin{align*}
 x - 3y + 2z &= 0 \\
 -2x + 6y - 4z &= 0
 \end{align*}$$

 otrzymujemy, że $x = 3s - 2t$, $y = s$, $z = t$,

 zatem $\dim (\ker L) = 2$, $\dim (\operatorname{im} L) = 1$.

2. Wyznaczyć wymiar jądra i obrazu przekształcenia liniowego $L: \mathbb{R}^3 \rightarrow \mathbb{R}^4$ określonego wzorem $L(x, y, z) = (x - y, x - z, y - z, y - x)$.

 Rozwiązanie

 Wyznaczamy $\ker L = \{(x, y, z) \in \mathbb{R}^3 : L(x, y, z) = (0, 0, 0, 0)\}$, co prowadzi do układu równań

 $$\begin{align*}
 x - y &= 0 \\
 x - z &= 0 \\
 y - z &= 0 \\
 -x + y &= 0,
 \end{align*}$$

 z którego otrzymujemy, że $x = y = z = t$, a zatem $\dim (\ker L) = 1$, $\dim (\operatorname{im} L) = 2$.

3. Wyznaczyć wymiar jądra i obrazu przekształcenia liniowego $L: \mathbb{R}_4[x] \rightarrow \mathbb{R}_4[x]$, gdzie $(Lp)(x) = xp'(x)$.

 Rozwiązanie

 Niech $p(x) = ax^4 + bx^3 + cx^2 + dx + e$, wtedy $xp'(x) = 4ax^4 + 3bx^3 + 2cx^2 + dx$. Wielomian ten równy jest tożsamościowo zero wtedy i tylko wtedy, gdy $a = b = c = d = 0$. Oznacza to, że $\dim (\ker L) = 1$, $\dim (\operatorname{im} L) = 4$.
8.3 Macierz przekształcenia liniowego

Definicja
Niech $B_U = \{u_1, u_2, \ldots , u_n\}$ i $B_V = \{v_1, v_2, \ldots , v_m\}$ będą bazami przestrzeni U i V. Macierzą przekształcenia liniowego $L : U \rightarrow V$ w rozważanych bazach nazywamy macierz $A_L = [a_{ij}]$ o m wierszach i n kolumnach, której kolejne kolumny są współrzędnymi wektorów $L(u_1), L(u_2), \ldots , L(u_n)$ w bazie B_V, tzn.

$$L(u_i) = a_{1i}v_1 + a_{2i}v_2 + \ldots + a_{mi}v_m \text{ dla } i = 1, 2, \ldots , n. \quad (8.5)$$

Przykłady
1. Wyznaczyć macierz przekształcenia $L : \mathbb{R}^3 \rightarrow \mathbb{R}^3$, gdzie $L(x, y, z) = (x, y, 0)$ w bazach $B_U = \{(1, 2, 0), (0, -1, 1), (0, 2, -1)\}$ i $B_V = \{(1, 1, 1), (1, 0, 0), (1, 1, 0)\}$.

Rozwiązanie
Zgodnie ze wzorem (8.5) oznaczmy $u_1 = (1, 2, 0), u_2 = (0, -1, 1), u_3 = (0, 2, -1), v_1 = (1, 1, 1), v_2 = (1, 0, 0), v_3 = (1, 1, 0)$. Ponieważ z definicji przekształcenia L wynika, że

$$L(u_1) = (1, 2, 0) = 0 \cdot v_1 - v_2 + 2v_3, \quad L(u_2) = (0, -1, 0) = 0 \cdot v_1 + v_2 - v_3, \quad L(u_3) = (0, 2, 0) = 0 \cdot v_1 - 2v_2 + 2v_3,$$

a więc macierz A_L jest postaci

$$A_L = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 1 & -2 \\ 2 & -1 & 2 \end{bmatrix}$$

2. Wyznaczyć macierz przekształcenia $L : R_3[x] \rightarrow R_2[x]$, gdzie $(Lp)(x) = p'(x - 1)$ w bazach $B_U = \{1, x, \frac{x^2}{2}, \frac{x^3}{3}\}$ i $B_V = \{1, x, x^2\}$.

Rozwiązanie
Niech $u_1 = 1, u_2 = x, u_3 = \frac{x^2}{2}, u_4 = \frac{x^3}{3}, v_1 = 1, v_2 = x, v_3 = x^2$. Wtedy

$$L(u_1) = 0 = 0 \cdot v_1 + 0 \cdot v_2 + 0 \cdot v_3, \quad L(u_2) = 1 = v_1, \quad L(u_3) = x - 1 = -v_1 + v_2, \quad L(u_4) = (x - 1)^2 = v_1 - 2v_2 + v_3,$$

a więc

$$A_L = \begin{bmatrix} 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
Twierdzenie (o postaci przekształcenia liniowego)

Niech A_L będzie macierzą przekształcenia liniowego $L : U \rightarrow V$ w bazach B_U i B_V. Niech $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ i $y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$ będą elementami odpowiednio U i V takimi, że $L(x) = y$, a x_i i y_i oznaczają ich współrzędne w wybranych bazach. Wtedy

$$A_L \cdot x = y. \quad (8.6)$$

Twierdzenie

Przekształcenie $L : \mathbb{R}^n \rightarrow \mathbb{R}^m$ jest liniowe wtedy i tylko wtedy, gdy istnieje macierz A wymiaru $m \times n$ taka, że

$$L(x) = A \cdot x, \quad (8.7)$$

przy czym $A = A_L$, gdzie A_L oznacza macierz przekształcenia L w bazach standardowych.

Twierdzenie (związek rzędu macierzy przekształcenia i dim(Im L))

Rząd macierzy przekształcenia liniowego równy jest wymiarowi obrazu tego przekształcenia.

Na przekształceniach liniowych można w naturalny sposób określać działania.

Definicja

1. Niech L_1 i L_2 będą przekształceniami liniowymi U w V. Sumą przekształceń L_1 i L_2 nazywamy przekształcenie $(L_1 + L_2) : U \rightarrow V$ określone wzorem

$$(L_1 + L_2)(u) = L_1(u) + L_2(u) \quad \text{dla } u \in U. \quad (8.8)$$

2. Niech $L : U \rightarrow V$ będzie przekształceniem liniowym i niech α będzie skalarem. Iloczynem liczby α i przekształcenia L nazywamy przekształcenie $(\alpha L) : U \rightarrow V$ określone wzorem

$$(\alpha L)(u) = \alpha L(u) \quad \text{dla } u \in U. \quad (8.9)$$

3. Niech $L : U \rightarrow V$ i $K : V \rightarrow W$ będą przekształceniami liniowymi. Złożeniem przekształceń L i K nazywamy przekształcenie $(K \circ L) : U \rightarrow W$ określone wzorem

$$(K \circ L)(u) = K(L(u)) \quad \text{dla } u \in U. \quad (8.10)$$

4. Niech przekształcenie liniowe $L : U \rightarrow V$ będzie różnowartościowe oraz niech $\text{Im} L = V$. Przekształceniem odwrotnym do przekształcenia L nazywamy przekształcenie $(L^{-1}) : V \rightarrow U$ określone warunkiem

$$(L^{-1})(v) = u \iff L(u) = v \quad \text{dla } u \in U, \ v \in V. \quad (8.11)$$
Uwa\ qa

Suma przekształceń liniowych, iloczyn przekształcenia liniowego przez liczbę, złożenie przekształceń liniowych oraz przekształcenie odwrotne do przekształcenia liniowego są także przekształceniami liniowymi.

Następujące twierdzenie precyzuje warunki równoważne dla odwracalności przekształcenia liniowego, tzn. dla istnienia przekształcenia \(L^{-1} \) zdefiniowanego warunkiem (8.11).

