Weighted clones

Jiří Vančura

Joint work with Libor Barto

Charles university in Prague

2014
Find $x_1, x_2, x_3, x_4, x_5 \in D$ such that

$$R_1(x_1, x_2, x_3) \land R_2(x_2, x_4) \land R_3(x_3, x_5); \quad R_1, R_2, R_3 \in \text{Rel}_D$$

Polymorphism $f \in Op_D$ preserves solutions of CSP:

$$R_2(x_{11}, x_{12}, x_{13}) \Rightarrow f(x_{11}, x_{12}, x_{13}) \land f(x_{21}, x_{22}, x_{23})$$

R_2 is invariant under f.
Find $x_1, x_2, x_3, x_4, x_5 \in D$ such that

$$R_1(x_1, x_2, x_3) \land R_2(x_2, x_4) \land R_3(x_3, x_5) ; \quad R_1, R_2, R_3 \in \text{Rel}_D$$

Polymorphism $f \in Op_D$ preserves solutions of CSP:

R_2 is invariant under f.

R_2 is $\forall x_1, x_2, x_3 \in D$ such that $R_1(x_1, x_2, x_3) \land R_2(x_2, x_4) \land R_3(x_3, x_5) ; R_1, R_2, R_3 \in \text{Rel}_D$.
Galois correspondence
Clones and relational clones

\[\mathcal{F} \subseteq \text{Op}_D \]

Clone(\mathcal{F}):
- contains projections \(\pi_i^n \)
- closed under superposition
 - ternary \(f \), binary \(g_1, g_2, g_3 \)
 - \[f[g_1, g_2, g_3](x_1, x_2) = f(g_1(x_1, x_2), g_2(x_1, x_2), g_3(x_1, x_2)) \]

\[\mathcal{R} \subseteq \text{Rel}_D \]

RelClone(\mathcal{R}):
- contains equality relation
- closed under PP-definition
 - \[S(x_1, x_2, x_3) := \exists x_4 R_1(x_1, x_2, x_3) \wedge R_2(x_2, x_4) \]
Clones and relational clones

\[\mathcal{F} \subseteq \text{Op}_D \]

Clone(\(\mathcal{F}\)):
- contains projections \(\pi_i^n\)
- closed under superposition

\[f[g_1, g_2, g_3](x_1, x_2) = f(g_1(x_1, x_2), g_2(x_1, x_2), g_3(x_1, x_2)) \]

\[\mathcal{R} \subseteq \text{Rel}_D \]

RelClone(\(\mathcal{R}\)):
- contains equality relation
- closed under PP-definition

\[S(x_1, x_2, x_3) := \exists x_4 R_1(x_1, x_2, x_3) \land R_2(x_2, x_4) \]
Clones and relational clones

\[\mathcal{F} \subseteq \text{Op}_D \]

Clone(\mathcal{F}):
- contains projections \(\pi_i^n \)
- closed under superposition

\[f[g_1, g_2, g_3](x_1, x_2) = f(g_1(x_1, x_2), g_2(x_1, x_2), g_3(x_1, x_2)) \]

\[R \subseteq \text{Rel}_D \]

RelClone(\mathcal{R}):
- contains equality relation
- closed under PP-definition

\[S(x_1, x_2, x_3) := \exists x_4 R_1(x_1, x_2, x_3) \land R_2(x_2, x_4) \]
Clones and relational clones

\[\mathcal{F} \subseteq \text{Op}_D \]

Clone(\(\mathcal{F}\)):
- contains projections \(\pi^n_i\)
- closed under superposition

ternary \(f\), binary \(g_1, g_2, g_3\)

\[
f[g_1, g_2, g_3](x_1, x_2) = f(g_1(x_1, x_2), g_2(x_1, x_2), g_3(x_1, x_2))
\]

\[\mathcal{R} \subseteq \text{Rel}_D \]

RelClone(\(\mathcal{R}\)):
- contains equality relation
- closed under PP-definition

\[
S(x_1, x_2, x_3) := \exists x_4 R_1(x_1, x_2, x_3) \land R_2(x_2, x_4)
\]
Clones and relational clones

\[\mathcal{F} \subseteq \text{Op}_D \]

