Finite groups with some CEP-subgroups

Izabela Agata Malinowska

Institute of Mathematics
University of Białystok, Poland

Warsaw, 19-22.06.2014
All groups considered here are finite.
All groups considered here are finite.

A subgroup H of a group G satisfies the *Congruence Extension Property* in G (or H is a *CEP-subgroup* of G) if whenever N is a normal subgroup of H, there is a normal subgroup L of G such that $N = H \cap L$.

Izabela Agata Malinowska

Finite groups with some CEP-subgroups
All groups considered here are finite.

A subgroup H of a group G satisfies the *Congruence Extension Property* in G (or H is a *CEP-subgroup* of G) if whenever N is a normal subgroup of H, there is a normal subgroup L of G such that $N = H \cap L$.

A subgroup H of a group G is an *NR-subgroup* of G (*Normal Restriction*) if, whenever $N \trianglelefteq H$, $N^G \cap H = N$, where N^G is the *normal closure* of N in G (the smallest normal subgroup of G containing N).
All groups considered here are finite.

A subgroup H of a group G satisfies the *Congruence Extension Property* in G (or H is a *CEP-subgroup* of G) if whenever N is a normal subgroup of H, there is a normal subgroup L of G such that $N = H \cap L$.

A subgroup H of a group G is an *NR-subgroup* of G (*Normal Restriction*) if, whenever $N \trianglelefteq H$, $N^G \cap H = N$, where N^G is the *normal closure* of N in G (the smallest normal subgroup of G containing N).

A subgroup H of a group G is *normal sensitive* in G if the following holds:

$$\{ N \mid N \text{ is normal in } H \} = \{ H \cap L \mid L \text{ is normal in } G \}.$$
A group G is **nilpotent** if it has a **central series**, that is, a normal series $1 = G_0 \leq G_1 \leq \cdots \leq G_n = G$ such that G_{i+1}/G_i is contained in the centre of G/G_i for all i.

Example

S_3 is a supersoluble group that is not nilpotent.

A_4 is a soluble group that is not supersoluble.
A group G is **nilpotent** if it has a central series, that is, a normal series $1 = G_0 \leq G_1 \leq \cdots \leq G_n = G$ such that G_{i+1}/G_i is contained in the centre of G/G_i for all i.

A group G is **supersoluble** if it has a normal cyclic series, that is, a series of normal subgroups whose factors are cyclic.
A group G is **nilpotent** if it has a *central series*, that is, a normal series $1 = G_0 \leq G_1 \leq \cdots \leq G_n = G$ such that G_{i+1}/G_i is contained in the centre of G/G_i for all i.

A group G is **supersoluble** if it has a normal cyclic series, that is, a series of normal subgroups whose factors are cyclic.

Example

S_3 is a supersoluble group that is not nilpotent.

A_4 is a soluble group that is not supersoluble.
A subgroup H of a group G is a Hall subgroup of G if

$$(|H|, |G : H|) = 1.$$
A subgroup H of a group G is a *Hall subgroup* of G if

$$(|H|, |G : H|) = 1.$$

Let p be a prime. A group G is *p-nilpotent* if it has a normal Hall p'-subgroup.
A subgroup H of a group G is a **Hall subgroup** of G if

$$(|H|, |G : H|) = 1.$$

Let p be a prime. A group G is **p-nilpotent** if it has a normal Hall p'-subgroup.

Every nilpotent group is p-nilpotent; conversely a group which is p-nilpotent for all p is nilpotent.
Basic concepts

Example

\[H = \langle (12)(34) \rangle \triangleleft V_4 = \langle (12)(34), (13)(24) \rangle \triangleleft A_4 \]
Example

\[H = \langle (12)(34) \rangle \triangleleft V_4 = \langle (12)(34), (13)(24) \rangle \triangleleft A_4 \]

Let \(G \) be a group. A subgroup \(K \) of \(G \) is **subnormal** in \(G \) if there are a non-negative integer \(r \) and a series

\[K = K_0 \triangleleft K_1 \triangleleft K_2 \triangleleft \cdots \triangleleft K_r = G \]

of subgroups of \(G \).
Basic concepts

Example

\[H = \langle (12)(34) \rangle \triangleleft V_4 = \langle (12)(34), (13)(24) \rangle \triangleleft A_4 \]

Let \(G \) be a group. A subgroup \(K \) of \(G \) is subnormal in \(G \) if there are a non-negative integer \(r \) and a series

\[K = K_0 \triangleleft K_1 \triangleleft K_2 \triangleleft \cdots \triangleleft K_r = G \]

of subgroups of \(G \).

