TUTORIAL 6. LINEAR INDEPENDENT SETS. SPANNING SETS.

6.1. Decide whether the given set of vectors is linearly independent in the indicated vector space.
 a. \{ x^4 + x^3 + x^2 + x + 1, x^2 + x + 2, x \} in \(R[x] \) over \(R \),
 b. \{ (1,0,1), (1,1,0), (0,1,1) \} in \(Z_3^3 \) over \(Z_2 \),
 c. \{ (1,0,1), (1,1,0), (0,1,1) \} in \(R^3 \) over \(R \),
 d. \{ \sin x, \cos x, x \} in \(R^3 \) over \(R \),
 e. \{ \sin^2 x, \cos^2 x, \sin 2x, \cos 2x \} in \(R^4 \) over \(R \),
 f. \{ x_1, x_1 + x_2, x_1 + x_2 + x_3, \ldots, x_1 + \ldots + x_n \} if \{ x_1, x_2, x_3, \ldots, x_n \} is linearly independent, in any vector space \(V \),
 g. \{ x_1 + x_2, x_2 + x_3, \ldots, x_{n-1} + x_n, x_n + x_1 \} if \{ x_1, x_2, x_3, \ldots, x_n \} is linearly independent, in any vector space \(V \),
 h. \{ x_1 + v, x_2 + v, \ldots, x_n + v \} if \{ x_1, x_2, x_3, \ldots, x_n \} is linearly independent and \(v \) is any vector,
 i. \(S \), where \(S \subseteq T \) and \(T \) is linearly independent,
 j. \(T \), where \(T \subseteq S \) and \(T \) is linearly independent,
 k. \{ x_1, x_2, x_3, \ldots, x_n \}, where \(x_i \in \text{span}(S_i), x_i \neq \Theta \) for \(i = 1, 2, \ldots, n \), sets \(S_i \) are finite and pairwise disjoint and the set \(S_1 \cup S_2 \cup \ldots \cup S_n \) is linearly independent.

6.2. Find the dimension of each of the following vector spaces:
 a. \(R \) over \(Q \),
 b. \(C \) over \(R \),
 c. All polynomials with real coefficients, of degree \(\leq 7 \), with a root at 1, over \(R \),
 d. \(F^n \) over \(F \), where \(F \) is any field,
 e. All polynomials with real coefficients, of degree \(\leq 8 \), divisible by \(x^2 + 1 \), over \(R \),
 f. \(\text{Span}(\{ \sin^2 x, \cos^2 x, \sin 2x, \cos 2x \}) \) over \(R \),
 g. \(\text{Span}(\{ x_1, x_2, x_3, \ldots, x_n \}) \), where \(\{ x_1, x_2, x_3, \ldots, x_n \} \) is a basis for \(V \),
 h. \(\text{Span}(\{ x_n, x_{n-1}, x_{n-2}, \ldots, x_1 \}) \), where \(\{ x_1, x_2, x_3, \ldots, x_n \} \) is a basis for \(V \),
 i. \(\{ (x,y,z,t) \in R^4 \mid x+y+z+t=0 \} \),
 j. \(\{ (x,y,z,t) \in R^4 \mid 2x+y=z-t \} \),
 k. \(\text{span}(\{(1,2,1,0),(1,3,1,1),(0,1,2,-1),(-3,1,2,2)\}) \) over \(R \),
 l. \(2^{(a,b,c)} \) over \(Z_2 \).