Clone(\(\mathcal{F}\)):
- contains projections \(\pi_i^n\)
- closed under superposition
- ternary \(f\), binary \(g_1, g_2, g_3\)

\[f[g_1, g_2, g_3](x_1, x_2) = f(g_1(x_1, x_2), g_2(x_1, x_2), g_3(x_1, x_2)) \]

\[\mathcal{R} \subseteq \text{Rel}_D \]

RelClone(\(\mathcal{R}\)):
- contains equality relation
- closed under PP-definition

\[S(x_1, x_2, x_3) := \exists x_4 R_1(x_1, x_2, x_3) \land R_2(x_2, x_4) \]
Clones and relational clones

\[\mathcal{F} \subseteq \text{Op}_D \]

\textbf{Clone(}\mathcal{F}\text{)}:
- contains projections \(\pi^n_i \)
- closed under superposition

\[f[g_1, g_2, g_3](x_1, x_2) = f(g_1(x_1, x_2), g_2(x_1, x_2), g_3(x_1, x_2)) \]

\[\mathcal{R} \subseteq \text{Rel}_D \]

\textbf{RelClone(}\mathcal{R}\text{)}:
- contains equality relation
- closed under PP-definition

\[S(x_1, x_2, x_3) := \exists x_4 R_1(x_1, x_2, x_3) \wedge R_2(x_2, x_4) \]
Clones and relational clones

$\mathcal{F} \subseteq \text{Op}_D$

Clone(\mathcal{F}):
- contains projections π_i^n
- closed under superposition

ternary f, binary g_1, g_2, g_3

\[
f[g_1, g_2, g_3](x_1, x_2) = f(g_1(x_1, x_2), g_2(x_1, x_2), g_3(x_1, x_2))\]

$\mathcal{R} \subseteq \text{Rel}_D$

RelClone(\mathcal{R}):
- contains equality relation
- closed under PP-definition

\[
S(x_1, x_2, x_3) := \exists x_4 R_1(x_1, x_2, x_3) \land R_2(x_2, x_4)
\]
Galois correspondence

\[\text{Pol}(\text{Inv}(F)) = \text{Clone}(F) \quad \text{Inv}(\text{Pol}(R)) = \text{RelClone}(R) \]
Valued constraint satisfaction problem

From relations to weighted relations:

- Find $x_1, x_2, x_3, x_4, x_5 \in D$ that minimize

$$R_1(x_1, x_2, x_3) + R_2(x_2, x_4) + R_3(x_3, x_5)$$

- Weighted relations $R_1, R_2, R_3 \in \text{wRel}_D$
- Weighted r-ary relation R naturally induces classic r-ary relation R^c:

$$R^c(x_1, x_2, ..., x_r) \iff R(x_1, x_2, ..., x_r) < +\infty$$

Therefore the polymorphism of R is well defined for a weighted relation R.
Valued constraint satisfaction problem

From relations to weighted relations:
- Find $x_1, x_2, x_3, x_4, x_5 \in D$ that minimize
 $$R_1(x_1, x_2, x_3) + R_2(x_2, x_4) + R_3(x_3, x_5)$$
 $$R_1 : D^3 \rightarrow \mathbb{Q} \cup \{+\infty\}, \ R_2, R_3 : D^2 \rightarrow \mathbb{Q} \cup \{+\infty\}$$

- **Weighted relations** $R_1, R_2, R_3 \in w\text{Rel}_D$
- Weighted r-ary relation R naturally induces classic r-ary relation R^c:
 $$R^c(x_1, x_2, ..., x_r) \iff R(x_1, x_2, ..., x_r) < +\infty$$
- Therefore the polymorphism of R is well defined for a weighted relation R.
Valued constraint satisfaction problem

From relations to weighted relations:

- Find $x_1, x_2, x_3, x_4, x_5 \in D$ that minimize

$$R_1(x_1, x_2, x_3) + R_2(x_2, x_4) + R_3(x_3, x_5)$$

$$R_1 : D^3 \rightarrow \mathbb{Q} \cup \{+\infty\}, \ R_2, R_3 : D^2 \rightarrow \mathbb{Q} \cup \{+\infty\}$$

- **Weighted relations** $R_1, R_2, R_3 \in w\text{Rel}_D$

- Weighted r-ary relation R naturally induces classic r-ary relation R^c:

$$R^c(x_1, x_2, \ldots, x_r) \iff R(x_1, x_2, \ldots, x_r) < +\infty$$

- Therefore the polymorphism of R is well defined for a weighted relation R.
Valued constraint satisfaction problem

