On the Minimal Arity of a Near Unanimity Operation in a Clone

Dmitriy Zhuk
zhuk.dmitriy@gmail.com

Department of Mathematics and Mechanics
Moscow State University

Conference AAA88 : Warsaw, 2014
Outline

1. Notations and Definitions
2. Minimal Arity of NU
3. Criteria of Existence NU
4. Proof for the Idempotent Case
Main notations.

Let A be a finite set. Everybody knows what clone is...

Some Notations

- O^m_A is the set of all operations on A of arity at most m.
Let A be a finite set. Everybody knows what clone is...

Some Notations

- O^m_A is the set of all operations on A of arity at most m.
- R^m_A is the set of finitary relations on A of arity at most m.
Main notations.

Let A be a finite set. Everybody knows what clone is...

Some Notations

- O^m_A is the set of all operations on A of arity at most m.
- R^m_A is the set of finitary relations on A of arity at most m.
- $[M]$ is the least clone containing M.
Main notations.

Let A be a finite set. Everybody knows what clone is...

Some Notations

- O^m_A is the set of all operations on A of arity at most m.
- R^m_A is the set of finitary relations on A of arity at most m.
- $[M]$ is the least clone containing M.
- $\text{Pol}(\rho)$ is the set of all operations preserving the relation ρ.
- $\text{Pol}(F)$ is the set of all operations preserving every relation from F.
Main notations.

Let A be a finite set. Everybody knows what clone is...

Some Notations

- O^m_A is the set of all operations on A of arity at most m.
- R^m_A is the set of finitary relations on A of arity at most m.
- $[M]$ is the least clone containing M.
- $\text{Pol}(\rho)$ is the set of all operations preserving the relation ρ.
- $\text{Pol}(F)$ is the set of all operations preserving every relation from F.
- $\langle \rho \rangle_C$ is the least relation preserved by a clone C and containing ρ.
Near-unanimity operation

Definition

A near unanimity operation (NU) is an operation f satisfying

$$f(x, \ldots, x, y) = f(x, \ldots, x, y, x) = \cdots = f(y, x, \ldots, x) = x.$$
Near-unanimity operation

Definition

A near unanimity operation (NU) is an operation f satisfying

$$f(x, \ldots, x, y) = f(x, \ldots, x, y, x) = \cdots = f(y, x, \ldots, x) = x.$$

Properties

- Every clone with a NU operation of arity n is defined by relations of arity at most $n - 1$ (K. A. Baker, A. F. Pixley).
Near-unanimity operation

Definition

A near unanimity operation (NU) is an operation f satisfying

$$f(x, \ldots, x, y) = f(x, \ldots, x, y, x) = \cdots = f(y, x, \ldots, x) = x.$$

Properties

- Every clone with a NU operation of arity n is defined by relations of arity at most $n - 1$ (K. A. Baker, A. F. Pixley).
- For any NU there exists finitely many clones containing it.
Near-unanimity operation

Definition

A near unanimity operation (NU) is an operation f satisfying

$$f(x, \ldots, x, y) = f(x, \ldots, x, y, x) = \cdots = f(y, x, \ldots, x) = x.$$

Properties

- Every clone with a NU operation of arity n is defined by relations of arity at most $n - 1$ (K. A. Baker, A. F. Pixley).
- For any NU there exists finitely many clones containing it.
- Every clone with a NU operation is finitely generated.
Near-unanimity operation

Definition

A near unanimity operation (NU) is an operation f satisfying

$$f(x, \ldots, x, y) = f(x, \ldots, x, y, x) = \cdots = f(y, x, \ldots, x) = x.$$

Properties

- Every clone with a NU operation of arity n is defined by relations of arity at most $n - 1$ (K. A. Baker, A. F. Pixley).
- For any NU there exists finitely many clones containing it.
- Every clone with a NU operation is finitely generated.
- H. Lakser and S. Kerkhoff successfully studied the order of clones with NU (the minimal arity of a generating set).
Near-unanimity operation

Definition

A near unanimity operation (NU) is an operation f satisfying

$$f(x, \ldots, x, y) = f(x, \ldots, x, y, x) = \cdots = f(y, x, \ldots, x) = x.$$

Properties

- Every clone with a NU operation of arity n is defined by relations of arity at most $n - 1$ (K. A. Baker, A. F. Pixley).
- For any NU there exists finitely many clones containing it.
- Every clone with a NU operation is finitely generated.
- H. Lakser and S. Kerkhoff successfully studied the order of clones with NU (the minimal arity of a generating set).
- Sublattices of clones containing a NU can be computed by a computer (we found 1,918,040 clones containing a majority operation on 3 elements, and so on).
Two decision problems

Question

How can we recognize that a clone contains a NU?
Two decision problems

Question
How can we recognize that a clone contains a NU?

Problem 1
Given a finite set of operations M, decide whether $[M]$ contains a NU operation.

Problem 2
Given a finite set of relations F, decide whether $\text{Pol}(F)$ contains a NU operation.
Two decision problems

Question
How can we recognize that a clone contains a NU?

Problem 1
Given a finite set of operations M, decide whether $[M]$ contains a NU operation.

Problem 2
Given a finite set of relations F, decide whether $\text{Pol}(F)$ contains a NU operation.

- Note that for any fixed n we can easily check if a clone contains a NU of arity n.
- Thus, to solve Problem 1 and Problem 2 we just need an upper bound on the minimal arity of a NU.
Definition

\(NU(C) \) denotes the minimal arity of a NU in a clone \(C \).
Put \(NU(C) = \infty \) if \(C \) doesn’t contain a NU.
Definition

\(NU(C) \) denotes the minimal arity of a NU in a clone \(C \).
Put \(NU(C) = \infty \) if \(C \) doesn’t contain a NU.

\[
NU_{\text{Oper}}(m) = \max\{NU(C) \mid C = [M], M \subseteq O_A^m, NU(C) < \infty\},
\]
\[
NU_{\text{Rel}}(m) = \max\{NU(C) \mid C = \text{Pol}(F), F \subseteq R_A^m, NU(C) < \infty\}.
\]
Definition

\(\text{NU}(C) \) denotes the minimal arity of a NU in a clone \(C \). Put \(\text{NU}(C) = \infty \) if \(C \) doesn’t contain a NU.

\[
\text{NU}_{\text{Oper}}(m) = \max \{ \text{NU}(C) \mid C = [M], M \subseteq O_A^m, \text{NU}(C) < \infty \}, \\
\text{NU}_{\text{Rel}}(m) = \max \{ \text{NU}(C) \mid C = \text{Pol}(F), F \subseteq R_A^m, \text{NU}(C) < \infty \}.
\]

Fact

- Problem 1 is decidable if and only if \(\text{NU}_{\text{Oper}}(m) \) is computable.
- Problem 2 is decidable if and only if \(\text{NU}_{\text{Rel}}(m) \) is computable.
Definition

$NU(C)$ denotes the minimal arity of a NU in a clone C. Put $NU(C) = \infty$ if C doesn’t contain a NU.