Theorem

Let \(G \) be a group. Then the following properties are equivalent:

1. \(G \) is nilpotent;
2. every subgroup of \(G \) is subnormal;
3. \(G \) is the direct product of its Sylow subgroups.
A group G is *Dedekind* if every subgroup of G is normal in G.

Theorem (R. Dedekind, 1896)

A group G is Dedekind if and only if G is abelian or G is a direct product of the quaternion group Q_8 of order 8, an elementary abelian 2-group and an abelian group of odd order.

A subgroup H of a group G is permutable in a group G if $HK = KH$ whenever $K \leq G$.

Let G be a group. If $N \triangleleft G$, then N is permutable in G.

Example

Let p be an odd prime and let G be an extraspecial group of order p^3 and exponent p^2. G has all subgroups permutable, but G has non-normal subgroups.
A group G is **Dedekind** if every subgroup of G is normal in G.

Theorem (R. Dedekind, 1896)

A group G is Dedekind if and only if G is abelian or G is a direct product of the quaternion group Q_8 of order 8, an elementary abelian 2-group and an abelian group of odd order.
A group G is *Dedekind* if every subgroup of G is normal in G.

Theorem (R. Dedekind, 1896)

A group G is Dedekind if and only if G is abelian or G is a direct product of the quaternion group Q_8 of order 8, an elementary abelian 2-group and an abelian group of odd order.

A subgroup H of a group G is *permutable* in a group G if $HK = KH$ whenever $K \leq G$.

Izabela Agata Malinowska

Finite groups with some CEP-subgroups
A group G is *Dedekind* if every subgroup of G is normal in G.

Theorem (R. Dedekind, 1896)

A group G is Dedekind if and only if G is abelian or G is a direct product of the quaternion group Q_8 of order 8, an elementary abelian 2-group and an abelian group of odd order.

A subgroup H of a group G is *permutable* in a group G if $HK = KH$ whenever $K \leq G$.

Let G be a group. If $N \trianglelefteq G$, then N is permutable in G.
A group \(G \) is *Dedekind* if every subgroup of \(G \) is normal in \(G \).

Theorem (R. Dedekind, 1896)

A group \(G \) is Dedekind if and only if \(G \) is abelian or \(G \) is a direct product of the quaternion group \(Q_8 \) of order 8, an elementary abelian 2-group and an abelian group of odd order.

A subgroup \(H \) of a group \(G \) is *permutable* in a group \(G \) if \(HK = KH \) whenever \(K \trianglelefteq G \).

Let \(G \) be a group. If \(N \trianglelefteq G \), then \(N \) is permutable in \(G \).

Example

Let \(p \) be an odd prime and let \(G \) be an extraspecial group of order \(p^3 \) and exponent \(p^2 \). \(G \) has all subgroups permutable, but \(G \) has non-normal subgroups.
Theorem (O. Ore, 1939)

If H is a permutable subgroup of a group G, then H is subnormal in G.

A group G is an Iwasawa group if every subgroup of G is permutable in G.

Theorem (K. Iwasawa, 1941)

Let p be a prime. A p-group G is an Iwasawa group if and only if G is a Dedekind group, or G contains an abelian normal subgroup N such that G/N is cyclic and so $G = \langle x \rangle N$ for an element x of G and $x = a + p^s$ for all $a \in N$, where $s \geq 1$ and $s \geq 2$ if $p = 2$.

Izabela Agata Malinowska
Theorem (O. Ore, 1939)

If H is a permutable subgroup of a group G, then H is subnormal in G.

A group G is an *Iwasawa group* if every subgroup of G is permutable in G.
Theorem (O. Ore, 1939)

If H is a permutable subgroup of a group G, then H is subnormal in G.

A group G is an *Iwasawa group* if every subgroup of G is permutable in G.