From relations to weighted relations:

- Find \(x_1, x_2, x_3, x_4, x_5 \in D \) that minimize

\[
R_1(x_1, x_2, x_3) + R_2(x_2, x_4) + R_3(x_3, x_5)
\]

- **Weighted relations** \(R_1, R_2, R_3 \in \text{wRel}_D \)

- Weighted \(r \)-ary relation \(R \) naturally induces classic \(r \)-ary relation \(R^c \):

\[
R^c(x_1, x_2, \ldots, x_r) \iff R(x_1, x_2, \ldots, x_r) < +\infty
\]

- Therefore the polymorphism of \(R \) is well defined for a weighted relation \(R \).
Weightings

From clones of operations to weightings:
Let $C \subseteq \text{Op}_D$ be a clone, C_k denotes k-ary operations in C. Mapping $\omega : C_k \rightarrow \mathbb{Q}$ is a **weighting** if

1. $\omega(f) < 0 \Rightarrow f$ is a projection

2. $\sum_{f \in C_k} \omega(f) = 0$

We can view a weighting ω as a linear combination of operations f that have nonzero weight $\omega(f)$.

$$\omega = a_1 f_1 + a_2 f_2 + a_3 f_3 + a_4 f_4$$
Weightings

- From clones of operations to weightings:
 Let $C \subseteq \text{Op}_D$ be a clone, C_k denotes k-ary operations in C. Mapping $\omega : C_k \rightarrow \mathbb{Q}$ is a **weighting** if

 \[\omega(f) < 0 \Rightarrow f \text{ is a projection} \]

 \[\sum_{f \in C_k} \omega(f) = 0 \]

- We can view a weighting ω as a linear combination of operations f that have nonzero weight $\omega(f)$.

 \[\omega = a_1 f_1 + a_2 f_2 + a_3 f_3 + a_4 f_4 \]
Weightings

- From clones of operations to weightings:
 Let $C \subseteq \text{Op}_D$ be a clone, C_k denotes k-ary operations in C. Mapping $\omega : C_k \to \mathbb{Q}$ is a \textbf{weighting} if

 $$\omega(f) < 0 \Rightarrow f \text{ is a projection}$$

 $$\sum_{f \in C_k} \omega(f) = 0$$

- We can view a weighting ω as a linear combination of operations f that have nonzero weight $\omega(f)$.

 $$\omega = a_1 f_1 + a_2 f_2 + a_3 f_3 + a_4 f_4$$
Weightings

From clones of operations to weightings:
Let $C \subseteq \text{Op}_D$ be a clone, C_k denotes k-ary operations in C. Mapping $\omega : C_k \rightarrow \mathbb{Q}$ is a weighting if

1. $\omega(f) < 0 \Rightarrow f$ is a projection

$$\sum_{f \in C_k} \omega(f) = 0$$

We can view a weighting ω as a linear combination of operations f that have nonzero weight $\omega(f)$.

$$\omega = a_1 f_1 + a_2 f_2 + a_3 f_3 + a_4 f_4$$
Weighted polymorphism

- Polymorphism f of a classic relation R^C induced by weighted relation R:

$$
\begin{bmatrix}
R_C & R_C & R_C \\
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23}
\end{bmatrix} \implies
\begin{bmatrix}
R_C \\
f(x_{11}, x_{12}, x_{13}) \\
f(x_{21}, x_{22}, x_{23})
\end{bmatrix} =
\begin{bmatrix}
f(x_{1*}) \\
f(x_{2*})
\end{bmatrix}
$$

- Weighted polymorphism $\omega = a_1 f_1 + a_2 f_2 + a_3 f_3$ of R is a weighting of a clone $E \subseteq \text{Pol} \{R^C\}$:

$$
\begin{bmatrix}
R_C & R_C & R_C \\
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23}
\end{bmatrix} \implies
\begin{bmatrix}
R \\
f_1(x_{1*}) \\
f_2(x_{2*}) \\
f_3(x_{2*})
\end{bmatrix} \leq 0
$$