T w i e r d z e n i e
Niech \(\dim U = \dim V = n \). Niech \(L : U \rightarrow V \) będzie przekształceniem liniowym i niech \(A_L \) będzie macierzą przekształcenia \(L \) w ustalonych bazach przestrzeni \(U \) i \(V \). Wówczas następujące warunki są równoważne:

1. Przekształcenie \(L \) jest odwracalne;
2. Przekształcenie \(L \) jest różnowartościowe;
3. \(\ker L = \emptyset \);
4. \(\operatorname{im} L = V \);
5. \(\operatorname{rz} A_L = \dim V = n \);
6. \(\det A_L \neq 0 \).

T w i e r d z e n i e
Załóżmy, że przekształcenia liniowe \(L, K, L_1, L_2 \) mają w ustalonych bazach odpowiednich przestrzeni liniowych macierze przekształceń \(A_L, A_K, A_{L_1}, A_{L_2} \). Wówczas zachodzą następujące wzory określające macierze przekształceń otrzymanych w wyniku działań (8.8)-(8.11):

\[
\begin{align*}
A_{L_1+L_2} &= A_{L_1} + A_{L_2}, \\
A_{\alpha L} &= \alpha A_L, \\
A_{K \circ L} &= A_K \cdot A_L, \\
A_{L^{-1}} &= (A_L)^{-1} \quad \text{gdy} \ L \ \text{jest odwracalne}.
\end{align*}
\]

P r z y k ł a d y

1. Niech przekształcenia liniowe \(L : \mathbb{R}^3 \rightarrow \mathbb{R}^2 \) oraz \(K : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) będą określone wzorami:
\(L \ (x, y, z) = (x + y - z, 2x + y) \) i \(K \ (s, t) = (s - 3t, s + t) \). Wyznaczyć macierz złożenia \(K \circ L : \mathbb{R}^3 \rightarrow \mathbb{R}^2 \) w bazach standardowych.

R o z w i a ż a n i e
Z treści zadania wynika, że macierze \(A_L \) i \(A_K \) określone są jako
\[
A_L = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \end{bmatrix}, \quad A_K = \begin{bmatrix} 1 & -3 \\ 1 & 1 \end{bmatrix},
\]

zatem na mocy równości (8.14) otrzymujemy
\[
A_{K \circ L} = A_K \cdot A_L = \begin{bmatrix} 1 & -3 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & -1 \\ 2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} -5 & -2 & -1 \\ 3 & 2 & -1 \end{bmatrix}.
\]
2. Przekształcenie liniowe \(L : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) jest różnowartościowe. Wiadomo, że \(L(1, -1) = (0, 4) \) oraz \(L^{-1}(2, 0) = (1, 1) \). Wyznaczyć \(L^2(1, 0) \).

Rozwiązanie
Na mocy warunku (8.11), z treści zadania wynika, że \(L(1, 1) = (2, 0) \) i \(L(1, -1) = (0, 4) \). Ponieważ
\[
(1, 0) = \frac{1}{2} (1, 1) + \frac{1}{2} (1, -1) \quad \text{i} \quad (0, 1) = \frac{1}{2} (1, 1) - \frac{1}{2} (1, -1),
\]
więc
\[
L^2(1, 0) = L(L(1, 0)) = L\left(\frac{1}{2} (2, 0) + \frac{1}{2} (0, 4)\right) = L(1, 0) + 2L(0, 1) = \frac{1}{2} (2, 0) + \frac{1}{2} (0, 4) + (2, 0) - (0, 4) = (3, -2).
\]

8.4 Wartości własne i wektory własne przekształceń liniowych
Niech \(V \) będzie przestrzenią liniową i niech \(L : V \rightarrow V \) będzie przekształceniem liniowym tej przestrzeni w siebie.

Definicja
1. Liczbę \(\lambda \) nazywamy wartością własną przekształcenia liniowego \(L \) wtedy i tylko wtedy, gdy istnieje taki niezerowy wektor \(v \in V \), że
\[
L(v) = \lambda v
\] (8.16)
2. Każdy niezerowy wektor \(v \in V \) spełniający warunek (8.16) nazywamy wektorem własnym odpowiadającym wartości własnej \(\lambda \). Zbiór wektorów własnych odpowiadających wartości własnej \(\lambda \) oznaczmy przez \(W_\lambda \). Zgodnie z definicją
\[
W_\lambda = \{v \in V : L(v) = \lambda v\}.
\] (8.17)

Bezpośrednio z przyjętej definicji wynika prawdziwość następującej uwagi.

Uwaga
1. Zbiór \(W_\lambda \) jest podprzestrzenią liniową przestrzeni \(V \).
2. Zachodzi inkluzja \(L(W_\lambda) \subset W_\lambda \) (bo \(L(L(v)) = L(\lambda v) = \lambda L(v) \)).
3. \(W_\lambda = \text{Ker}(L - \lambda I) \), gdzie \(I \) oznacza identyczność.

Twierdzenie
Niech \(A_L \) będzie macierzą przekształcenia liniowego \(L : V \rightarrow V \) w bazie \(B = \{v_1, v_2, \ldots, v_n\} \) przestrzeni \(V \). Wówczas:
1. λ jest wartością własną przekształcenia L wtedy i tylko wtedy, gdy
 \[\det(A_L - \lambda I) = 0; \]
 (8.18)

2. $x \in W_\lambda$ wtedy i tylko wtedy, gdy jego współrzędne (x_1, x_2, \ldots, x_n) w bazie B są niezerowym rozwiązaniem układu równań
 \[
 (A_L - \lambda I) \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}
 \]
 (8.19)

P r z y k ł a d y

1. Wyznaczyć wartości własne oraz odpowiadające im podprzestrzenie wektorów własnych przekształcenia liniowego $L : \mathbb{R}^2 \to \mathbb{R}^2$ określonego wzorem $L(x, y) = (2x + y, x + 2y)$.

R o z w i ą z a n i e
Z treści zadania wynika, że
 \[
 A_L = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix},
 \]
 zatem korzystając z warunku (8.18) otrzymujemy równanie
 \[
 \det \begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} = (2 - \lambda)^2 - 1 = 0,
 \]
 z którego wynika, że $\lambda_1 = 1$ i $\lambda_2 = 3$ są wartościami własnymi przekształcenia L.
Aby wyznaczyć $W_1 = \{v \in \mathbb{R}^2 : L(v) = v\}$, zgodnie z (8.19), wystarczy znaleźć niezerowe rozwiązania układu równań
 \[
 \begin{align*}
 x + y &= 0 \\
 x + y &= 0.
 \end{align*}
 \]
Otrzymujemy stąd, że $W_1 = \text{lin}((1, -1))$.
Analogicznie wyznaczamy $W_3 = \{v \in \mathbb{R}^2 : L(v) = 3v\} = \text{lin}((1, 1))$.

2. Wyznaczyć wartości własne oraz odpowiadające im podprzestrzenie wektorów własnych przekształcenia liniowego $L : R_2[x] \to R_2[x]$ określonego wzorem $(Lp)(x) = xp''(x)$.

R o z w i ą z a n i e
Niech $p(x) = ax^2 + bx + c$. Wówczas $(Lp)(x) = x \cdot (2a) = 2ax$. Niech $B = \{1, x, x^2\}$ będzie bazą standardową w $R_2[x]$. Macierz przekształcenia L jest zatem postaci
 \[
 A_L = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}, \quad \text{bo} \quad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} c \\ b \\ a \end{bmatrix} = \begin{bmatrix} 0 \\ 2a \\ 0 \end{bmatrix},
 \]
skąd wynika, że jedyną wartością własną przekształcenia jest $\lambda = 0$.
Wektorami własnymi odpowiadającymi wartości własnej $\lambda = 0$ są takie wielomiany drugiego stopnia $p(x)$, dla których $a = 0$. Oznacza to, że $W_0 = \text{lin}(1, x)$.
T w i e r d z e n i e (własności wektorów własnych)

1. Wektory własne odpowiadające różnym wartościami własnym przekształcenia liniowego są liniowo niezależne.

2. Jeśli przekształcenie liniowe L ma n różnych wartości własnych ($n = \dim V$), to odpowiadające im wektory własne tworzą bazę przestrzeni V.