Theorem (K. Iwasawa, 1941)

*Let p be a prime. A p-group G is an Iwasawa group if and only if G is a Dedekind group, or G contains an abelian normal subgroup N such that G/N is cyclic and so $G = \langle x \rangle N$ for an element x of G and $a^x = a^{1+p^s}$ for all $a \in N$, where $s \geq 1$ and $s \geq 2$ if $p = 2$.***
A subgroup of a group G is \textit{s-permutable} in G if it permutes with all Sylow subgroups of G.

Theorem (O.H. Kegel, 1962)
If H is an s-permutable subgroup of G, then H is subnormal in G.

Example
The dihedral group D_8 of order 8 has subgroups which are not permutable but all its subgroups are obviously s-permutable.
A subgroup of a group G is \textit{s-permutable} in G if it permutes with all Sylow subgroups of G.

\textbf{Theorem (O.H. Kegel, 1962)}

\textit{If H is an s-permutable subgroup of G, then H is subnormal in G.}
A subgroup of a group G is \textit{s-permutable} in G if it permutes with all Sylow subgroups of G.

\textbf{Theorem (O.H. Kegel, 1962)}

\textit{If H is an s-permutable subgroup of G, then H is subnormal in G.}

\textbf{Example}

The dihedral group D_8 of order 8 has subgroups which are not permutable but all its subgroups are obviously s-permutable.
The *nilpotent residual* of G is the smallest normal subgroup of G with nilpotent quotient.
The *nilpotent residual* of G is the smallest normal subgroup of G with nilpotent quotient.

Let G be a group and let α be an automorphism of G. We say that α is a *power automorphism* of G if for every $g \in G$ there exists an integer $n(g)$ such that $n^\alpha = g^{n(g)}$. In other words, α is a power automorphism of G if α fixes all the subgroups of G.

Definition

A group G is a *T-group* if every subnormal subgroup of G is normal in G.

Examples of T-groups: Dedekind groups = nilpotent T-groups; simple groups.
The *nilpotent residual* of G is the smallest normal subgroup of G with nilpotent quotient.

Let G be a group and let α be an automorphism of G. We say that α is a *power automorphism* of G if for every $g \in G$ there exists an integer $n(g)$ such that $n^\alpha = g^{n(g)}$. In other words, α is a power automorphism of G if α fixes all the subgroups of G.

Definition

A group G is a *T-group* if every subnormal subgroup of G is normal in G.
Characterizations based on the normal structure

The *nilpotent residual* of G is the smallest normal subgroup of G with nilpotent quotient.

Let G be a group and let α be an automorphism of G. We say that α is a *power automorphism* of G if for every $g \in G$ there exists an integer $n(g)$ such that $\alpha^n = g^{n(g)}$. In other words, α is a power automorphism of G if α fixes all the subgroups of G.

Definition

A group G is a *T-group* if every subnormal subgroup of G is normal in G.

Examples of T-groups:

- Dedekind groups = nilpotent T-groups;
- simple groups.
Theorem (W. Gaschütz, 1957)

A group G is a soluble T-group if and only if the following conditions are satisfied:

1. the nilpotent residual L of G is an abelian Hall subgroup of odd order;
2. G acts by conjugation on L as a group of power automorphisms, and
3. G/L is a Dedekind group.
Characterizations based on the normal structure

Theorem (W. Gaschütz, 1957)

A group G is a soluble T-group if and only if the following conditions are satisfied:

1. the nilpotent residual L of G is an abelian Hall subgroup of odd order;
2. G acts by conjugation on L as a group of power automorphisms, and
3. G/L is a Dedekind group.

Definition

A group G is said to be a PT-group when if H is a permutable subgroup of K and K is a permutable subgroup of G, then H is a permutable subgroup of G.

Izabela Agata Malinowska

Finite groups with some CEP-subgroups
Characterizations based on the normal structure

Examples of PT-groups:

- T-groups;
- Iwasawa groups = nilpotent PT-groups.

Theorem (G. Zacher, 1964)

A group G is a soluble PT-group if and only if the following conditions are satisfied:

1. the nilpotent residual L of G is an abelian Hall subgroup of odd order;
2. G acts by conjugation on L as a group of power automorphisms, and
3. G/L is an Iwasawa group.
Examples of PT-groups:

- T-groups;
- Iwasawa groups = nilpotent PT-groups.

The PT-groups are exactly the groups in which every subnormal subgroup is permutable.
Characterizations based on the normal structure

Examples of PT-groups:
- T-groups;
- Iwasawa groups = nilpotent PT-groups.