R is improved by ω.
Weighted polymorphism

- Polymorphism f of a classic relation R^C induced by weighted relation R:
 \[
 \begin{array}{ccc}
 \overline{R^C} & \overline{R^C} & \overline{R^C} \\
 x_{11} & x_{12} & x_{13} \\
 x_{21} & x_{22} & x_{23}
 \end{array}
 \Rightarrow
 \begin{array}{c}
 \overline{R^C} \\
 f(x_{11}, x_{12}, x_{13})
 \end{array}
 =
 \begin{array}{c}
 \overline{R^C} \\
 f(x_{21}, x_{22}, x_{23})
 \end{array}
 =
 \begin{array}{c}
 f(x_{1}^*) \\
 f(x_{2}^*)
 \end{array}
 =
 f(x_1^*)
 \]

- Weighted polymorphism $\omega = a_1 f_1 + a_2 f_2 + a_3 f_3$ of R is a weighting of a clone $E \subseteq \text{Pol}(\{R^C\})$:
 \[
 \begin{array}{ccc}
 \overline{R^C} & \overline{R^C} & \overline{R^C} \\
 x_{11} & x_{12} & x_{13} \\
 x_{21} & x_{22} & x_{23}
 \end{array}
 \Rightarrow
 \begin{array}{c}
 \overline{R} \\
 f_1(x_{1}^*)
 \end{array}
 +
 \begin{array}{c}
 \overline{R} \\
 f_2(x_{2}^*)
 \end{array}
 +
 \begin{array}{c}
 \overline{R} \\
 f_3(x_{2}^*)
 \end{array}
 \leq 0
 \]

R is improved by ω.

Jiří Vančura (Charles university in Prague)
Galois correspondence
Galois correspondence

\[wOp_D \] \[wRel_D \]

\[wPol(R) \] \[Pol(R) \]

\[R \]

\[Op_D \]
Galois correspondence

\[\text{wOp}_D \to \text{wRel}_D \]

\[\text{Op}_D \]

\[\omega_1 \quad \omega_2 \]

\[c_1 \cap c_2 \]
Galois correspondence

\[\text{Op}_D \quad \text{wOp}_D \quad \text{wRel}_D \]

\[
\begin{array}{c}
\text{Clone} \{C_1, C_2\} \\
\text{Op}_D \\
\omega_1, \omega_2
\end{array}
\]
Galois correspondence

Weighted clones

VCSP

Jiří Vančura (Charles university in Prague)
Weighted clones and weighted relational clones

\(\mathcal{F} \subseteq \text{wOp}_D \); \(\text{wClone}(\mathcal{F}) \):
- contains zero weightings of every arity \(\omega(f) = 0 \)
- closed under nonegative multiplication and addition of weightings
- closed under proper superposition

\[\begin{align*}
\text{ternary} \ & \omega = a_1 f_1 + a_2 f_2, \\
\text{binary} \ & \omega[g_1, g_2, g_3] = a_1 f_1[g_1, g_2, g_3] + a_2 f_2[g_1, g_2, g_3].
\end{align*} \]
(No negative weight on nonprojection)

\(\mathcal{R} \subseteq \text{wRel}_D \); \(\text{wRelClone}(\mathcal{R}) \):
- contains weighted equality relation
- closed under nonegative multiplication and addition of constant
- closed under addition and minimisation over arbitrary arguments

\[S(x_1, x_3, x_4) := \min_{x_2} (R_1(x_1, x_2, x_3) + R_2(x_2, x_4)) \]
Weighted clones and weighted relational clones

\(\mathcal{F} \subseteq \text{wOp}_D \); \quad \text{wClone}(\mathcal{F}):\n
- contains zero weightings of every arity \(\omega(f) = 0 \)
- closed under nonegative multiplication and addition of weightings
- closed under proper superposition

- ternary \(\omega = a_1f_1 + a_2f_2 \),
- binary \(g_1, g_2, g_3 \)
- binary \(\omega [g_1, g_2, g_3] = a_1f_1 [g_1, g_2, g_3] + a_2f_2 [g_1, g_2, g_3] \)

(No negative weight on nonprojection)

\(\mathcal{R} \subseteq \text{wRel}_D \); \quad \text{wRelClone}(\mathcal{R}):\n
- contains weighted equality relation
- closed under nonegative multiplication and addition of constant
- closed under addition and minimasation over arbitrary arguments

\[S(x_1, x_3, x_4) := \min_{x_2} \left(R_1(x_1, x_2, x_3) + R_2(x_2, x_4) \right) \]
Weighted clones and weighted relational clones

\[\mathcal{F} \subseteq wOp_D ; \quad \text{wClone}(\mathcal{F}) : \]