3. Jeśli przekształcenie L ma r różnych wartości własnych $\lambda_1, \lambda_2, \ldots, \lambda_r$, a wymiary odpowiadających im podprzestrzeni wektorów własnych $W_{\lambda_1}, W_{\lambda_2}, \ldots, W_{\lambda_r}$ spełniają związek

$$\dim W_{\lambda_1} + \dim W_{\lambda_2} + \ldots + \dim W_{\lambda_r} = n,$$

to istnieje baza przestrzeni V złożona z wektorów własnych przekształcenia L.

4. Jeśli wektory własne przekształcenia L tworzą bazę przestrzeni V, przy czym $L(v_i) = \lambda_i v_i$, to macierz przekształcenia L ma w tej bazie postać diagonalną, gdzie na przekątnej macierzy A_L stoją kolejne wartości własne przekształcenia L.

$$A_L = \begin{bmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_n
\end{bmatrix}$$

8.5 Wartości własne i wektory własne macierzy

Niech A będzie macierzą kwadratową $n \times n$.

D e f i n i c j a

Wielomianem charakterystycznym macierzy A nazywamy wielomian określony wzorem

$$w_A(\lambda) = \det (A - \lambda I).$$

(8.20)

Równaniem charakterystycznym nazywamy równanie postaci

$$w_A(\lambda) = 0.$$

(8.21)

D e f i n i c j a

1. Wartością własną macierzy A nazywamy każdy pierwiastek wielomianu charakterystycznego tej macierzy, tzn. liczbę λ spełniającą równanie charakterystyczne $w_A(\lambda) = 0$.

2. Wektorem własnym macierzy A odpowiadającym wartości własnej λ nazywamy każdy niezerowy wektor $x = (x_1, x_2, \ldots, x_n)$ spełniający układ równań

$$A \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix},$$

lub w postaci równoważnej

$$(A - \lambda I) \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = 0$$

(8.22)
Uwaga

Wartości własne i wektory własne macierzy A są identyczne z wartościami własnymi i wektorami własnymi przekształcenia liniowego, $L : \mathbb{R}^n \rightarrow \mathbb{R}^n$, dla którego A jest macierzą przekształcenia, tzn. $L(x) = A \cdot x$.

Poniższe twierdzenie jest wnioskiem z własności 4 wektorów własnych.

Twardzenie

Jeśli wektory własne odpowiadające różnym wartościam własnym macierzy A tworzą bazę przestrzeni \mathbb{R}^n, to istnieje nieosobliwa macierz K taka, że macierz $D = K^{-1}AK$ jest diagonalna. Na przekątnej macierzy D stoją kolejne wartości własne macierzy A.

8.6 Macierze dodatnio i ujemnie określone

Definicja

Mówimy, że macierz $A = [a_{ij}]$ stopnia n jest dodatnio określona wtedy i tylko wtedy, gdy dla dowolnego niezerowego wektora $(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$ zachodzi nierówność

$$\sum_{i,j=1}^{n} a_{ij} x_i x_j > 0. \quad (8.23)$$

Mówimy, że macierz $A = [a_{ij}]$ stopnia n jest ujemnie określona wtedy i tylko wtedy, gdy dla dowolnego niezerowego wektora $(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$ zachodzi nierówność

$$\sum_{i,j=1}^{n} a_{ij} x_i x_j < 0. \quad (8.24)$$

Oznaczmy przez Δ_k tzw. minory główne macierzy A, tzn.

$$\Delta_k = \det \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{pmatrix}. \quad (8.25)$$

Zachodzi wówczas następujące twierdzenie.

Twardzenie (Sylvestera)

Niech $A = [a_{ij}]$ będzie macierzą rzeczywistą symetryczną stopnia n. Wówczas:

1. macierz A jest dodatnio określona wtedy i tylko wtedy, gdy $\Delta_k > 0$ dla $k = 1, 2, \ldots, n$;
2. macierz A jest ujemnie określona wtedy i tylko wtedy, gdy $(-1)^k \Delta_k > 0$ dla $k = 1, 2, \ldots, n$.

\[\blacksquare \]
8.7 Zadania

1. Udowodnić, że obrót o kąt α, określony wzorem $Y = AX$, gdzie $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ jest przekształceniem liniowym w \mathbb{R}^2. Dla jakich wartości α przekształcenie to ma wektor własny?

2. Napisać macierze w bazach standardowych odpowiednich przestrzeni liniowych przekształceń $L_3 \circ L_2 \circ L_1$ oraz $(L_2)^2 \circ L_1$, jeżeli

 (a) $L_1 : \mathbb{R}^3 \rightarrow \mathbb{R}^2, L_1 (x, y, z) = (x - y + z, 2y + z),$

 (b) $L_2 : \mathbb{R}^2 \rightarrow \mathbb{R}^2, L_2 (x, y) = (2x + y, x - y),$

 (c) $L_3 : \mathbb{R}^2 \rightarrow \mathbb{R}^4, L_3 (x, y) = (x - y, y, y - x, 2x, 2y);

 (b) $L_1 : \mathbb{R}^2 \rightarrow R_2 [x], L_1 (a, b) = ax^2 + bx + a - b$ dla $(a, b) \in \mathbb{R}^2,$

 (c) $L_2 : R_2 [x] \rightarrow R_2 [x], (L_2 p) (x) = xp' (-x)$ dla $p \in R_2 [x],$

 (d) $L_3 : R_2 [x] \rightarrow \mathbb{R}^2, (L_3 p) (x) = (p(1), p'(2))$ dla $p \in R_2 [x].$

3. Udowodnić, że w przestrzeni \mathbb{R}^k o wymiarze nieparzystym każde przekształcenie liniowe ma wektor własny.

4. Znaleźć wartości własne i wektory własne podanych przekształceń liniowych:

 (a) $L : \mathbb{R}^2 \rightarrow \mathbb{R}^2, L (x, y) = (4x + 2y, y - x)$

 (b) $L : \mathbb{R}^2 \rightarrow \mathbb{R}^2, L (x, y) = (2x + y, 4y - x)$

 (c) $L : \mathbb{R}^3 \rightarrow \mathbb{R}^3, L (x, y, z) = (x, 2x + 2y, -x - y - z)$

 (d) $L : \mathbb{R}^3 \rightarrow \mathbb{R}^3, L (x, y, z) = (3x - y, 6x - 2y, 2x - y + z)$

 (e) $L : R_2 [x] \rightarrow R_2 [x], (L p) (x) = xp' (x)$

 (f) $L : R_2 [x] \rightarrow R_2 [x], (L p) (x) = p'' (x)$

 (g) $L : \mathbb{C}^2 \rightarrow \mathbb{C}^2, L (x, y) = (-y, x)$

 (h) $L : \mathbb{C}^2 \rightarrow \mathbb{C}^2, L (x, y) = ((1 + 3i) x - 4y, (1 - 3i) x - 2x)$

 (i) $L : \mathbb{C}^3 \rightarrow \mathbb{C}^3, L (x, y, z) = (2ix, x + (1 + i) y, 3x + iy - iz)$

 (j) $L : \mathbb{C}^3 \rightarrow \mathbb{C}^3, L (x, y, z) = (x - z, 2y, x + z)$

5. Dla podanych liniowych przekształceń płaszczyzny \mathbb{R}^2 i przestrzeni \mathbb{R}^3 znaleźć wartości własne i wektory własne. Otrzymane wyniki porównać z interpretacją geometryczną.