$NU_{\text{Oper}}(m) = \max\{NU(C) \mid C = [M], M \subseteq O_A^m, NU(C) < \infty\},$

$NU_{\text{Rel}}(m) = \max\{NU(C) \mid C = \text{Pol}(F), F \subseteq R_A^m, NU(C) < \infty\}.$

Fact

- Problem 1 is decidable if and only if $NU_{\text{Oper}}(m)$ is computable.
- Problem 2 is decidable if and only if $NU_{\text{Rel}}(m)$ is computable.

For idempotent operations IO_A and conservative operations CO_A we put

$NU_{\text{IdemOper}}(m) = \max\{NU(C) \mid C = [M], M \subseteq IO_A^m, NU(C) < \infty\},$

$NU_{\text{ConsOper}}(m) = \max\{NU(C) \mid C = [M], M \subseteq CO_A^m, NU(C) < \infty\}.$
Problem 1: Given a finite algebra, decide whether it contains a near-unanimity term

What was known
Problem 1: Given a finite algebra, decide whether it contains a near-unanimity term

What was known

- M.Maroti proved that Problem 1 is algorithmically decidable.
Problem 1: Given a finite algebra, decide whether it contains a near-unanimity term

What was known

- M. Maroti proved that Problem 1 is algorithmically decidable.
- No upper bound on $NU_{\text{Oper}}(m)$ was known.
Problem 1: Given a finite algebra, decide whether it contains a near-unanimity term

What was known

- M. Maroti proved that Problem 1 is algorithmically decidable.
- No upper bound on $NU_{\text{Oper}}(m)$ was known.

Theorem

$NU_{\text{Oper}}(m) \leq |A|^2 \cdot (|A| \cdot m)^{(3|A|)|A|}$.
Problem 1: Given a finite algebra, decide whether it contains a near-unanimity term

What was known

- M. Maroti proved that Problem 1 is algorithmically decidable.
- No upper bound on $NU_{Oper}(m)$ was known.

Theorem

1. $NU_{Oper}(m) \leq |A|^2 \cdot (|A| \cdot m)^{|3|A|}|A|$.
2. $NU_{IdemOper}(m) \leq m \cdot |A|^3$.
Problem 1: Given a finite algebra, decide whether it contains a near-unanimity term

What was known

- M. Maroti proved that Problem 1 is algorithmically decidable.
- No upper bound on $NU_{\text{Oper}}(m)$ was known.

Theorem

1. $NU_{\text{Oper}}(m) \leq |A|^2 \cdot (|A| \cdot m)^{(3|A|)|A|}$.
2. $NU_{\text{IdemOper}}(m) \leq m \cdot |A|^3$.
3. $NU_{\text{ConsOper}}(m) \leq m \cdot |A|^2$.
Problem 2: Given a relation, decide whether it admits a NU operation

What was known
Problem 2: Given a relation, decide whether it admits a NU operation.

What was known

- L. Barto proved Zadori Conjecture which implies the decidability of Problem 2.
Problem 2: Given a relation, decide whether it admits a NU operation

What was known

- L. Barto proved Zadori Conjecture which implies the decidability of Problem 2.
- L. Barto showed that $NU_{Rel}(m) \leq 4^{|A|^m}$.
Problem 2: Given a relation, decide whether it admits a NU operation

What was known

- L.Barto proved Zadori Conjecture which implies the decidability of Problem 2.
- L.Barto showed that $\text{NU}_{\text{Rel}}(m) \leq 4^{8|A|^m}$.

Theorem

$\text{NU}_{\text{Rel}}(m) \leq ((|A| - 1)(m - 1))^{3|A|} + 1.$
Problem 2: Given a relation, decide whether it admits a NU operation

What was known

- L. Barto proved Zadori Conjecture which implies the decidability of Problem 2.
- L. Barto showed that \(NU_{Rel}(m) \leq 4^{|A|^m} \).

Theorem

\(NU_{Rel}(m) \leq ((|A| - 1)(m - 1))^{3|A|} + 1. \)

Theorem

\(NU_{Rel}(m) \geq (m - 1)^{2|A| - 2}. \)
Problem 2: Given a relation, decide whether it admits a NU operation.

What was known

- L. Barto proved Zadori Conjecture which implies the decidability of Problem 2.
- L. Barto showed that $\text{NU}_{\text{Rel}}(m) \leq 4^{|A|^m}$.

Theorem

$\text{NU}_{\text{Rel}}(m) \leq ((|A| - 1)(m - 1))^{3|A|} + 1.$

Theorem

1. $\text{NU}_{\text{Rel}}(m) \geq (m - 1)^{2|A|^2 - 2}$.
2. $\text{NU}_{\text{Rel}}(2) \geq 2^{2|A|^3}$ for $|A| \geq 4$.
Further Investigations

Theorem

1. \(?? \leq NU_{\text{Oper}}(m) \leq |A|^2 \cdot (|A| \cdot m)^{|A|}. \)
2. \(?? \leq NU_{\text{IdemOper}}(m) \leq m \cdot |A|^3. \)
3. \(?? \leq NU_{\text{ConsOper}}(m) \leq m \cdot |A|^2. \)
Further Investigations