- contains zero weightings of every arity \(\omega(f) = 0 \)
- closed under nonnegative multiplication and addition of weightings
- closed under **proper** superposition

\[
\begin{align*}
\text{ternary } \omega & = a_1 f_1 + a_2 f_2, \\
\text{binary } g_1, g_2, g_3 & \\
\text{binary } \omega[g_1, g_2, g_3] & = a_1 f_1[g_1, g_2, g_3] + a_2 f_2[g_1, g_2, g_3] \\
\end{align*}
\]
(No negative weight on nonprojection)

\[\mathcal{R} \subseteq wRel_D ; \quad \text{wRelClone}(\mathcal{R}) : \]

- contains weighted equality relation
- closed under nonnegative multiplication and addition of constant
- closed under addition and minimasation over arbitrary arguments

\[
S(x_1, x_3, x_4) := \min_{x_2} (R_1(x_1, x_2, x_3) + R_2(x_2, x_4))
\]
Weighted clones and weighted relational clones

\(\mathcal{F} \subseteq \text{wOp}_D ; \ w\text{Clone}(\mathcal{F}): \)

- contains zero weightings of every arity \(\omega(f) = 0 \)
- closed under nonegative multiplication and addition of weightings
- closed under proper superposition

\[
\text{ternary } \omega = a_1 f_1 + a_2 f_2, \\
\text{binary } g_1, g_2, g_3 \\
\text{binary } \omega[g_1, g_2, g_3] = a_1 f_1 [g_1, g_2, g_3] + a_2 f_2 [g_1, g_2, g_3]
\]

(No negative weight on nonprojection)

\(\mathcal{R} \subseteq \text{wRel}_D ; \ w\text{RelClone}(\mathcal{R}): \)

- contains weighted equality relation
- closed under nonegative multiplication and addition of constant
- closed under addition and minimasation over arbitrary arguments

\[
S(x_1, x_3, x_4) := \min_{x_2} R_1(x_1, x_2, x_3) + R_2(x_2, x_4)
\]
Weighted clones and weighted relational clones

\(\mathcal{F} \subseteq \text{wOp}_D \); \(\text{wClone}(\mathcal{F}) \):
- contains zero weightings of every arity \(\omega(f) = 0 \)
- closed under nonegative multiplication and addition of weightings
- closed under proper superposition

 ternary \(\omega = a_1 f_1 + a_2 f_2 \),

 binary \(g_1, g_2, g_3 \)

 binary \(\omega[g_1, g_2, g_3] = a_1 f_1[g_1, g_2, g_3] + a_2 f_2[g_1, g_2, g_3] \)

(No negative weight on nonprojection)

\(\mathcal{R} \subseteq \text{wRel}_D \); \(\text{wRelClone}(\mathcal{R}) \):
- contains weighted equality relation
- closed under nonegative multiplication and addition of constant
- closed under addition and minimasation over arbitrary arguments

 \[S(x_1, x_3, x_4) := \min_{x_2} (R_1(x_1, x_2, x_3) + R_2(x_2, x_4)) \]
Weighted clones and weighted relational clones

\(\mathcal{F} \subseteq \text{wOp}_D \); \(\text{wClone}(\mathcal{F}) \):

- contains zero weightings of every arity \(\omega(f) = 0 \)
- closed under nonegative multiplication and addition of weightings
- closed under proper superposition

ternary \(\omega = a_1 f_1 + a_2 f_2 \)
binary \(g_1, g_2, g_3 \)

binary \(\omega[g_1, g_2, g_3] = a_1 f_1[g_1, g_2, g_3] + a_2 f_2[g_1, g_2, g_3] \)

(No negative weight on nonprojection)

\(\mathcal{R} \subseteq \text{wRel}_D \); \(\text{wRelClone}(\mathcal{R}) \):

- contains weighted equality relation
- closed under nonegative multiplication and addition of constant
- closed under addition and minimasation over arbitrary arguments

\[S(x_1, x_3, x_4) := \min_{x_2} (R_1(x_1, x_2, x_3) + R_2(x_2, x_4)) \]
Weighted clones and weighted relational clones

\[\mathcal{F} \subseteq \text{wOp}_D; \quad \text{wClone}(\mathcal{F}): \]
- contains zero weightings of every arity \(\omega(f) = 0 \)
- closed under nonegative multiplication and addition of weightings
- closed under \textbf{proper} superposition

\[
\begin{align*}
\text{ternary } \omega &= a_1 f_1 + a_2 f_2, \\
\text{binary } g_1, g_2, g_3 \\
\text{binary } \omega [g_1, g_2, g_3] &= a_1 f_1 [g_1, g_2, g_3] + a_2 f_2 [g_1, g_2, g_3]
\end{align*}
\]