 (a) Symetria na płaszczyźnie względem punktu $(0; 0)$

 (b) Rzut prostopadły w przestrzeni na oś OZ

 (c) Rzut prostopadły w przestrzeni na prostą $l : x = y = z$

 (d) Rzut prostopadły w przestrzeni na płaszczyznę $\pi : x + y + z = 0$

 (e) Symetria w przestrzeni względem płaszczyzny xOy

 (f) Symetria w przestrzeni względem prostej $l : x + y = 0, z = 0$

6. Przekształcenie liniowe $L : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ przeprowadza wektory $(1, 1)$ i $(1, -1)$ odpowiednio na wektory $(1, 1)$ i $(3, -3)$. Znaleźć macierz tego przekształcenia i wyznaczyć $L^{50} (5, 1)$.
7. Przekształcenie liniowe \(L : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) spełnia warunki \(L(0,1,1) = (0,1,1) \), \(L(2,2,0) = (0,0,0) \), \(L(1,0,0) = (-1,0,0) \). Znaleźć:

(a) \(L(x,y,z) \) dla dowolnych \((x,y,z) \in \mathbb{R}^3 \)
(b) \(L^{105}(2,3,6) \)

8. Wyznaczyć wartości własne i wektory własne następujących macierzy:

a) \[
\begin{bmatrix}
0 & 1 & -2 \\
2 & 1 & 0 \\
4 & -2 & 5
\end{bmatrix}
\]

b) \[
\begin{bmatrix}
\frac{3}{2} & -\frac{1}{2} & 0 \\
-\frac{1}{2} & \frac{3}{2} & 0 \\
1 & 1 & -1
\end{bmatrix}
\]

c) \[
\begin{bmatrix}
1 & -\frac{1}{3} & -\frac{2}{3} \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{bmatrix}
\]

d) \[
\begin{bmatrix}
30 & -5 & 22 \\
-48 & 68 & 32 \\
-42 & 1 & 118
\end{bmatrix}
\]

9. Wyznaczyć wartości własne i wektory własne następujących macierzy:

a) \[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & -2 \\
0 & 1 & -1
\end{bmatrix}
\]

b) \[
\begin{bmatrix}
1 & 1 \\
-\frac{5}{4} & 2
\end{bmatrix}
\]

c) \[
\begin{bmatrix}
0 & 1 & -2 \\
-6 & 5 & -4 \\
0 & 0 & 3
\end{bmatrix}
\]

d) \[
\begin{bmatrix}
1 & 0 & 0 \\
2 & -1 & 2 \\
0 & 0 & 1
\end{bmatrix}
\]

10. Wyznaczyć wartości własne i wektory własne następujących macierzy:

a) \[
\begin{bmatrix}
1 & i \\
-i & 1
\end{bmatrix}
\]

b) \[
\begin{bmatrix}
i & i & i \\
1 & 1 & 1 \\
2 & 2 & 2
\end{bmatrix}
\]

c) \[
\begin{bmatrix}
6i & 0 & 0 \\
4 & 4 + 2i & 0 \\
i & 1 & 5i
\end{bmatrix}
\]

d) \[
\begin{bmatrix}
-i & 0 & -2 \\
0 & 4 & 0 \\
2 & 0 & i
\end{bmatrix}
\]

11. Określić znak wyrażenia \(f(x,y,z) = x^2 + 2xy + 2y^2 + 4yz + 5z^2 \).

12. Określić znak wyrażenia \(f(x,y,z) = 2xy + 2xz + 4yz - 2x^2 - 5y^2 - 2z^2 \).

13. Określić znak wyrażenia \(f(x,y,z) = x^2 + 3y^2 - 4z^2 + 4xy - 4yz \).
Temat 9
Grupy, pierścienie, ciała

9.1 Podstawowe definicje i własności grup

Rozważmy zbiór \(G \) zamknięty ze względu na pewne działanie \(\circ \). Zbiór \(G \) z działaniem \(\circ \) nazywać będziemy strukturą algebraiczną i oznaczać przez \((G, \circ) \). Przyjmujemy następującą definicję.

Definicja
Strukturę algebraiczną \((G, \circ) \) nazywamy grupą wtedy i tylko wtedy, gdy spełnione są warunki:

1. działanie \(\circ \) jest łączne, tzn. dla dowolnych \(a, b, c \in G \) zachodzi warunek
 \[a \circ (b \circ c) = (a \circ b) \circ c; \]
 (9.1)

2. istnieje element \(e \in G \) (element \(e \) nazywamy elementem neutralnym lub jedynką grupy) taki, że dla każdego elementu \(x \in G \)
 \[e \circ x = x \circ e = x; \]
 (9.2)

3. dla każdego elementu \(x \in G \) istnieje element \(x^{-1} \in G \) (element odwrotny do \(x \)) taki, że
 \[x \circ x^{-1} = x^{-1} \circ x = e. \]
 (9.3)

Jeśli dodatkowo, działanie \(\circ \) jest przemienne, to grupę nazywamy przemienną lub abelową.

Twierdzenie

1. Element neutralny \(e \) jest wyznaczony jednoznacznie.
2. Dowolny element \(x \in G \) ma co najwyżej jeden element odwrotny.

Dowód
Jeśli \(e \) i \(e' \) byłyby elementami neutralnymi, to z równości \(e \circ e' = e' \) wynika, że \(e \circ e' = e \). Zatem \(e = e' \).

Analiza równości, gdy \(y \) i \(y' \) byłyby dwoma różnymi elementami odwrotnymi do \(x \), to z \((y \circ x) \circ y' = e \circ y' = y' \) wynika
\[
(y \circ x) \circ y' = e \circ y' = y' \\
y \circ (x \circ y') = y \circ e = y,
\]
a więc \(y = y' \).

Definicja
Rzędem grupy \((G, \circ)\) nazywamy liczbę elementów zbioru \(G \), jeśli \(G \) jest zbiorem skończonym lub \(\infty \), jeśli \(G \) jest zbiorem nieskończonym.

Rząd grupy oznaczamy przez \(r(G) \).

Przykłady
1. Niech \(X \) będzie dowolnym zbiorem niepustym. Przez \(G \) oznaczmy zbiór wszystkich prze-kształceń wzajemnie jednoznacznych \(X \) na \(X \). Jako działanie \(\circ \) przyjmujeśmy składanie prze-kształceń. Zbiór \((G, \circ)\) stanowi grupę.
2. Zbiór liczb całkowitych \(\mathbb{Z} \) z działaniem dodawania stanowi grupę. Zbiór \(\mathbb{Z} \) z działaniem mnożenia nie stanowi grupy (dlaczego?).
3. W zbiorze trzyelementowym \(X = \{e, a, b\} \) określamy działania za pomocą tabelki

\[
\begin{array}{ccc}
\circ & e & a & b \\
e & e & a & b \\
a & a & b & e \\
b & b & e & a \\
\end{array}
\]

(9.4)

Struktura \((X, \circ)\) stanowi grupę przemienną (abelową).

Twierdzenie (prawo jednostronnego skracania)
W dowolnej grupie \((G, \circ)\) zachodzi prawo jednostronnego skracania:
1. jeśli \(a \circ b = a \circ c \), to \(b = c \);
2. jeśli \(a \circ b = c \circ b \), to \(a = c \).

Dowód wynika natychmiast z jednostronnego pomnożenia powyższych równości przez odpowiedni element odwrotny.