Theorem

1. \(\text{???} \leq NU_{\text{Oper}}(m) \leq |A|^2 \cdot (|A| \cdot m)^{3|A|}|A| \).
2. \(\text{???} \leq NU_{\text{IdemOper}}(m) \leq m \cdot |A|^3 \).
3. \(\text{???} \leq NU_{\text{ConsOper}}(m) \leq m \cdot |A|^2 \).
Further Investigations

Theorem

1. \[??? \leq NU_{\text{Oper}}(m) \leq |A|^2 \cdot (|A| \cdot m)^{(3|A|)|A|}. \]
2. \[??? \leq NU_{\text{IdemOper}}(m) \leq m \cdot |A|^3. \]
3. \[??? \leq NU_{\text{ConsOper}}(m) \leq m \cdot |A|^2. \]

Theorem

1. \[(m - 1)^{2|A| - 2} \leq NU_{\text{Rel}}(m) \leq ((|A| - 1)(m - 1))^{3|A|} + 1. \]
2. \[2^{2|A| - 3} \leq NU_{\text{Rel}}(2) \leq (|A| - 1)^{3|A|} + 1. \]
Further Investigations

Theorem

1. \(??? \leq NU_{\text{Oper}}(m) \leq |A|^2 \cdot (|A| \cdot m)^{|A|} \).
2. \(??? \leq NU_{\text{IdemOper}}(m) \leq m \cdot |A|^3 \).
3. \(??? \leq NU_{\text{ConsOper}}(m) \leq m \cdot |A|^2 \).

Theorem

1. \((m - 1)2^{|A| - 2} \leq NU_{\text{Rel}}(m) \leq ((|A| - 1)(m - 1))^{3|A|} + 1\).
2. \(2^2{|A| - 3} \leq NU_{\text{Rel}}(2) \leq (|A| - 1)^{3|A|} + 1\)
Complexity of the algorithms

Question

Can we really use these estimates to solve Problem 1 and Problem 2?

<table>
<thead>
<tr>
<th>Examples</th>
<th>Check that binary relations on 3 elements admit a NU we need to check all NU of arity 3^3.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Check that binary operations on 3 elements generate a NU we need to check all NU of arity $3 \cdot 2 \cdot (3 \cdot 2)$ = 36.</td>
</tr>
<tr>
<td></td>
<td>Can we do better?</td>
</tr>
</tbody>
</table>
Complexity of the algorithms

Question
Can we really use these estimates to solve Problem 1 and Problem 2?

Examples
- To check that binary relations on 3 elements admit a NU we need to check all NU of arity 4^{3^3}.
Complexity of the algorithms

Question

Can we really use these estimates to solve Problem 1 and Problem 2?

Examples

- To check that binary relations on 3 elements admit a NU we need to check all NU of arity 4^{3^3}.
- To check that binary operations on 3 elements generate a NU we need to check all NU of arity $3^2 \cdot (3 \cdot 2)^{93}$.
Complexity of the algorithms

Question
Can we really use these estimates to solve Problem 1 and Problem 2?

Examples
- To check that binary relations on 3 elements admit a NU we need to check all NU of arity 4^{3^3}.
- To check that binary operations on 3 elements generate a NU we need to check all NU of arity $3^2 \cdot (3 \cdot 2)^{9^3}$

Can we do better?
Criteria of existence NU for idempotent case

Definition

\[\text{Block}(D, B) = \bigcap_{n=1}^{\infty} \text{Pol}(D^n \setminus (D \setminus B)^n) \text{ for } B \subset D \subseteq A. \]

\[\text{Lin}(D, \varphi) = \text{Pol}\{(x_1, x_2, x_3, x_4) \mid \varphi(x_1) + \varphi(x_2) = \varphi(x_3) + \varphi(x_4)\} \]

for \(D \subseteq A \), a finite field \(F \) and a surjective mapping \(\varphi : D \rightarrow F \).

- \(\text{Lin}(D, \varphi) \) is the clone of all operations that are linear on \(D \) with respect to \(\varphi \).
Criteria of existence NU for idempotent case

Definition

\[\text{Block}(D, B) = \bigcap_{n=1}^{\infty} \text{Pol}(D^n \setminus (D \setminus B)^n) \text{ for } B \subset D \subseteq A. \]

\[\text{Lin}(D, \varphi) = \text{Pol}\{(x_1, x_2, x_3, x_4) \mid \varphi(x_1) + \varphi(x_2) = \varphi(x_3) + \varphi(x_4)\} \]

for \(D \subseteq A\), a finite field \(F\) and a surjective mapping \(\varphi : D \rightarrow F\).

- \(\text{Lin}(D, \varphi)\) is the clone of all operations that are linear on \(D\) with respect to \(\varphi\).

Theorem

An idempotent clone \(C\) doesn’t contain a NU iff

1. \(C \subseteq \text{Block}(B, D)\) for some \(B, D\), or
2. \(C \subseteq \text{Lin}(D, \varphi)\) for some \(D\) and \(\varphi\).
Criteria of existence NU for idempotent case

Corollary

\[\text{Block}(B, D) \text{ and } \text{Lin}(D, \varphi) \text{ are maximal idempotent clones that do not contain a NU.} \]
Criteria of existence NU for idempotent case

Corollary

$\text{Block}(B, D)$ and $\text{Lin}(D, \varphi)$ are maximal idempotent clones that do not contain a NU.

How can we check whether a finite set of idempotent operations generate a NU?
Criteria of existence NU for idempotent case

Corollary

\(\text{Block}(B, D)\) and \(\text{Lin}(D, \varphi)\) are maximal idempotent clones that do not contain a NU.

How can we check whether a finite set of idempotent operations generate a NU?
- We check whether \(M \subseteq \text{Block}(D, B)\) for some \(B \subseteq D \subseteq A\).
 Note that \(f \in \text{Block}(D, B)\) iff \(f\) preserves \(D\) and for some variable \(i\) we have \(f(D, D, \ldots, D, B, D, \ldots, D) \subseteq B\).
Criteria of existence NU for idempotent case

Corollary

\(\text{Block}(B, D)\) and \(\text{Lin}(D, \varphi)\) are maximal idempotent clones that do not contain a NU.

How can we check whether a finite set of idempotent operations generate a NU?