The PT-groups are exactly the groups in which every subnormal subgroup is permutable.

Theorem (G. Zacher, 1964)

A group G is a soluble PT-group if and only if the following conditions are satisfied:

1. the nilpotent residual L of G is an abelian Hall subgroup of odd order;
2. G acts by conjugation on L as a group of power automorphisms, and
3. G/L is an Iwasawa group.
A group G is a **PST-group** when if H is an s-permutable subgroup of K and K is an s-permutable subgroup of G, then H is an s-permutable subgroup of G.

Examples of PST-groups: nilpotent groups; PT-groups.

The PST-groups are exactly the groups in which every subnormal subgroup is s-permutable.
Definition

A group G is a PST-group when if H is an s-permutable subgroup of K and K is an s-permutable subgroup of G, then H is an s-permutable subgroup of G.

Examples of PST-groups:

- nilpotent groups;
- PT-groups.
Definition

A group G is a \textit{PST-group} when if H is an s-permutable subgroup of K and K is an s-permutable subgroup of G, then H is an s-permutable subgroup of G.

Examples of \textit{PST}-groups:

- nilpotent groups;
- PT-groups.

The \textit{PST}-groups are exactly the groups in which every subnormal subgroup is s-permutable.
Theorem (R.K. Agrawal, 1975)

Let G be a group with nilpotent residual L. The following statements are equivalent:

1. L is an abelian Hall subgroup of odd order in which G acts by conjugation as a group of power automorphisms;
2. G is a soluble PST-group.

Corollary

Let G be a group.

1. G is a soluble PT-group if and only if G is a soluble PST-group whose Sylow subgroups are Iwasawa groups;
2. G is a soluble T-group if and only if G is a soluble PST-group whose Sylow subgroups are Dedekind groups.
Characterizations based on the normal structure

Theorem (R.K. Agrawal, 1975)

Let G be a group with nilpotent residual L. The following statements are equivalent:

1. L is an abelian Hall subgroup of odd order in which G acts by conjugation as a group of power automorphisms;
2. G is a soluble PST-group.

Corollary

Let G be a group.

1. G is a soluble PT-group if and only if G is a soluble PST-group whose Sylow subgroups are Iwasawa groups;
2. G is a soluble T-group if and only if G is a soluble PST-group whose Sylow subgroups are Dedekind groups.
Corollary

Every soluble PST-group is supersoluble.
Corollary

Every soluble PST-group is supersoluble.

Example

\(S_3 \times S_3 \) is a supersoluble group which is not a PST-group.
Corollary

Every soluble PST-group is supersoluble.

Example

$S_3 \times S_3$ is a supersoluble group which is not a PST-group.

The classes of all soluble T, PT- and PST-groups are closed under taking subgroups.
In the soluble universe:

<table>
<thead>
<tr>
<th>T</th>
<th>PT</th>
<th>PST</th>
<th>supersoluble</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\cup_{\mathfrak{ln}}$</td>
<td>$\cup_{\mathfrak{ln}}$</td>
<td>$\cup_{\mathfrak{ln}}$</td>
<td></td>
</tr>
<tr>
<td>Dedekind</td>
<td>Iwasawa</td>
<td>nilpotent</td>
<td></td>
</tr>
</tbody>
</table>

$$T \subset PT \subset PST \subset \text{supersoluble}$$
A group H of a group G is a **CEP-subgroup** of G if whenever N is a normal subgroup of H, there is a normal subgroup L of G such that $N = H \cap L$.

Theorem (S. Bauman, 1974)

Every subgroup of a group G is a CEP-subgroup of G if and only if G is a soluble T-group.
A group H of a group G is a **CEP-subgroup** of G if whenever N is a normal subgroup of H, there is a normal subgroup L of G such that $N = H \cap L$.

Theorem (S. Bauman, 1974)

Every subgroup of a group G is a CEP-subgroup of G if and only if G is a soluble T-group.