Twierdzenie
Dla dowolnych \(a, b \in G \) zachodzi równość

\[
(a \circ b)^{-1} = b^{-1} \circ a^{-1}.
\]

(9.5)

Dowód wynika z łączności działania \(\circ \), ponieważ

\[
(a \circ b) \circ (b^{-1} \circ a^{-1}) = a \circ (b \circ b^{-1}) \circ a = a \circ e \circ a^{-1} = e.
\]

Definicja (potęgi elementu)
Potęgę elementu \(x \in G \) o wykładniku całkowitym \(n \) określamy jako:

\[
x^0 = e, \quad x^{n+1} = x^n \circ x, \quad x^{-n} = (x^n)^{-1} \text{ dla } n \in \mathbb{N}.
\]

(9.6)

Twierdzenie
W dowolnej grupie \((G, \circ)\) prawdziwe są wzory:

\[
x^k \circ x^m = x^{k+m}, \quad (x^k)^m = x^{km}.
\]

(9.7)
9.1.1 Grupy cykliczne

Definicja
Grupę \((G, \circ)\) nazywamy grupą cykliczną wtedy i tylko wtedy, gdy istnieje taki element \(x \in G\), że każdy element \(y \in G\) można przedstawić jako potęgę o wykładniku całkowitym elementu \(x\). Element \(x\) nazywa się generatorem grupy \((G, \circ)\).

Uwaga
Bezpośrednio z powyższej definicji wynika, że jeśli \(C_n\) jest grupą cykliczną rzędu \(n\) oraz \(x\) jest generatorem tej grupy, to \(C_n = \{e, x, x^2, \ldots, x^{n-1}\}\) oraz \(x^n = e\). Poza tym dla dowolnych liczb całkowitych \(k, m\) zachodzą wzory
\[x^{n-m} = x^{-m}, \quad x^{m+kn} = x^m.\] (9.8)

Definicja
Rzędem elementu \(x\) grupy skończonej \((G, \circ)\) nazywamy najmniejszą liczbę naturalną \(k\) taką, że \(x^k = e\). Rząd elementu oznaczamy przez \(r(x)\).

Uwaga
1. W grupie skończonej rząd każdego elementu jest nie większy od rzędu grupy, tzn. zachodzi nierówność \(r(x) \leq r(G)\).
2. Element \(x\) jest generatorem grupy cyklicznej \(C_n\) wtedy i tylko wtedy, gdy \(r(x) = n\).

Przykłady
1. Grupa trójelementowa \((X, \circ)\), w której działanie określone jest tabelką [9.4] jest grupą cykliczną rzędu 3, ponieważ \(a^2 = b, a^3 = e\), zatem \(X = \{e, a, a^2\}\). Generatorami tej grupy są zarówno element \(a\) jak i element \(b\).
2. Zbiór całkowitoliczbowych potęg 2 z działaniem mnożenia jest przykładem nieskończonej grupy cyklicznej. Jej generatorami są liczby 2 i \(\frac{1}{2}\).

9.1.2 Podgrupy, warstwy, dzielniki normalne

Definicja
Podziób \(\Gamma\) grupy \(G\) nazywamy podgrupą wtedy i tylko wtedy, gdy jest zamknięty ze względu na działanie \(\circ\), tzn. gdy dla dowolnych \(a, b \in \Gamma\) wynik działania \(a \circ b \in \Gamma\), oraz gdy dla dowolnego elementu \(a \in \Gamma\) element odwrotny \(a^{-1} \in \Gamma\).

Twierdzenie
Podziób \(\Gamma \subset G\) jest grupą wtedy i tylko wtedy, gdy dla dowolnych \(a, b \in \Gamma\) zachodzi
\[a \circ b^{-1} \in \Gamma.\]
Przykłady

1. Niech \((\mathbb{Z}, +)\) będzie grupą liczb całkowitych z działaniem dodawania. Niech \((2\mathbb{Z}, +)\) oznacza zbiór liczb parzystych z działaniem dodawania. Łatwo sprawdzić, że \((2\mathbb{Z}, +)\) jest podgrupą grupy \((\mathbb{Z}, +)\).

2. Rozważmy zbiór czteroelementowy \(X = \{e, a, b, c\}\) z działaniem określonym następującą tabelką:

\[
\begin{array}{ccc}
 & e & a & b & c \\
e & e & a & b & c \\
a & a & e & b & c \\
b & b & b & e & a \\
c & c & c & a & e \\
\end{array}
\]

Grupę \((X, \circ)\) nazywamy grupą Kleina. Jej podgrupami (właściwszymi, a więc różnymi od grupy jednoelementowej \(\{e\}, \circ\) i całej grupy \((X, \circ)\)) są:

\(\{e, a\}, \{e, b\}, \{e, c\}\).

Łatwo zauważyć, że grupa Kleina nie jest przykładem grupy cyklicznej, ponieważ

\[r(a) = r(b) = r(c) = 2\]

Definicja

Niech \((\Gamma, \circ)\) będzie podgrupą grupy \((G, \circ)\) i niech \(a \in G\). Zbiór \(\{y \in G : y = a \circ x, x \in \Gamma\}\) nazywamy warstwą lewostronną elementu \(a\) względem podgrupy \((\Gamma, \circ)\) i oznaczamy przez \(a \circ \Gamma\). Warstwą prawostronną nazywamy zbiór \(\{y \in G : y = x \circ a, x \in \Gamma\}\).

Twierdzenie

Warstwy lewostronne (prawostronne) elementów grupy \((G, \circ)\) względem jej podgrupy \((\Gamma, \circ)\) tworzą podział zbioru \(G\) na podzbiory rozłączne.

Dowód

Rozważmy przypadek warstw lewostronnych. Dla warstw prawostronnych dowód przebiega analogicznie. Dla dowolnego \(x \in G\) zachodzi, że \(x = x \circ e \in x \circ \Gamma\), zatem każdy \(x\) należy do jakiejś warstwy.

Przypuścmy teraz, że

\[a \circ \Gamma \cap b \circ \Gamma \neq \emptyset.\]

Wynika stąd, że pewnych \(x, y \in \Gamma\) zachodzi

\[a \circ x = b \circ y.\]

W takim razie

\[a = b \circ y \circ x^{-1} \Rightarrow \text{dla } z \in \Gamma, a \circ z = b \circ (y \circ x^{-1} \circ z) \in b \circ \Gamma,\]

zatem \(a \circ \Gamma \subseteq b \circ \Gamma\). Analogicznie pokazujemy inkluzję w stronę przeciwną, tzn. \(b \circ \Gamma \subseteq a \circ \Gamma\).

Oznacza to, że jeśli warstwy nie są rozłączne, to są identyczne, co kończy dowód twierdzenia.

Twierdzenie (Lagrange'a)

Rząd podgrupy dowolnej grupy skończonej jest dzielnikiem rzędu grupy.
Dowód
Niech \((\Gamma, \circ)\) będzie podgrupą grupy \((G, \circ)\). Z brawa jednostronnego skracania wynika, że każda z warstw (np. lewostronnych) dowolnego elementu \(a \in G\) ma tyle elementów, ile ma ich podgrupa \(\Gamma\), ponieważ dla \(x \neq y\), \(a \circ x \neq a \circ y\). Z poprzedniego twierdzenia o rozkładzie grupy na rozłączne warstwy wynika, że jeśli liczbę warstw rozłącznych oznaczmy przez \(k\), to
\[r(G) = k \cdot r(\Gamma), \]
co kończy dowód twierdzenia.

Definicja
Podgrupę \((\Gamma, \circ)\) grupy \((G, \circ)\) nazywamy dzielnikiem normalnym grupy \((G, \circ)\) wtedy i tylko wtedy, gdy dla każdego elementu \(a \in G\) zachodzi równość
\[a \circ \Gamma = \Gamma \circ a. \]

Uwaga
Jeśli \((G, \circ)\) jest grupą przemienną, to każda jej podgrupa jest dzielnikiem normalnym.

Przykład
Niech \(3\mathbb{Z}\) oznacza zbiór liczb całkowitych podzielnych przez 3. Łatwo pokazać, że podgrupa \((3\mathbb{Z}, +)\) jest dzielnikiem normalnym grupy \((\mathbb{Z}, +)\).