(No negative weight on nonprojection)

\[\mathcal{R} \subseteq \text{wRel}_D; \quad \text{wRelClone}(\mathcal{R}): \]
- contains weighted equality relation
- closed under nonegative multiplication and addition of constant
- closed under addition and minimasation over arbitrary arguments

\[
S(x_1, x_3, x_4) := \min_{x_2} (R_1(x_1, x_2, x_3) + R_2(x_2, x_4))
\]
Weighted clones and weighted relational clones

\(\mathcal{F} \subseteq wOp_D \); \(w\text{Clone}(\mathcal{F}) \):

- contains zero weightings of every arity \(\omega(f) = 0 \)
- closed under nonegative multiplication and addition of weightings
- closed under proper superposition

 ternary \(\omega = a_1 f_1 + a_2 f_2 \),

 binary \(g_1, g_2, g_3 \)

 binary \(\omega[g_1, g_2, g_3] = a_1 f_1 [g_1, g_2, g_3] + a_2 f_2 [g_1, g_2, g_3] \)

(No negative weight on nonprojection)

\(\mathcal{R} \subseteq w\text{Rel}_D \); \(w\text{RelClone}(\mathcal{R}) \):

- contains weighted equality relation
- closed under nonegative multiplication and addition of constant
- closed under addition and minimisation over arbitrary arguments

\[S(x_1, x_3, x_4) := \min_{x_2} (R_1(x_1, x_2, x_3) + R_2(x_2, x_4)) \]
Weighted clones and weighted relational clones

\[\mathcal{F} \subseteq \text{wOp}_D ; \quad \text{wClone}(\mathcal{F}): \]
- contains zero weightings of every arity \(\omega(f) = 0 \)
- closed under nonegative multiplication and addition of weightings
- closed under \textbf{proper} superposition

 ternary \(\omega = a_1 f_1 + a_2 f_2 \)
 binary \(g_1, g_2, g_3 \)
 binary \(\omega[g_1, g_2, g_3] = a_1 f_1 [g_1, g_2, g_3] + a_2 f_2 [g_1, g_2, g_3] \)
(No negative weight on nonprojection)

\[\mathcal{R} \subseteq \text{wRel}_D ; \quad \text{wRelClone}(\mathcal{R}): \]
- contains weighted equality relation
- closed under nonegative multiplication and addition of constant
- closed under addition and minimisation over arbitrary arguments

 \[S(x_1, x_3, x_4) := \min_{x_2} (R_1(x_1, x_2, x_3) + R_2(x_2, x_4)) \]
Galois correspondence

\[(\text{Cohen, Cooper, Creed, Jeavons, Živný 2012})\]
Weightings that generate all weightings.

- A non-zero weighting ω with nonzero weight on projections only, WLOG $\omega(\pi_1) > 0$:
 - $\omega_0 := \frac{1}{\omega(\pi_1)} \omega[\pi_1^2, \pi_2^2, \pi_2^2, ...] = \pi_1^2 - \pi_2^2$
 - $\delta = a_1 f_1 + a_2 f_2 + ... + a_n f_n$
 - We can use improper superposition as long as the resulting mapping is weighting.
 - $\omega_0[f_r, f_s] = f_r - f_s$

- A nonzero weighting ω with a positive weight on a projection.

- Generate binary weightings, whose weights on nonprojection operations forms a strictly diagonally dominant matrix.
- Using such matrix, we can generate a weighting that can cancel the weights of ω on nonprojections.
- Remove weights from nonprojections and use previous result.
Weightings that generate all weightings.

- A non-zero weighting ω with nonzero weight on projections only, WLOG $\omega(\pi_1) > 0$:
 - $\omega_0 := \frac{1}{\omega(\pi_1)} \omega[\pi_1^2, \pi_2^2, \pi_2^2, \ldots] = \pi_1^2 - \pi_2^2$
 - $\delta = a_1 f_1 + a_2 f_2 + \ldots + a_n f_n$
 - We can use improper superposition as long as the resulting mapping is weighting.
 - $\omega_0[f_r, f_s] = f_r - f_s$

- A nonzero weighting ω with a positive weight on a projection.