Theorem (I.A.M., 2012)

A group G is a soluble T-group if and only if for every $p \in \pi(G)$, every p-subgroup of G is a CEP-subgroup of G.
Let p be a prime. A group G satisfies the property CEP_p if a Sylow p-subgroup of G is a CEP-subgroup of G.
Local characterizations

Let \(p \) be a prime. A group \(G \) satisfies \textit{the property CEP}_p if a Sylow \(p \)-subgroup of \(G \) is a CEP-subgroup of \(G \).

\begin{center}
\textbf{Theorem (I.A.M. 2013)}
\end{center}

A group \(G \) is a soluble PST-group if and only if every subgroup of \(G \) satisfies CEP\(_p\) for all \(p \in \pi(G) \).

\begin{center}
\textbf{Izabela Agata Malinowska}
\end{center}

Finite groups with some CEP-subgroups
Let p be a prime. A group G satisfies the property CEP_p if a Sylow p-subgroup of G is a CEP-subgroup of G.

Theorem (I.A.M. 2013)

A group G is a soluble PST-group if and only if every subgroup of G satisfies CEP_p for all $p \in \pi(G)$.

Theorem (I.A.M. 2014)

Let G be a group. The following conditions are equivalent:

1. G is a soluble PT-group;
2. G satisfies CEP_p and G has Iwasawa Sylow p-subgroups for every $p \in \pi(G)$.
Theorem (I.A.M., 2013)

If all proper subgroups of even order of a group G satisfy CEP_p for every p, then G is either 2-nilpotent or minimal non-nilpotent. In particular, G is soluble.

Theorem (S. Li, Y. Zhao, 1988)

Let G be a non-soluble group. Assume that soluble subgroups of G are either 2-nilpotent or minimal non-nilpotent. Then G is one of the following groups:

1. $PSL(2, 2^f)$, where f is a positive integer such that $2^f - 1$ is a prime;
2. $PSL(2, q)$, where q is odd, $q > 3$ and $q \equiv 3$ or $5 \pmod{8}$;
3. $SL(2, q)$, where q is odd, $q > 3$ and $q \equiv 3$ or $5 \pmod{8}$.
Theorem (I.A.M., 2013)

If all proper subgroups of even order of a group G satisfy CEP_p for every p, then G is either 2-nilpotent or minimal non-nilpotent. In particular, G is soluble.

Theorem (S. Li, Y. Zhao, 1988)

Let G be a non-soluble group. Assume that soluble subgroups of G are either 2-nilpotent or minimal non-nilpotent. Then G is one of the following groups:

1. $\text{PSL}(2, 2^f)$, where f is a positive integer such that $2^f - 1$ is a prime;
2. $\text{PSL}(2, q)$, where q is odd, $q > 3$ and $q \equiv 3 \text{ or } 5 \pmod{8}$;
3. $\text{SL}(2, q)$, where q is odd, $q > 3$ and $q \equiv 3 \text{ or } 5 \pmod{8}$.
Theorem (I.A.M., 2012)

Let G be a group all of whose second maximal subgroups of even order are soluble PST-groups. Then G is either a soluble group or one of the following groups:

1. $\text{PSL}(2, 2^f)$, where f is a prime such that $2^f - 1$ is a prime;
2. $\text{PSL}(2, p)$, where p is a prime with $p > 3$, $p^2 - 1 \not\equiv 0 \pmod{5}$ and $p \equiv 3$ or $5 \pmod{8}$;
3. $\text{PSL}(2, 3^f)$, where f is an odd prime;
4. $\text{SL}(2, 3^f)$, where f is an odd prime and $(3^f - 1)/2$ is a prime;
5. $\text{SL}(2, p)$, where p is a prime with $p > 3$, $p^2 - 1 \not\equiv 0 \pmod{5}$ and $p \equiv 3$ or $5 \pmod{8}$;
Theorem (I.A.M., 2012)

Let G be a group all of whose second maximal subgroups are soluble PST-groups. Then G is either a soluble group or one of the following groups:

1. $\text{PSL}(2, 2^f)$, where f is a prime such that $2^f - 1$ is a prime;
2. $\text{PSL}(2, p)$, where p is a prime with $p > 3$, $p^2 - 1 \not\equiv 0 \pmod{5}$ and $p \equiv 3$ or $5 \pmod{8}$;
3. $\text{PSL}(2, 3^f)$, where f is an odd prime and $(3^f - 1)/2$ is a prime;
4. $\text{SL}(2, p)$, where p is a prime with $p > 3$, $p^2 - 1 \not\equiv 0 \pmod{5}$ and $p \equiv 3$ or $5 \pmod{8}$.
Bibliography:

Thank you