- We check whether \(M \subseteq \text{Block}(D, B)\) for some \(B \subseteq D \subseteq A\).

 Note that \(f \in \text{Block}(D, B)\) if and only if \(f\) preserves \(D\) and for some variable \(i\) we have \(f(D, D, \ldots, D, B, D, \ldots, D) \subseteq B\).

So, it is easy!
Criteria of existence NU for idempotent case

Corollary

Block(B, D) and Lin(D, ϕ) are maximal idempotent clones that do not contain a NU.

How can we check whether a finite set of idempotent operations generate a NU?

- We check whether $M \subseteq Block(D, B)$ for some $B \subseteq D \subseteq A$. Note that $f \in Block(D, B)$ iff f preserves D and for some variable i we have $f(D, D, \ldots, D, B, D, \ldots, D) \subseteq B$.

 So, it is easy!

- We check that $M \subseteq Lin(D, ϕ)$.
Criteria of existence NU for idempotent case

Corollary

$Block(B, D)$ and $Lin(D, \varphi)$ are maximal idempotent clones that do not contain a NU.

How can we check whether a finite set of idempotent operations generate a NU?

- We check whether $M \subseteq Block(D, B)$ for some $B \subset D \subseteq A$. Note that $f \in Block(D, B)$ iff f preserves D and for some variable i we have $f(D, D, \ldots, D, B, D, \ldots, D) \subseteq B$.

 So, it is easy!

- We check that $M \subseteq Lin(D, \varphi)$. Easy!
Criteria of existence NU for idempotent case

Corollary

$Block(B, D)$ and $Lin(D, \varphi)$ are maximal idempotent clones that do not contain a NU.

How can we check whether a finite set of idempotent operations generate a NU?

- We check whether $M \subseteq Block(D, B)$ for some $B \subseteq D \subseteq A$. Note that $f \in Block(D, B)$ iff f preserves D and for some variable i we have $f(D, D, \ldots, D, B, D, \ldots, D) \subseteq B$.

 So, it is easy!

- We check that $M \subseteq Lin(D, \varphi)$. Easy!

 This idea can be generalized for nonidempotent case.
We need to prove that any clone generated by operations of arity at most m either contains NU of arity $m \cdot |A|^3$, or doesn’t contain NU at all.
Sketch proof

Let C be a clone generated by operations of arity at most m and $NU(C) = n + 1$.

Sketch proof

Let C be a clone generated by operations of arity at most m and $NU(C) = n + 1$.

We find $a, b \in A$ and $n_1 \geq n/|A|^2$ such that $\{a\}^{n_1} \notin \langle\{a, b\}^{n_1} \setminus \{a\}^{n_1}\rangle_c$.
Sketch proof

Let C be a clone generated by operations of arity at most m and $NU(C) = n + 1$.

1. we find $a, b \in A$ and $n_1 \geq n/|A|^2$ such that $\{a\}^{n_1} \notin \langle \{a, b\}^{n_1} \setminus \{a\}^{n_1} \rangle_C$.

We put $D = \langle \{a, b\} \rangle_C$ and $B_1 = \{b\}$.

Sketch proof

Let C be a clone generated by operations of arity at most m and $NU(C) = n + 1$.

1. we find $a, b \in A$ and $n_1 \geq n/|A|^2$ such that
 \[\{a\}^{n_1} \not\subseteq \langle \{a, b\}^{n_1} \setminus \{a\}^{n_1} \rangle_C. \]
 We put $D = \langle \{a, b\} \rangle_C$ and $B_1 = \{b\}$.

2. We build a sequence $(n_1, B_1), (n_2, B_2), (n_3, B_3), \ldots$
 satisfying $\{a\}^{n_i} \not\subseteq \langle D^{n_i} \setminus (D \setminus B_i)^{n_i} \rangle_C$ and
 $n_{i+1} \geq n_i - (m - 1), B_i \subset B_{i+1}$.
Sketch proof

Let \(C \) be a clone generated by operations of arity at most \(m \) and \(NU(C) = n + 1 \).

1. We find \(a, b \in A \) and \(n_1 \geq n/|A|^2 \) such that \(\{a\}^{n_1} \not\in \langle \{a, b\}^{n_1} \setminus \{a\}^{n_1}\rangle_C \). We put \(D = \langle \{a, b\}\rangle_C \) and \(B_1 = \{b\} \).

2. We build a sequence \((n_1, B_1), (n_2, B_2), (n_3, B_3), \ldots \) satisfying \(\{a\}^{n_i} \not\in \langle D^{n_i} \setminus (D \setminus B_i)^{n_i}\rangle_C \) and \(n_{i+1} \geq n_i - (m - 1), B_i \subset B_{i+1} \).

3. We finish the sequence if \(C \) preserves \(D^{n_i} \setminus (D \setminus B_i)^{n_i} \). Since the sequence has at most \(|A| - 1 \) elements, we get \(n_i > n/k^2 - (|A| - 1) \cdot (m - 1) \).
Sketch proof

Let C be a clone generated by operations of arity at most m and $NU(C) = n + 1$.

1. We find $a, b \in A$ and $n_1 \geq n/|A|^2$ such that $\{a\}^{n_1} \notin \langle\{a, b\}^{n_1} \setminus \{a\}^{n_1}\rangle_C$. We put $D = \langle\{a, b\}\rangle_C$ and $B_1 = \{b\}$.

2. We build a sequence $(n_1, B_1), (n_2, B_2), (n_3, B_3), \ldots$ satisfying $\{a\}^{n_i} \notin \langle D^{n_i} \setminus (D \setminus B_i)^{n_i}\rangle_C$ and $n_{i+1} \geq n_i - (m - 1), B_i \subset B_{i+1}$.

3. We finish the sequence if C preserves $D^{n_i} \setminus (D \setminus B_i)^{n_i}$. Since the sequence has at most $|A| - 1$ elements, we get $n_i > n/k^2 - (|A| - 1) \cdot (m - 1)$. If $n_i \geq m$ then C preserves $D^p \setminus (D \setminus B_i)^p$ for any p. Contradiction!!!
Step 1

C contains a NU of arity \(n + 1 \) but not \(n \).

