On a general construction of countable universal homogeneous algebraic systems

Dragan Mašulović

Department of Mathematics and Informatics
University of Novi Sad, Serbia

(joint work with Wiesław Kubiś)

AAA 88, Warsaw, 19–22 June 2014
Homogeneous structures

\[\mathcal{A} \]

automorphism

isomorphism
Fraïssé theory

age(\mathcal{A}) — the class of all finitely generated struct’s which embed into \mathcal{A}

amalgamation class — a class \mathbf{K} of fin. generated struct’s s.t.
- there are only countably many pairwise noniso struct’s in \mathbf{K};
- \mathbf{K} has (HP);
- \mathbf{K} has (JEP); and
- \mathbf{K} has (AP):
 for all $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathbf{K}$ and embeddings $f : \mathcal{A} \hookrightarrow \mathcal{B}$ and $g : \mathcal{A} \hookrightarrow \mathcal{C}$, there exist $\mathcal{D} \in \mathbf{K}$ and embeddings $u : \mathcal{B} \hookrightarrow \mathcal{D}$ and $v : \mathcal{C} \hookrightarrow \mathcal{D}$ such that $u \circ f = v \circ g$.
Fraïssé theory

Theorem. [Fraïssé, 1953]

1. If \(\mathcal{A} \) is a countable homogeneous structure, then \(\text{age}(\mathcal{A}) \) is an amalgamation class.

2. If \(\mathbf{K} \) is an amalgamation class, then there is a unique (up to isomorphism) countable homogeneous structure \(\mathcal{A} \) such that \(\text{age}(\mathcal{A}) = \mathbf{K} \).

3. If \(\mathcal{B} \) is a countable structure younger than \(\mathcal{A} \) (that is, \(\text{age}(\mathcal{B}) \subseteq \text{age}(\mathcal{A}) \)), then \(\mathcal{B} \hookrightarrow \mathcal{A} \).

Definition. If \(\mathbf{K} \) is an amalgamation class and \(\mathcal{A} \) is the countable homogeneous structure such that \(\text{age}(\mathcal{A}) = \mathbf{K} \), we say that \(\mathcal{A} \) is the *Fraïssé limit* of \(\mathbf{K} \).
Some prominent Fraïssé limits

$(\mathbb{Q}, <)$ — the Fraïssé limit of the class of all linear orders

$\mathcal{U}_\mathbb{Q}$ — Fraïssé limit of the class of finite metric spaces with rational distances (the rational Urysohn space)

\mathcal{R} — Fraïssé limit of the class of all finite graphs (the Rado graph)

\mathcal{P} — Fraïssé limit of the class of all finite posets (the random poset)
The Urysohn space

P. URYSOHN: *Sur un espace métrique universel.*

\mathcal{U} — complete separable metric space which is homogeneous
and embeds all separable metric spaces.

\[
\mathcal{U} = \overline{\mathcal{U}_\mathbb{Q}}
\]
M. Katětov: *On universal metric spaces.*
General topology and its relations to modern analysis and algebra. VI (Prague, 1986),

A Katětov function over a finite rational metric space X is every function $\alpha : X \rightarrow \mathbb{Q}$ such that

$$|\alpha(x) - \alpha(y)| \leq d(x, y) \leq \alpha(x) + \alpha(y)$$

$K(X)$ is all Katětov functions over X, which is a rational metric space under sup metric

$$\text{colim}(X \hookrightarrow K(X) \hookrightarrow K^2(X) \hookrightarrow K^3(X) \hookrightarrow \cdots) = \mathcal{U}_\mathbb{Q}$$
M. Katětov: *On universal metric spaces.*

Observation 1. $K(X)$ is the set of all 1-types over X (in an appropriate first-order language).

Observation 2. K is functorial.
Katětov functors

\(\mathcal{A} \) — a category of fin generated \(L \)-struct’s with (HP) and (JEP)

\(\mathcal{C} \) — the category of all colimits of \(\omega \)-chains in \(\mathcal{A} \)

Definition. A functor \(K : \mathcal{A} \to \mathcal{C} \) is a *Katětov functor* if \(K \) preserves embeddings and there exists a natural transformation \(\eta : \text{ID} \to K \) such that for every embedding \(f : A \hookrightarrow B \) in \(\mathcal{A} \) where \(B \) is a 1-point extension of \(A \) there is an embedding \(g : B \hookrightarrow K(A) \) satisfying

\[
\begin{array}{c}
A \\
\downarrow^{\eta_A}
\end{array} \quad \begin{array}{c}
\to
\end{array} \quad \begin{array}{c}
K(A)
\end{array}
\]
A Katětov functor exists for the following categories \mathcal{A}:
- finite linear orders with order-preserving maps,
- finite graphs with graph homomorphisms,
- finite K_n-free graphs with embeddings,
- finite digraphs with digraph homomorphisms,
- finite rational metric spaces with nonexpansive maps,
- finite posets with order-preserving maps,
- finite boolean algebras with homomorphisms,
- finite semilattices with embeddings,
- finite lattices with embeddings,
- finite distributive lattices with embeddings.

A Katětov functor does not exist for the category of finite K_n-free graphs and graph homomorphisms.
Existence of Katétov functors

\(\mathcal{A} \) — a category of fin generated \(L \)-struct’s with (HP) and (JEP)

\(\mathcal{C} \) — the category of all colimits of \(\omega \)-chains in \(\mathcal{A} \)

Theorem. If there exists a Katétov functor \(K : \mathcal{A} \to \mathcal{C} \), then \(\mathcal{A} \) is an amalgamation class, and its Fraïssé limit \(F \) can be obtained by the “Katétov construction” starting from an arbitrary \(A \in \mathcal{A} \):

\[
F = \text{colim}(X \hookrightarrow K(A) \hookrightarrow K^2(A) \hookrightarrow K^3(A) \hookrightarrow \cdots).
\]
Katětov functors for categories of algebras

L — algebraic language

\mathcal{V} — a variety of L-algebras understood as a category of L-algebras with embeddings

\mathcal{A} — the full subcategory of \mathcal{V} spanned by all finitely generated algebras in \mathcal{V}

\mathcal{C} — the full subcategory of \mathcal{V} spanned by all countably generated algebras in \mathcal{V}

Theorem. Suppose that there are only countably many isomorphism types in \mathcal{A}. There exists a Katětov functor $K : \mathcal{A} \rightarrow \mathcal{C}$ if and only if \mathcal{A} is the amalgamation class.
The Importance of Being Earnest Functor

Theorem. Let $K : A \to C$ be a Katétov functor and let F be the Fraïssé limit of A. Then for every object C in C:

- $\text{Aut}(C) \hookrightarrow \text{Aut}(F)$;
- $\text{End}_C(C) \hookrightarrow \text{End}_C(F)$.

Corollary. For the following Fraïssé limits F we have that $\text{End}(F)$ embeds all transformation monoids on a countable set:

- \mathbb{Q},
- the random graph [Bonato, Delić, Dolinka 2010],
- the random digraph,
- the rational Urysohn space,
- the random poset [Dolinka 2007],
- the countable atomless boolean algebra.
Corollary. For the following Fraïssé limits F we have that $\text{Aut}(F)$ embeds all permutation groups on a countable set:

- \mathbb{Q} [Truss],
- the random graph [Henson 1971],
- Henson graphs [Henson 1971],
- the random digraph,
- the rational Urysohn space [Uspenskij 1990],
- the random poset,
- the countable atomless boolean algebra,
- the random semilattice,
- the random lattice,
- the random distributive lattice.