9.1.3 Homomorfizmy i izomorfizmy

Definicja
Homomorfizmem grupy \((G, \circ)\) w grupę \((\Gamma, \star)\) nazywamy odwzorowanie \(\varphi : G \to \Gamma\) spełniające dla dowolnych \(x, y \in G\) warunek
\[\varphi(x \circ y) = \varphi(x) \star \varphi(y). \] (9.10)

Twierdzenie
Jeśli \(\varphi : G \to \Gamma\) jest homomorfizmem i jeśli \(e_1\) i \(e_2\) są odpowiednio elementami neutralnymi grup \((G, \circ)\) i \((\Gamma, \star)\), \(x \in G\), to
\[\varphi(e_1) = e_2 \text{ oraz } \varphi(x^{-1}) = (\varphi(x))^{-1}. \] (9.11)

Twierdzenie
Niech \(\varphi : G \to \Gamma\) będzie homomorfizmem grup. Dla dowolnej podgrupy \(H \subset G\) jej obraz \(\varphi(H)\) jest podgrupą grupy \(\Gamma\) i dla dowolnej podgrupy \(\Lambda \subset \Gamma\), jej przeciwobraz \(\varphi^{-1}(\Lambda)\) jest podgrupą grupy \(G\).

Definicja
Jądrem homomorfizmu \(\varphi : G \to \Gamma\) nazywamy zbiór \(\varphi^{-1}\{e_2\}\), gdzie \(e_2\) jest elementem neutralnym grupy \(\Gamma\). Jądro homomorfizmu oznaczamy przez \(\text{Ker } \varphi\). Obraz homomorfizmu oznaczamy przez \(\text{Im } \varphi\).

Twierdzenie
Jądro homomorfizmu \(\varphi : G \to \Gamma\) jest dzielnikiem normalnym grupy \(G\).
Definicja
Homomorfizm \(\varphi : G \to \Gamma \) nazywamy izomorfizmem wtedy i tylko wtedy, gdy jest przekształceniem wzajemnie jednoznacznym zbioru \(G \) na zbiór \(\Gamma \). Jeśli istnieje izomorfizm \(\varphi : G \to \Gamma \), to grupy \((G, \circ)\) i \((\Gamma, \star)\) nazywamy izomorficznymi.

Twierdzenie
Homomorfizm \(\varphi : G \to \Gamma \) jest izomorfizmem wtedy i tylko wtedy, gdy \(\text{Ker} \varphi = \{e\} \) i \(\text{Im} \varphi = \Gamma \).

9.2 Grupy permutacji

Definicja
Permutacją zbioru \(n \)-elementowego nazywamy każde wzajemnie jednoznacne przekształcenie tego zbioru w siebie.

Uwaga
Zbiór \(S_n \) wszystkich permutacji \(n \)-elementowych ze składaniem przekształceń tworzy grupę \((S_n, \circ)\) zwaną grupą symetryczną rzędu \(n \) lub grupą permutacji \(n \)-elementowych. Zbiór \(S_n \) składa się z \(n! \) permutacji.

 Ważną rolę grup permutacji opisuje następujące twierdzenie, którego nie będziemy w tym miejscu dowodzić.

Twierdzenie
Każda grupa skończona jest izomorficzna z podgrupą pewnej grupy symetrycznej (grupy permutacji).

Uwaga
W zapisie permutacji stosujemy następującą symbolikę.

1. Jeśli \(\alpha \) i \(\beta \) są permutacjami zbioru \(\{1, 2, \ldots, n\} \) oraz \(\alpha(i) = k_i \), to permutację \(\alpha \) zapisujemy jako
 \[
 \alpha = \begin{pmatrix}
 1 & 2 & \ldots & n \\
 k_1 & k_2 & \ldots & k_n
 \end{pmatrix}.
 \]

2. Jeśli \(\beta(k_i) = m_i \), to złożenie permutacji \(\beta \circ \alpha \) zapisujemy jako
 \[
 \beta \circ \alpha = \begin{pmatrix}
 1 & 2 & \ldots & n \\
 k_1 & k_2 & \ldots & k_n \\
 m_1 & m_2 & \ldots & m_n
 \end{pmatrix} = \begin{pmatrix}
 1 & 2 & \ldots & n \\
 m_1 & m_2 & \ldots & m_n
 \end{pmatrix}.
 \]

Definicja
Permutację \(\gamma \in S_n \) nazywamy cyklem o długości \(m \) wtedy i tylko wtedy, gdy istnieją takie różne liczby \(k_1, k_2, \ldots, k_m \in \{1, 2, \ldots, n\} \), że \(\gamma(k_1) = k_2, \gamma(k_2) = k_3, \ldots, \gamma(k_m) = k_1 \), zaś dla pozostałych liczb \(k \) ze zbioru \(\{1, 2, \ldots, n\} \) zachodzi \(\gamma(k) = k \).
Definicja
Dwa cykle \((k_1,k_2,\ldots,k_m)\) i \((k'_1,k'_2,\ldots,k'_m)\) nazywamy rozłącznymi wtedy i tylko wtedy, gdy dla dowolnych \(i, j\) zachodzi \(k_i \neq k'_j\).

Twierdzenie
Składanie cykli rozłącznych jest przemienne. Każda permutacja jest złożeniem pewnej liczby cykli rozłącznych.

Uwaga
Jeśli \(\gamma\) jest cyklem o długości \(m\), to dla dowolnych liczb naturalnych zachodzi wzór
\[
\gamma^{p\cdot m+r} = \gamma^r
\]
(mожно pomijać krotności \(m\)).

Twierdzenie
Każdy cykl, a zatem każda permutacja, może być przedstawiony jako złożenie cykli o długości 2 (cykle o długości 2 noszą nazwę transpozycji). Rozkład taki nie jest jednoznaczny, ale parzystość lub nieparzystość liczby transpozycji występujących w rozkładzie jest jednoznacznie wyznaczona.

Definicja
Permutację, nazywamy parzystą, gdy jest identycznością lub gdy w jej rozkładzie na transpozycje występuje parzysta liczba transpozycji.
Permutację, która nie jest parzysta nazywamy nieparzystą.

Przykłady
1. Rozłożyć na cykle rozłączne permutację
\[
\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 9 & 6 & 7 & 4 & 1 & 8 & 5 & 2 \end{pmatrix}.
\]

Rozwiązanie
Łatwo zauważyć, że permutacja \(\sigma\) składa się z cykli rozłącznych \(\gamma_1 = (1,3,6), \gamma_2 = (2,9), \gamma_3 = (4,7,8,5)\), zatem \(\sigma = \gamma_1 \circ \gamma_2 \circ \gamma_3\).

2. Korzystając z rozkładu na cykle permutacji \(\sigma\) z poprzedniego przykłady, wyznaczyć \(\sigma^{70}\).

Rozwiązanie
Korzystając ze wzoru [9.12] i korzystając z przedstawienia \(\sigma = \gamma_1 \circ \gamma_2 \circ \gamma_3\), otrzymujemy co następuje
\[
\sigma^{70} = \gamma_1^{70} \circ \gamma_2^{70} \circ \gamma_3^{70} = \gamma_1^{69+1} \circ \gamma_2^{70} \circ \gamma_3^{68+2} = \gamma_1 \circ \gamma_2^0 \circ \gamma_3^2 = \\
= (1,3,6) \circ (4,8) \circ (7,5) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 2 & 6 & 8 & 7 & 1 & 5 & 4 & 9 \end{pmatrix}.
\]
Wykorzystaliśmy fakt, że \(\gamma_2^0\) jest permutacją tożsamościową, zaś \(\gamma_3^0 = (4,8) \circ (7,5)\).
3. Permutację σ przedstawić w postaci złożenia transpozycji. Określić parzystość permutacji σ.

Rozwiązanie
Rozkładając cykle γ_1 i γ_3 na transpozycje, otrzymujemy

$$
\gamma_1 = (1, 3, 6) = (6, 3) \circ (6, 1),
\gamma_2 = (4, 7, 8, 5) = (5, 8) \circ (5, 7) \circ (5, 4),
$$

zatem

$$
\sigma = (6, 3) \circ (6, 1) \circ (2, 9) \circ (5, 8) \circ (5, 7) \circ (5, 4).
$$

Permutacja składa się z 6 transpozycji, a więc jest parzysta.