We know from AAA87

1. A clone *C* doesn’t contain a NU of arity \(n \) iff there exists a compatible key (critical) relation of arity \(n \).

2. For any key relation \(\rho \) preserved by a NU we can find \((a_1, a_2, \ldots, a_n) \notin \rho\) such that
\[
\left(\{a_1, b_1\} \times \{a_2, b_2\} \times \cdots \times \{a_n, b_n\} \right) \setminus \{(a_1, a_2, \ldots, a_n)\} \subseteq \rho.
\]
Step 1

C contains a NU of arity $n+1$ but not n.

We know from AAA87

1. A clone C doesn’t contain a NU of arity n iff there exists a compatible key (critical) relation of arity n.

2. For any key relation ρ preserved by a NU we can find $(a_1, a_2, \ldots, a_n) \notin \rho$ such that

\[
\left(\{a_1, b_1\} \times \{a_2, b_2\} \times \cdots \times \{a_n, b_n\}\right) \setminus \{(a_1, a_2, \ldots, a_n)\} \subseteq \rho.
\]

Thus, we have ρ preserved by C, $(a_1, a_2, \ldots, a_n) \notin \rho$ and

\[
\left(\{a_1, b_1\} \times \{a_2, b_2\} \times \cdots \times \{a_n, b_n\}\right) \setminus \{(a_1, a_2, \ldots, a_n)\} \subseteq \rho.
\]
Step 1

\(C\) contains a NU of arity \(n + 1\) but not \(n\).

We know from AAA87

1. A clone \(C\) doesn’t contain a NU of arity \(n\) iff there exists a compatible key (critical) relation of arity \(n\).

2. For any key relation \(\rho\) preserved by a NU we can find \((a_1, a_2, \ldots, a_n) \notin \rho\) such that
 \[
 ([a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]) \setminus \{(a_1, a_2, \ldots, a_n)\} \subseteq \rho.
 \]

Thus, we have \(\rho\) preserved by \(C\), \((a_1, a_2, \ldots, a_n) \notin \rho\) and
 \[
 ([a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]) \setminus \{(a_1, a_2, \ldots, a_n)\} \subseteq \rho.
 \]

\((a_1, \ldots, a_n) \notin \langle([a_1, b_1] \times \cdots \times [a_n, b_n]) \setminus \{(a_1, \ldots, a_n)\}\rangle_C.\]
Step 1

C contains a NU of arity $n + 1$ but not n.

We know from AAA87

1. A clone C doesn’t contain a NU of arity n iff there exists a compatible key (critical) relation of arity n.

2. For any key relation ρ preserved by a NU we can find $(a_1, a_2, \ldots, a_n) \notin \rho$ such that
 \[
 (\{a_1, b_1\} \times \{a_2, b_2\} \times \cdots \times \{a_n, b_n\}) \setminus \{(a_1, a_2, \ldots, a_n)\} \subseteq \rho.
 \]

Thus, we have ρ preserved by C, $(a_1, a_2, \ldots, a_n) \notin \rho$ and
\[
(\{a_1, b_1\} \times \{a_2, b_2\} \times \cdots \times \{a_n, b_n\}) \setminus \{(a_1, a_2, \ldots, a_n)\} \subseteq \rho.
\]

\[
(a_1, \ldots, a_n) \notin \langle(\{a_1, b_1\} \times \cdots \times \{a_n, b_n\}) \setminus \{(a_1, \ldots, a_n)\}\rangle_C.
\]

We consider idempotent case!
Step 1

C contains a NU of arity $n + 1$ but not n.

We know from AAA87

1. A clone C doesn’t contain a NU of arity n iff there exists a compatible key (critical) relation of arity n.

2. For any key relation ρ preserved by a NU we can find $(a_1, a_2, \ldots, a_n) \notin \rho$ such that

 $$(\{a_1, b_1\} \times \{a_2, b_2\} \times \cdots \times \{a_n, b_n\}) \setminus \{(a_1, a_2, \ldots, a_n)\} \subseteq \rho.$$

Thus, we have ρ preserved by C, $(a_1, a_2, \ldots, a_n) \notin \rho$ and

$$(\{a_1, b_1\} \times \{a_2, b_2\} \times \cdots \times \{a_n, b_n\}) \setminus \{(a_1, a_2, \ldots, a_n)\} \subseteq \rho.$$

$$(a_1, \ldots, a_n) \notin \langle \{(a_1, b_1) \times \cdots \times \{a_n, b_n\}) \setminus \{(a_1, \ldots, a_n)\} \rangle_C.$$

We consider idempotent case! We choose the most popular pair (a_i, b_i) to get $\{a\}^{n_1} \notin \langle \{a, b\}^{n_1} \setminus \{a\}^{n_1} \rangle_C$ for $n_1 \geq n/|A|^2$.
Step 2

We have n_1 and $\{a\}^{n_1} \notin \langle \{a, b\}^{n_1} \setminus \{a\}^{n_1} \rangle_c$.
Step 2

We have n_1 and $\{a\}^{n_1} \notin \langle \{a, b\}^{n_1} \setminus \{a\}^{n_1} \rangle_C$.

For $D = \langle \{a, b\} \rangle_C$ and $B_1 = \{b\}$ we have

$\{a\}^{n_1} \notin \langle D^{n_1} \setminus (D \setminus B_1)^{n_1} \rangle_C \subseteq \langle \{a, b\}^{n_1} \setminus \{b\}^{n_1} \rangle_C$.

We have the first element of the sequence: (n_1, B_1).
Step 2

We have n_1 and $\{a\}^{n_1} \notin \langle \{a, b\}^{n_1} \setminus \{a\}^{n_1} \rangle_C$.

For $D = \langle \{a, b\} \rangle_C$ and $B_1 = \{b\}$ we have

$\{a\}^{n_1} \notin \langle D^{n_1} \setminus (D \setminus B_1)^{n_1} \rangle_C \subseteq \langle \{a, b\}^{n_1} \setminus \{b\}^{n_1} \rangle_C$.

We have the first element of the sequence: (n_1, B_1).