 Generate binary weightings, whose weights on nonprojection operations forms a strictly diagonally dominant matrix.

 Using such matrix, we can generate a weighting that can cancel the weights of ω on nonprojections.

 Remove weights from nonprojections and use previous result.
Structure of weighted clones

Weightings that generate all weightings.

- A non-zero weighting \(\omega \) with nonzero weight on projections only, WLOG \(\omega(\pi_1) > 0 \):

 \[
 \omega_0 := \frac{1}{\omega(\pi_1)} \omega[\pi_1^2, \pi_2^2, \pi_2^2, \ldots] = \pi_1^2 - \pi_2^2
 \]

 \[
 \delta = a_1 f_1 + a_2 f_2 + \ldots + a_n f_n
 \]

 We can use improper superposition as long as the resulting mapping is weighting.

 \[
 \omega_0[f_r, f_s] = f_r - f_s
 \]

- A nonzero weighting \(\omega \) with a positive weight on a projection.

 Generate binary weightings, whose weights on nonprojection operations forms a strictly diagonally dominant matrix.

 Using such matrix, we can generate a weighting that can cancel the weights of \(\omega \) on nonprojections.

 Remove weights from nonprojections and use previous result.
Structure of weighted clones

Weightings that generate all weightings.
- A non-zero weighting ω with nonzero weight on projections only, WLOG $\omega(\pi_1) > 0$:
 - $\omega_0 := \frac{1}{\omega(\pi_1)} \omega[\pi_1^2, \pi_2^2, \pi_2^2, ...] = \pi_1^2 - \pi_2^2$
 - $\delta = a_1 f_1 + a_2 f_2 + ... + a_n f_n$
 - We can use improper superposition as long as the resulting mapping is weighting.
 - $\omega_0[f_r, f_s] = f_r - f_s$
- A nonzero weighting ω with a positive weight on a projection.
 - Generate binary weightings, whose weights on nonprojection operations forms a strictly diagonally dominant matrix.
 - Using such matrix, we can generate a weighting that can cancel the weights of ω on nonprojections.
 - Remove weights from nonprojections and use previous result.
Structure of weighted clones

Weightings that generate all weightings.

- A non-zero weighting ω with nonzero weight on projections only, WLOG $\omega(\pi_1) > 0$:
 - $\omega_0 := \frac{1}{\omega(\pi_1)} \omega[\pi_1^2, \pi_2^2, \pi_2, \ldots] = \pi_1^2 - \pi_2^2$
 - $\delta = a_1 f_1 + a_2 f_2 + \ldots + a_n f_n$
 - We can use improper superposition as long as the resulting mapping is weighting.
 - $\omega_0[f_r, f_s] = f_r - f_s$

- A nonzero weighting ω with a positive weight on a projection.
 - Generate binary weightings, whose weights on nonprojection operations forms a strictly diagonally dominant matrix.
 - Using such matrix, we can generate a weighting that can cancel the weights of ω on nonprojections.
 - Remove weights from nonprojections and use previous result.
Structure of weighted clones

Weightings that generate all weightings.

- A non-zero weighting ω with nonzero weight on projections only, WLOG $\omega(\pi_1) > 0$:
 - $\omega_0 := \frac{1}{\omega(\pi_1)} \omega[\pi_1^2, \pi_2^2, \pi_2^2, \ldots] = \pi_1^2 - \pi_2^2$
 - $\delta = a_1 f_1 + a_2 f_2 + \ldots + a_n f_n$
 - We can use improper superposition as long as the resulting mapping is weighting.
 - $\omega_0[f_r, f_s] = f_r - f_s$

- A nonzero weighting ω with a positive weight on a projection.

- Generate binary weightings, whose weights on nonprojection operations forms a strictly diagonally dominant matrix.
- Using such matrix, we can generate a weighting that can cancel the weights of ω on nonprojections.
- Remove weights from nonprojections and use previous result.
Structure of weighted clones

Weightings that generate all weightings.

