Ostatnia aktualizacja:
December 04. 2017 13:29:21
Strona główna > Publications

Publications

Publikacje:

  1. E. Stróżyna The generalized saddle-node singularity and its monodromy groupSing. and Sympl. Geom. 6 (2000), pp.101-116.
  2. E. Stróżyna, H. Żołądek The analytic and formal normal form for the nilpotent singularity, J. Differ. Equations 179 (2002), no. 2, pp.479-537. 
  3. E. Stróżyna The analytic and formal normal form for the nilpotent singularity. The case of generalized saddle-node, B. Sci. Math. 126 (2002), no. 7, pp.555-579.
  4. E. Stróżyna, H. Żołądek Orbital formal normal forms for general Bogdanov-Takens singularity, J. Differ. Equations 193 (2003), no. 1, pp.239-259.
  5. E. Stróżyna The formal orbital normal forms for the nilpotent singularity. The case of generalized saddleSing. and Sympl. Geom. 9-10 (2005), pp.152-160.
  6. E. Stróżyna, H. Żołądek Multidimensional formal Takens normal form, B. Belg. Math. Soc. Sim. 15 (2008), no. 5, pp.927-934.
  7. E. Stróżyna  The formal Takens normal form in the multidimensional case, Banach Cen. Publ., Geom. Sing. Theory 11-12 (2010), pp.138-147.
  8. E. Stróżyna, H. Żołądek Divergence of the reduction to the multidimensional nilpotent Takens normal form, Nonlinearity 24 (2011), no. 11, pp.3129-3141.
  9. E. Stróżyna, H. Żołądek The complete formal normal form for the Bogdanov-Takens singularity, Mosc. Math. J. 15 (2015), no. 1, pp.141-178.
  10. E. Stróżyna Complete normal forms for germs of vector field with quadratic leading part, Proc. of the 3rd Conf. of Math. Soc. of Moldova IMCS-50 (2014), pp.207-211.
  11. E. Stróżyna Normal forms for germs of vector fields with quadratic leading part. The polynomial first integral case, J. Differ. Equations 259 (2015), pp.6718-6748, doi: 10.1016/j.jde.2015.08.006.
  12. E. Stróżyna Normal forms for germs of vector fields with quadratic leading part. The remaining cases, Studia Math. 239 (2) (2017), pp. 133-173, doi: 10.4064/sm8627-2-2017.
  13. E. Stróżyna Formal normal forms for germs of vector fields with quadratic leading part. The rational first integral case, Geometric Methods in Physics. XXXV Workshop 2016. Trends in Mathematics, pp.119-127.

Wybierz podmenu