Suppose we have (n_i, B_i). If C preserves $D^{n_i} \setminus (D \setminus B_i)^{n_i}$ we are done.
Step 2

We have n_1 and $\{a\}^{n_1} \notin \langle\{a, b\}^{n_1} \setminus \{a\}^{n_1}\rangle_C$.

For $D = \langle\{a, b\}\rangle_C$ and $B_1 = \{b\}$ we have

$\{a\}^{n_1} \notin \langle D^{n_1} \setminus (D \setminus B_1)^{n_1}\rangle_C \subseteq \langle\{a, b\}^{n_1} \setminus \{b\}^{n_1}\rangle_C$.

We have the first element of the sequence: (n_1, B_1).

Suppose we have (n_i, B_i). If C preserves $D^{n_i} \setminus (D \setminus B_i)^{n_i}$ we are done. If not, then an operation $f \in C$ doesn’t preserve $D^{n_i} \setminus (D \setminus B_i)^{n_i}$.

\[
\begin{pmatrix}
\vdots \\
\vdots \\
\vdots \\
\vdots
\end{pmatrix}
\begin{pmatrix}
\vdots \\
\vdots \\
\vdots \\
\vdots
\end{pmatrix}
\begin{pmatrix}
\vdots \\
\vdots \\
\vdots \\
\vdots
\end{pmatrix}
\begin{pmatrix}
\vdots \\
\vdots \\
\vdots \\
\vdots
\end{pmatrix}
\begin{pmatrix}
\vdots \\
\vdots \\
\vdots \\
\vdots
\end{pmatrix}

f

\begin{pmatrix}
\vdots \\
\vdots \\
\vdots \\
\vdots
\end{pmatrix}
\begin{pmatrix}
\vdots \\
\vdots \\
\vdots \\
\vdots
\end{pmatrix}
\begin{pmatrix}
\vdots \\
\vdots \\
\vdots \\
\vdots
\end{pmatrix}
\begin{pmatrix}
\vdots \\
\vdots \\
\vdots \\
\vdots
\end{pmatrix}
\begin{pmatrix}
\vdots \\
\vdots \\
\vdots \\
\vdots
\end{pmatrix}

\notin D^{n_i} \setminus (D \setminus B_i)^{n_i}.
Step 2

We have \(n_1 \) and \(\{a\}^{n_1} \not\in \langle \{a, b\}^{n_1} \setminus \{a\}^{n_1} \rangle_C \).

For \(D = \langle \{a, b\} \rangle_C \) and \(B_1 = \{b\} \) we have

\[
\{a\}^{n_1} \not\in \langle D^{n_1} \setminus (D \setminus B_1)^{n_1} \rangle_C \subseteq \langle \{a, b\}^{n_1} \setminus \{b\}^{n_1} \rangle_C.
\]

We have the first element of the sequence: \((n_1, B_1)\).

Suppose we have \((n_i, B_i)\). If \(C \) preserves \(D^{n_i} \setminus (D \setminus B_i)^{n_i} \) we are done. If not, then an operation \(f \in C \) doesn’t preserve \(D^{n_i} \setminus (D \setminus B_i)^{n_i} \).

\[
f\begin{pmatrix}
\begin{pmatrix}
\cdot
& \cdot
& \cdot
& \cdots

\cdot
& \cdot
& \cdot
& \cdots

\cdot
& \cdot
& \cdot
& \cdots

\cdots
& \cdots
& \cdots
& \cdots
\end{pmatrix}
&
\begin{pmatrix}
\cdot
& \cdot
& \cdot
& \cdots

\cdot
& \cdot
& \cdot
& \cdots

\cdot
& \cdot
& \cdot
& \cdots

\cdots
& \cdots
& \cdots
& \cdots
\end{pmatrix}
&
\begin{pmatrix}
\cdot
& \cdot
& \cdot
& \cdots

\cdot
& \cdot
& \cdot
& \cdots

\cdot
& \cdot
& \cdot
& \cdots

\cdots
& \cdots
& \cdots
& \cdots
\end{pmatrix}
&
\begin{pmatrix}
\cdot
& \cdot
& \cdot
& \cdots

\cdot
& \cdot
& \cdot
& \cdots

\cdot
& \cdot
& \cdot
& \cdots

\cdots
& \cdots
& \cdots
& \cdots
\end{pmatrix}
\end{pmatrix}
\not\in D^{n_i} \setminus (D \setminus B_i)^{n_i}.
\]
We have n_1 and $\{a\}^{n_1} \not\in \langle \{a, b\}^{n_1} \setminus \{a\}^{n_1} \rangle_C$.

For $D = \langle \{a, b\} \rangle_C$ and $B_1 = \{b\}$ we have

$\{a\}^{n_1} \not\in \langle D^{n_1} \setminus (D \setminus B_1)^{n_1} \rangle_C \subseteq \langle \{a, b\}^{n_1} \setminus \{b\}^{n_1} \rangle_C$.

We have the first element of the sequence: (n_1, B_1).

Suppose we have (n_i, B_i). If C preserves $D^{n_i} \setminus (D \setminus B_i)^{n_i}$ we are done. If not, then an operation $f \in C$ doesn’t preserve $D^{n_i} \setminus (D \setminus B_i)^{n_i}$.

$$f \begin{pmatrix} (\ldots) \\ b \\ (\ldots) \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} \not\in D^{n_i} \setminus (D \setminus B_i)^{n_i}.$$
Step 2

We have n_1 and $\{a\}^{n_1} \notin \langle \{a, b\}^{n_1} \setminus \{a\}^{n_1} \rangle_C$.

For $D = \langle \{a, b\} \rangle_C$ and $B_1 = \{b\}$ we have

$\{a\}^{n_1} \notin \langle D^{n_1} \setminus (D \setminus B_1)^{n_1} \rangle_C \subseteq \langle \{a, b\}^{n_1} \setminus \{b\}^{n_1} \rangle_C$.

We have the first element of the sequence: (n_1, B_1).