- A non-zero weighting ω with nonzero weight on projections only, WLOG $\omega(\pi_1) > 0$:
 - $\omega_0 := \frac{1}{\omega(\pi_1)} \omega[\pi_1^2, \pi_2^2, \pi_2^2, ...] = \pi_1^2 - \pi_2^2$
 - $\delta = a_1 f_1 + a_2 f_2 + ... + a_n f_n$
 - We can use improper superposition as long as the resulting mapping is weighting.
 - $\omega_0[f_r, f_s] = f_r - f_s$

- A nonzero weighting ω with a positive weight on a projection.

 Generate binary weightings, whose weights on nonprojection operations forms a strictly diagonally dominant matrix.
 - Using such matrix, we can generate a weighting that can cancel the weights of ω on nonprojections.
 - Remove weights from nonprojections and use previous result.
Weightings that generate all weightings.

- A non-zero weighting ω with nonzero weight on projections only, WLOG $\omega(\pi_1) > 0$:
 - $\omega_0 := \frac{1}{\omega(\pi_1)}\omega[\pi_1^2, \pi_2^2, \pi_2^2, \ldots] = \pi_1^2 - \pi_2^2$
 - $\delta = a_1 f_1 + a_2 f_2 + \ldots + a_n f_n$
 - We can use improper superposition as long as the resulting mapping is weighting.
 - $\omega_0[f_r, f_s] = f_r - f_s$

- A nonzero weighting ω with a positive weight on a projection.

Generate binary weightings, whose weights on nonprojection operations forms a strictly diagonally dominant matrix.
Using such matrix, we can generate a weighting that can cancel the the weights of ω on nonprojections.
Remove weights from nonprojections and use previous result.
Structure of weighted clones

Weightings that generate all weightings.

- A non-zero weighting ω with nonzero weight on projections only, WLOG $\omega(\pi_1) > 0$:
 - $\omega_0 := \frac{1}{\omega(\pi_1)} \omega[\pi_1^2, \pi_2^2, \pi_2^2, \ldots] = \pi_1^2 - \pi_2^2$
 - $\delta = a_1 f_1 + a_2 f_2 + \ldots + a_n f_n$
 - We can use improper superposition as long as the resulting mapping is weighting.
 - $\omega_0[f_r, f_s] = f_r - f_s$

- A nonzero weighting ω with a positive weight on a projection.

 - Generate binary weightings, whose weights on nonprojection operations forms a strictly diagonally dominant matrix.
 - Using such matrix, we can generate a weighting that can cancel the weights of ω on nonprojections.
 - Remove weights from nonprojections and use previous result.
Structure of weighted clones on $D = \{0, 1\}$

Weighted clones over Clone($\{\land, \lor\}$)

- We can classify the binary parts of all weighted clones.
- WLOG we can consider only weightings of the form

$$\omega = a\pi_1 + (-1 - a)\pi_2 + b \land + (1 - b)\lor$$

$$a \in [-1, 0], b \in [0, 1]$$

- Such weighting can be visualized in an ab plane:
Structure of weighted clones on $D = \{0, 1\}$

Weighted clones over Clone($\{\land, \lor\}$)

- We can classify the binary parts of all weighted clones.
- WLOG we can consider only weightings of the form

$$\omega = a \pi_1 + (-1 - a) \pi_2 + b \land + (1 - b) \lor$$

$$a \in [-1, 0], b \in [0, 1]$$

- Such weighting can be visualized in an ab plane:
Weighted clones over Clone($\{\land, \lor\}$)

- We can classify the binary parts of all weighted clones.
- WLOG we can consider only weightings of the form

$$\omega = a\pi_1 + (-1 - a)\pi_2 + b \land + (1 - b)\lor$$

$$a \in [-1, 0], b \in [0, 1]$$

- Such weighting can be visualized in an ab plane:
Structure of weighted clones on $D = \{0, 1\}$

Weighted clones over Clone($\{\land, \lor\}$)

- We can classify the binary parts of all weighted clones.
- WLOG we can consider only weightings of the form

$$\omega = a\pi_1 + (-1 - a)\pi_2 + b\land + (1 - b)\lor$$

$$a \in [-1, 0], b \in [0, 1]$$

- Such weighting can be visualized in an ab plane:
Weighted clones over \(\text{Clone}(\{\wedge, \vee\}) \)
Weighted clones over Clone($\{\wedge, \vee\}$)
Weighted clones over Clone($\{\wedge, \vee\}$)
Thank you.