9.3 Pierścień

Załóżmy, że P jest zbiorem niepustym, w którym określone są dwa działania: $+$ i \cdot.

Definicja
Trójkę $(P, +, \cdot)$ nazywamy pierścieniem wtedy i tylko wtedy, gdy

1. $(P, +)$ jest grupą przemienną,
2. działanie \cdot jest łączne,
3. działanie \cdot jest rozdzielne względem działania $+$, tzn. dla dowolnych $a, b, c \in P$ zachodzi

$$
a \cdot (b + c) = a \cdot b + a \cdot c. \quad (9.13)
$$

Dodatkowo, gdy działanie \cdot jest przemienne, to pierścień $(P, +, \cdot)$ nazywamy przemiennym.

Działania $+$ oraz \cdot nazywamy umownie dodawaniem i mnożeniem w pierścieniu. W dowolnym pierścieniu przyjmujemy zasadę, że mnożenie jest wykonywane przed dodawaniem, o ile nawiasy nie określają innej kolejności.

Element neutralny dodawania w pierścieniu oznacza się przez 0 i nazywa zerem pierścienia.

Element odwrotny do x ze względu na działanie $+$ nazywamy elementem przeciwnym i oznaczamy przez $-x$.

W pierścieniu określamy odejmowanie za pomocą wzoru

$$
x - y = x + (-y). \quad (9.14)
$$

W definicji pierścienia nie zakładamy istnienia elementu neutralnego dla działania mnożenia ani, co za tym idzie, istnienia elementów odwrotnych względem mnożenia. Jeśli jednak element neutralny mnożenia istnieje, to oznaczamy go przez 1 i nazywamy jedynką pierścienia. Elementami odwracalnymi pierścienia nazywamy te jego elementy, które są odwracalne względem mnożenia, tzn. dla których istnieje element x^{-1} taki, że $x \cdot x^{-1} = 1$.

Podstawowe własności działań w pierścieniu opisuje następujące twierdzenie.
Twierdzenie
Niech $(P, +, ·)$ będzie pierścieniem z jedynką. Niech $x, y, z \in P; n, m \in \mathbb{N}; k, p \in \mathbb{Z}$ (\mathbb{Z} – zbiór liczb całkowitych). Wówczas prawdziwe są następujące zależności.

1. $x + z = y + z \Rightarrow x = y,$
2. $0 \cdot x = x \cdot 0 = 0,$ $(-1) \cdot x = x \cdot (-1) = -x,$
3. $-(x + y) = -x - y,$
4. $kx + py = (k + p)x,$ $k(px) = (kp)x,$
5. $x^n \cdot x^m = x^{n+m},$ $(x^n)^m = x^{nm},$
6. $-(x \cdot y) = x \cdot (-y),$ $(-x) \cdot y = -x \cdot y,$
7. $-(x \cdot y) = x \cdot y,$
8. $x \cdot (y - z) = x \cdot y - x \cdot z,$ $(y - z) \cdot x = y \cdot x - z \cdot x.$

Definicja
Elementy x, y pierścienia $(P, +, ·)$ nazywamy dzielnikami zera wtedy i tylko wtedy, gdy $x \neq 0, y \neq 0$ oraz $x \cdot y = 0.$

Pierścień przemienny z jedynką i bez dzielników zera nazywamy pierścieniem całkowitym.

Przykłady
1. Zbiór liczb całkowitych \mathbb{Z} ze zwykłymi działaniami dodawania i mnożenia tworzy pierścień całkowity. Jedynymi elementami odwracalnymi tego pierścienia są 1 i $-1.$
2. Niech $\mathbb{Z}_m = \{0, 1, 2, \ldots, m - 1\}.$ Działania określamy w sposób następujący

 $$a \oplus b = (a + b) \mod m,$$
 $$a \odot b = (a \cdot b) \mod m,$$

 gdzie operacja $k \mod p$ (czytaj k modulo p) oznacza resztę z dzielenia k przez $p.$

 $(\mathbb{Z}_m, \oplus, \odot)$ tworzy pierścień z jedynką.

 Gdy m nie jest liczbą pierwszą, to pierścień taki zawiera dzielniki zera, np. w \mathbb{Z}_6 zachodzi

 $$2 \odot 3 = 0, \quad 3 \odot 4 = 0$$

 i nie wszystkie elementy są odwracalne, np. elementy 2, 3, 4 nie są odwracalne.

 Gdy m jest liczbą pierwszą, to pierścień $(\mathbb{Z}_m, \oplus, \odot)$ nie zawiera dzielników zera i wszystkie jego elementy są odwracalne.
D e f i n i c j a

Pierścień \((\Pi, +, \cdot)\) nazywamy podpierścieniem pierścienia \((P, +, \cdot)\) wtedy i tylko wtedy, gdy \(\Pi \subseteq P\) oraz dla dowolnych \(x, y \in \Pi\) zachodzi: \((x - y) \in \Pi\) i \(x \cdot y \in \Pi\).

P r z y k ł a d y

1. Dla pierścienia \((\mathbb{Z}, +, \cdot)\) podpierścieniem jest \((n\mathbb{Z}, +, \cdot)\), gdzie \(n\mathbb{Z}\) oznacza zbiór liczb postaci \(k \cdot n\) dla \(k \in \mathbb{Z}\).

2. Niech \(R_n[x]\) oznacza zbiór wielomianów rzeczywistych stopnia co najwyżej \(n\). Zauważmy, że \((R_n[x], +)\) jest grupą przemienną oraz, że \(R_n[x] \subseteq R[x]\), jednakże \(R_n[x]\) nie jest podpierścieniem pierścienia \(R[x]\), ponieważ działanie mnożenia wielomianów stopnia co najwyżej \(n\), może wywodzić poza ten zbiór.

D e f i n i c j a

Przekształcenie \(\varphi : P \rightarrow \Pi\) nazywamy homomorfizmem pierścienia \((P, +, \cdot)\) w pierścień \((\Pi, \oplus, \otimes)\) wtedy i tylko wtedy, gdy dla dowolnych \(x, y \in P\) zachodzą równości
\[
\varphi(x + y) = \varphi(x) \oplus \varphi(y) \quad \text{oraz} \quad \varphi(x \cdot y) = \varphi(x) \otimes \varphi(y).
\] (9.18)
Podobnie jak w przypadku homomorfizmów grup, przyjmujemy oznaczenia na jądro i obraz homomorfizmu
\[
\text{Ker } \varphi = \varphi^{-1}\{0\} \quad \text{i} \quad \text{Im } \varphi = \varphi(P).
\] (9.19)

U w a g a

Bezpośrednio z powyższej definicji wynika, że jądro i obraz homomorfizmu \(\varphi\) są podpierścieniami odpowiednio pierścieni \(P\) i \(\Pi\).

D e f i n i c j a

Niech \(I \subseteq P\). Zbiór \(I\) nazywamy ideałem pierścienia przemiennego \((P, +, \cdot)\), wtedy i tylko wtedy, gdy:

1. \(a, b \in I \Rightarrow (a + b) \in I\),
2. \(a \in I, x \in P \Rightarrow a \cdot x \in I\).

U w a g a

Każdy ideał pierścienia przemiennego z jedynką jest jego podpierścieniem. W szczególności, dla dowolnego homomorfizmu \(\varphi\) pierścienia przemiennego \(P\) w pierścień \(\Pi\), jądro \(\text{Ker } \varphi\) jest ideałem pierścienia \(P\). Istnieją jednak podpierścienie, które nie są ideałami.