Suppose we have (n_i, B_i). If C preserves $D^{n_i} \setminus (D \setminus B_i)^{n_i}$ we are done. If not, then an operation $f \in C$ doesn’t preserve $D^{n_i} \setminus (D \setminus B_i)^{n_i}$.

$$
\begin{pmatrix}
 \vdots \\
 b \\
 \vdots \\
 a \\
 a \\
 a \\
 a \\
\end{pmatrix}
\begin{pmatrix}
 \vdots \\
 \vdots \\
 \vdots \\
 a \\
 a \\
 a \\
 a \\
\end{pmatrix}
\begin{pmatrix}
 \vdots \\
 b \\
 \vdots \\
 a \\
 a \\
 a \\
 a \\
\end{pmatrix}
= \begin{pmatrix}
 c_1 \\
 c_2 \\
 c_3 \\
 c_4 \\
 a \\
 a \\
 a \\
\end{pmatrix}

\notin D^{n_i} \setminus (D \setminus B_i)^{n_i}.$$

$$
\begin{pmatrix}
 \vdots \\
 b \\
 \vdots \\
 a \\
 a \\
 a \\
 a \\
\end{pmatrix}
\begin{pmatrix}
 \vdots \\
 \vdots \\
 \vdots \\
 a \\
 a \\
 a \\
 a \\
\end{pmatrix}
\begin{pmatrix}
 \vdots \\
 b \\
 \vdots \\
 a \\
 a \\
 a \\
 a \\
\end{pmatrix}
= \begin{pmatrix}
 c_1 \\
 c_2 \\
 c_3 \\
 c_4 \\
 a \\
 a \\
 a \\
\end{pmatrix}

\notin D^{n_i} \setminus (D \setminus B_i)^{n_i}.$$
Step 2

We get $k \leq m$ such that
\[(c_1, \ldots, c_k, a, \ldots, a) \in \langle D^{n_i} \setminus (D \setminus B_i)^{n_i} \rangle_C\]
and
\[(c_1, \ldots, c_k, a, \ldots, a) \notin D^{n_i} \setminus (D \setminus B_i)^{n_i}.\]
We get $k \leq m$ such that
\[(c_1, \ldots, c_k, a, \ldots, a) \in \langle D^{n_i} \setminus (D \setminus B_i)^{n_i} \rangle_C \]
and
\[(c_1, \ldots, c_k, a, \ldots, a) \notin D^{n_i} \setminus (D \setminus B_i)^{n_i}.\]

WLOG, let k be the minimal number with this property. Then
\[(c_1, \ldots, c_{k-1}, a, a, \ldots, a) \notin \langle D^{n_i} \setminus (D \setminus B_i)^{n_i} \rangle_C \]
Step 2

We get $k \leq m$ such that

$$(c_1, \ldots, c_k, a, \ldots, a) \in \langle D^{n_i} \setminus (D \setminus B_i)^{n_i} \rangle_C$$

and

$$(c_1, \ldots, c_k, a, \ldots, a) \not\in D^{n_i} \setminus (D \setminus B_i)^{n_i}.$$

WLOG, let k be the minimal number with this property. Then

$$(c_1, \ldots, c_{k-1}, a, a, \ldots, a) \not\in \langle D^{n_i} \setminus (D \setminus B_i)^{n_i} \rangle_C$$

Since we consider idempotent case, we have

$$(c_1, \ldots, c_{k-1}, c_k, D, \ldots, D) \subseteq \langle D^{n_i} \setminus (D \setminus B_i)^{n_i} \rangle_C$$
Step 2

We get $k \leq m$ such that

$$(c_1, \ldots, c_k, a, \ldots, a) \in \langle D^{n_i} \setminus (D \setminus B_i)^{n_i} \rangle_C$$

and

$$(c_1, \ldots, c_k, a, \ldots, a) \notin D^{n_i} \setminus (D \setminus B_i)^{n_i}.$$

WLOG, let k be the minimal number with this property. Then

$$(c_1, \ldots, c_{k-1}, a, a, \ldots, a) \notin \langle D^{n_i} \setminus (D \setminus B_i)^{n_i} \rangle_C$$

Since we consider idempotent case, we have

$$(c_1, \ldots, c_{k-1}, c_k, D, \ldots, D) \subseteq \langle D^{n_i} \setminus (D \setminus B_i)^{n_i} \rangle_C$$

Put $n_{i+1} = n_i - (k - 1)$, $B_{i+1} = B_i \cup \{c_k\}$. Then

$$\{a\}^{n_{i+1}} \notin \langle D^{n_{i+1}} \setminus (D \setminus B_{i+1})^{n_{i+1}} \rangle_C.$$

Let (n_{i+1}, B_{i+1}) be the next element of the sequence.
Step 3

We finish the sequence with $D^{n_i} \setminus (D \setminus B_i)^{n_i}$ preserved by C. If $n_i \geq m$ then C preserves $D^p \setminus (D \setminus B_i)^p$ for any p. But a NU cannot preserve $D^p \setminus (D \setminus B_i)^p$ for any p. Contradiction!!!
We finish the sequence with $D^{n_i} \setminus (D \setminus B_i)^{n_i}$ preserved by C. If $n_i \geq m$ then C preserves $D^p \setminus (D \setminus B_i)^p$ for any p. But a NU cannot preserve $D^p \setminus (D \setminus B_i)^p$ for any p. Contradiction!!!

Thus, $m > n_i > n/|A|^2 - (|A| - 1) \cdot (m - 1)$
Therefore, $n < |A|^3 \cdot m$.

We complete the proof
Further Investigations

Question
Can we recognize that a clone contains a NU?
Further Investigations

Question
Can we recognize that a clone contains a NU?

- For clones defined by finite set of operations.
Further Investigations

Question

Can we recognize that a clone contains a NU?

- For clones defined by finite set of operations. *Decidable!*
Further Investigations

Question

Can we recognize that a clone contains a NU?

- For clones defined by finite set of operations. **Decidable!**
- For clones defined by finite set of relations.
Further Investigations

Question

Can we recognize that a clone contains a NU?

- For clones defined by finite set of operations. **Decidable!**
- For clones defined by finite set of relations. **Decidable!**
Further Investigations

Question

Can we recognize that a clone contains a NU?

- For clones defined by finite set of operations. **Decidable!**
- For clones defined by finite set of relations. **Decidable!**
- For clones of the form \([A] \cap [B]\) where \(A\) and \(B\) are finite sets of operations.
Further Investigations

Question

Can we recognize that a clone contains a NU?

- For clones defined by finite set of operations. Decidable!
- For clones defined by finite set of relations. Decidable!
- For clones of the form $[A] \cap [B]$ where A and B are finite sets of operations.

What do you know about $[A] \cap [B]$?
Further Investigations

Question

Can we recognize that a clone contains a NU?

- For clones defined by finite set of operations. **Decidable!**
- For clones defined by finite set of relations. **Decidable!**
- For clones of the form \([A] \cap [B]\) where \(A\) and \(B\) are finite sets of operations.

What do you know about \([A] \cap [B]\)?

- Can you check whether it is finitely generated?
Further Investigations

Question

Can we recognize that a clone contains a NU?

- For clones defined by finite set of operations. \textbf{Decidable}!
- For clones defined by finite set of relations. \textbf{Decidable}!
- For clones of the form \([A] \cap [B]\) where \(A\) and \(B\) are finite sets of operations.

What do you know about \([A] \cap [B]\)?

- Can you check whether it is finitely generated? \textbf{I can’t!}
Further Investigations

Question

Can we recognize that a clone contains a NU?

- For clones defined by finite set of operations. Decidable!
- For clones defined by finite set of relations. Decidable!
- For clones of the form $[A] \cap [B]$ where A and B are finite sets of operations.

What do you know about $[A] \cap [B]$?

1. Can you check whether it is finitely generated? I can’t!
2. Can you check whether it is finitely related?
Further Investigations

Question

Can we recognize that a clone contains a NU?

- For clones defined by finite set of operations. **Decidable!**
- For clones defined by finite set of relations. **Decidable!**
- For clones of the form \([A] \cap [B]\) where \(A\) and \(B\) are finite sets of operations.

What do you know about \([A] \cap [B]\)?

1. Can you check whether it is finitely generated? **I can’t!**
2. Can you check whether it is finitely related? **I can’t!**
Further Investigations

Question

Can we recognize that a clone contains a NU?

- For clones defined by finite set of operations. *Decidable!*
- For clones defined by finite set of relations. *Decidable!*
- For clones of the form $[A] \cap [B]$ where A and B are finite sets of operations.

What do you know about $[A] \cap [B]$?

1. Can you check whether it is finitely generated? *I can’t!*
2. Can you check whether it is finitely related? *I can’t!*
3. Can you check that $[A] \cap [B] = [C]$?
Further Investigations

Question

Can we recognize that a clone contains a NU?

- For clones defined by finite set of operations. Decidable!
- For clones defined by finite set of relations. Decidable!
- For clones of the form \([A] \cap [B]\) where \(A\) and \(B\) are finite sets of operations.

What do you know about \([A] \cap [B]\)?

1. Can you check whether it is finitely generated? I can’t!
2. Can you check whether it is finitely related? I can’t!
3. Can you check that \([A] \cap [B] = [C]\)? I can’t!
Further Investigations

Question
Can we recognize that a clone contains a NU?

- For clones defined by finite set of operations. **Decidable!**
- For clones defined by finite set of relations. **Decidable!**
- For clones of the form \([A] \cap [B]\) where \(A\) and \(B\) are finite sets of operations.

What do you know about \([A] \cap [B]\)?

1. Can you check whether it is finitely generated? **I can’t!**
2. Can you check whether it is finitely related? **I can’t!**
3. Can you check that \([A] \cap [B] = [C]\)? **I can’t!**
4. Can you check that \([A] \cap [B]\) contains NU?
Further Investigations

Question

Can we recognize that a clone contains a NU?

- For clones defined by finite set of operations. Decidable!
- For clones defined by finite set of relations. Decidable!
- For clones of the form \([A] \cap [B]\) where \(A\) and \(B\) are finite sets of operations.

What do you know about \([A] \cap [B]\)?

1. Can you check whether it is finitely generated? I can’t!
2. Can you check whether it is finitely related? I can’t!
3. Can you check that \([A] \cap [B] = [C]\)? I can’t!
4. Can you check that \([A] \cap [B]\) contains NU? I can!
Further Investigations

Question

Can we recognize that a clone contains a NU?

- For clones defined by finite set of operations. **Decidable!**
- For clones defined by finite set of relations. **Decidable!**
- For clones of the form \([A] \cap [B]\) where \(A\) and \(B\) are finite sets of operations. **Decidable!**
Further Investigations

Question

Can we recognize that a clone contains a NU?

- For clones defined by finite set of operations. **Decidable!**
- For clones defined by finite set of relations. **Decidable!**
- For clones of the form $[A] \cap [B]$ where A and B are finite sets of operations. **Decidable!**
- For clones of the form $[A_1] \cap [A_2] \cap \cdots \cap [A_n]$ where A_1, A_2, \ldots, A_n are finite sets of operations. **Decidable!**
Further Investigations

Question

Can we recognize that a clone contains a NU?

- For clones defined by finite set of operations. **Decidable!**
- For clones defined by finite set of relations. **Decidable!**
- For clones of the form \([A] \cap [B]\) where \(A\) and \(B\) are finite sets of operations. **Decidable!**
- For clones of the form \([A_1] \cap [A_2] \cap \cdots \cap [A_n]\) where \(A_1, A_2, \ldots, A_n\) are finite sets of operations. **Decidable!**
- For clones of the form \([\text{Pol}(\rho_1) \cup \text{Pol}(\rho_2)]\).
Further Investigations

Question

Can we recognize that a clone contains a NU?

- For clones defined by finite set of operations. Decidable!
- For clones defined by finite set of relations. Decidable!
- For clones of the form $[A] \cap [B]$ where A and B are finite sets of operations. Decidable!
- For clones of the form $[A_1] \cap [A_2] \cap \cdots \cap [A_n]$ where A_1, A_2, \ldots, A_n are finite sets of operations. Decidable!
- For clones of the form $[\text{Pol}(\rho_1) \cup \text{Pol}(\rho_2)]$. I don’t know!

Open problem: is this problem decidable?

Given relations ρ_1 and ρ_2, decide whether $[\text{Pol}(\rho_1) \cup \text{Pol}(\rho_2)]$ contains a NU.
Thank you for your attention