P r z y k ł a d y

1. Rozważmy pierścień \((\mathbb{Z}, +, \cdot)\) i jego podpierścień \((n\mathbb{Z}, +, \cdot)\). Podpierścień ten jest ideałem, co wynika bezpośrednio z definicji.
2. Rozważmy pierścień wielomianów \((R[x], +, \cdot)\). Niech \(I\) będzie zbiorem wielomianów mających pierwiastek w ustalonym punkcie (np. w punkcie \(x_0 = 1\)). Wówczas \(I\) jest ideałem w pierścieniu wielomianów.

\[2.\text{ Rozważmy pierścień wielomianów } (R[x], +, \cdot). \text{ Niech } I \text{ będzie zbiorem wielomianów mających pierwiastek w ustalonym punkcie (np. w punkcie } x_0 = 1). \text{ Wówczas } I \text{ jest ideałem w pierścieniu wielomianów.}\]

Definicja

Niech \(I\) będzie ideałem pierścienia przemiennego z jedynką \((P, +, \cdot)\). Relację \(\approx_I\) określoną jako

\[x \approx_I y \iff (x - y) \in I\]

(9.20)

nazywamy kongruencją modulo \(I\) pierścienia \(P\).

\[D e f i n i c j a\]

Niech \(I\) będzie ideałem pierścienia przemiennego z jedynką \((P, +, \cdot)\). Relację \(\approx_I\) określoną jako

\[x \approx_I y \iff (x - y) \in I\]

(9.20)

nazywamy kongruencją modulo \(I\) pierścienia \(P\).

Twierdzenie

Dla dowolnego ideału \(I\) w pierścieniu przemiennym z jedynką \((P, +, \cdot)\) kongruencja modulo \(I\) jest relacją równoważności w zbiorze \(P\).

\[\blacksquare\]

9.4 **Ciała**

Definicja

Pierścień całkowity \((K, +, \cdot)\) zawierający co najmniej dwa elementy nazywamy ciałem wtedy i tylko wtedy, gdy każdy jego element \(x \neq 0\) jest odwracalny względem mnożenia.

Uwaga

Z definicji ciała wynika, że \((K, +, \cdot)\) jest ciałem wtedy i tylko wtedy, gdy spełnione są następujące warunki:

1. \((K, +)\) jest grupą przemienną,
2. \((K \setminus \{0\}, \cdot)\) jest grupą przemienną,
3. działanie \(\cdot\) jest rozdzielne względem \(+\).

Przykłady

1. Zbiór liczb wymiernych \(Q\) z działaniami dodawania i mnożenia jest ciałem.
2. Zbiór liczb rzeczywistych \(R\) z działaniami dodawania i mnożenia jest ciałem.
3. Zbiór liczb zespolonych \(C\) z działaniami dodawania i mnożenia jest ciałem.
4. Zbiór \(Z_m = \{1, 2, \ldots, m-1\}\) z działaniami dodawania i mnożenia modulo \(n\), gdy \(n\) jest liczbą pierwszą jest ciałem (gdy \(n\) nie liczbą pierwszą, jest to tylko pierścień).
5. Zbiór \(R(x)\) funkcji wymiernych o współczynnikach rzeczywistych, tzn. funkcji postaci

\[f(x) = \frac{g(x)}{h(x)},\]

gdzie \(g\) i \(h\) są wielomianami \((h \neq 0)\) z naturalnymi działaniami dodawania i mnożenia funkcji, jest ciałem.
9.5 Zadania

1. W zbiorze \(\mathbb{R} \) określamy działanie \(\oplus \) wzorem: \(x \oplus y = x + y + 1 \). Wykazać, że \((\mathbb{R}, \oplus)\) jest grupą przemienną.

2. W zbiorze \(\mathbb{R} \setminus \{-1\} \) określamy działanie \(\otimes \) wzorem: \(x \otimes y = x + y + x \cdot y \). Wykazać, że \((\mathbb{R} \setminus \{-1\}, \otimes)\) jest grupą przemienną.

3. W iloczynie kartezjańskim \(\mathbb{Z}^2 \) określamy działanie \(\oplus \) wzorem:
\[
(a, b) \oplus (c, d) = (a + c, b + d).
\]
(a) Wykazać, że \((\mathbb{Z}^2, \oplus)\) jest grupą przemienną.
(b) Wykazać, że grupy \((\mathbb{Z}^2, \oplus)\) i \((\mathbb{Z}, +)\) nie są izomorficzne.

4. Dane są permutacje
\[
\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 8 & 9 & 4 & 3 & 7 & 6 & 1 & 5 \end{pmatrix},
\xi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 4 & 5 & 8 & 7 & 1 & 9 & 6 & 2 \end{pmatrix}.
\]
(a) Obliczyć \(\sigma \circ \xi, \xi \circ \sigma, \sigma^{-1}, \xi^{-1} \).
(b) Rozłożyć \(\sigma \) i \(\xi \) na cykle rozłączne.
(c) Obliczyć \(\sigma^{35} \) i \(\xi^{-40} \).
(d) Rozłożyć \(\sigma \) i \(\xi \) na transpozycje.
(e) Określić parzystość permutacji \(\sigma \) i \(\xi \).

5. Dane są permutacje
\[
\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 1 & 6 & 3 & 4 & 2 & 5 \end{pmatrix},
\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 3 & 1 & 4 & 6 & 7 & 2 \end{pmatrix}.
\]
(a) Obliczyć \(\tau \circ \sigma, \sigma \circ \tau^2, \sigma \circ \tau \circ \sigma^{-1}, \sigma \circ \tau^{-3} \).
(b) Rozłożyć \(\sigma \) i \(\tau \) na cykle rozłączne.

6. Znaleźć permutację \(\xi \) spełniającą równanie \(\tau \circ \xi \circ \sigma = \rho \), gdzie
\[
\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 4 & 2 \end{pmatrix}, \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix}, \rho = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 3 & 1 \end{pmatrix}.
\]

7. Niech \(S_n \) będzie grupą permutacji.
(a) Wskazać homomorfizm \(\varphi \) grupy \(S_n \) na grupę \((\{1, -1\}, \cdot)\).
(b) Wyznaczyć Ker \(\varphi \).

8. Wykazać, że w pierścieniu z jedynką \((P, +, \cdot)\) zarówno 0 jak i dzielniki zera nie mogą być elementami odwracalnymi względem mnożenia.
9. Niech \((\mathbb{Z}, +, \cdot)\) będzie pierścieniem liczb całkowitych i niech \(\mathbb{Z}^* = \mathbb{Z}\setminus\{0\}\). W iloczynie kartezjańskim \(\mathbb{Z} \times \mathbb{Z}^*\) określamy relację \(\approx\) następująco:

\[(n, m) \approx (k, p) \iff n \cdot p = m \cdot k.\]

Wykazać, że relacja \(\approx\) jest relacją równoważności.

10. Niech \(n \in \mathbb{N}\) i \(Q(\sqrt{n}) = \{x \in \mathbb{R} : x = p + q \cdot \sqrt{n}; p, q \in \mathbb{Q}\}\); \(\mathbb{Q}\) - zbiór liczb wymiernych. Pokazać, że \((Q(\sqrt{n}), +, \cdot)\) jest ciałem.

11. Niech \(\oplus\) i \(\otimes\) będą działaniami określonymi jak w zadaniach 1 i 2. Pokazać, że \((\mathbb{R}, \oplus, \otimes)\) jest ciałem izomorficznym z ciałem \((\mathbb{R}, +, \cdot)\).

12. Wykazać, że ciała liczbowe \((Q(\sqrt{2}), +, \cdot)\) i \((Q(\sqrt{3}), +, \cdot)\) nie są izomorficzne.

13. Wykazać, że ciało funkcji wymiernych \((\mathbb{R}(x), +, \cdot)\) nie jest izomorficzne z ciałem liczb rzeczywistych \((\mathbb{R}, +, \cdot)\).