A new proof of Pigozzi theorem

Anvar Nurakunov1 and Michał Stronkowski2

1Kyrghyz National Academy of Science
2Warsaw University of Technology

Bern, July 8th 2008
Outline

1. Finite basis of quasivarieties

2. A proof of Pigozzi theorem
Quasivarieties

Definition

A quasivariety is a class of algebras closed under S, P and P_U.
Definition

A **quasivariety** is a class of algebras closed under S, P and P_U.

If \mathcal{F} is a finite family of finite algebras then the smallest quasivariety containing \mathcal{F} equals to $\text{SP}(\mathcal{F})$.

Anvar Nurakunov, Michał Stronkowski
Quasivarieties

Definition

A quasivariety is a class of algebras closed under S, P and P_U.

If \mathcal{F} is a finite family of finite algebras then the smallest quasivariety containing \mathcal{F} equals to $SP(\mathcal{F})$.

Fact

A Class is a quasivariety iff it is definable by quasi-identities, that is universal formulae of the form

$$\left(\forall \bar{x} \right) \left[\bigwedge_{i \leq n} p_i(\bar{x}) \approx q_i(\bar{x}) \right] \rightarrow p(\bar{x}) \approx q(\bar{x})$$.
Quasivarieties

Definition

A quasivariety is a class of algebras closed under S, P and P_U.

If F is a finite family of finite algebras then the smallest quasivariety containing F equals to $SP(F)$.

Fact

A Class is a quasivariety iff it is definable by quasi-identities, that is universal formulae of the form

\[(\forall \bar{x}) \left[\bigwedge_{i \leq n} p_i(\bar{x}) \approx q_i(\bar{x}) \right] \rightarrow p(\bar{x}) \approx q(\bar{x}) \,.
\]

A quasivariety is finitely based provided it is definable by finitely many quasi-identities.
Relative congruences

Definition

For a quasivariety \mathcal{R} we say that a congruence θ of A is an \mathcal{R}-congruence if $A/\theta \in \mathcal{R}$.
Relative congruences

Definition

For a quasivariety \mathcal{R} we say that a congruence θ of A is an \mathcal{R}-congruence if $A/\theta \in \mathcal{R}$.

Definition

A nontrivial algebra A in \mathcal{R} is \mathcal{R}-subdirectly irreducible if the lattice of its \mathcal{R}-congruences has exactly one atom.
Relative congruences

Definition

For a quasivariety \mathcal{R} we say that a congruence θ of A is an \mathcal{R}-congruence if $A/\theta \in \mathcal{R}$.

Definition

A nontrivial algebra A in \mathcal{R} is \mathcal{R}-subdirectly irreducible if the lattice of its \mathcal{R}-congruences has exactly one atom.

Theorem (A. I. Mal’cev, S. Burris)

Each algebra in a quasivariety \mathcal{R} is isomorphic to a subdirect product of \mathcal{R}-subdirectly irreducible algebras.
Pigozzi theorem

A quasivariety \mathcal{R} is \textit{relatively congruence-distributive} if for all A in \mathcal{R} the lattice of its \mathcal{R}-congruences is distributive.
A quasivariety \mathcal{R} is \textit{relatively congruence-distributive} if for all A in \mathcal{R} the lattice of its \mathcal{R}-congruences is distributive.

Theorem (D. Pigozzi)

A finitely generated relatively congruence-distributive quasivariety is finitely based.
A quasivariety \mathcal{R} is \textit{relatively congruence-distributive} if for all A in \mathcal{R} the lattice of its \mathcal{R}-congruences is distributive.

Theorem (D. Pigozzi)

\textit{A finitely generated relatively congruence-distributive quasivariety is finitely based.}

A variety version of Pigozzi theorem was proved earlier by K. Baker.
A quasivariety \mathcal{R} is \textbf{relatively congruence-distributive} if for all A in \mathcal{R} the lattice of its \mathcal{R}-congruences is distributive.

\begin{mdframed}
\textbf{Theorem (D. Pigozzi)}

\textit{A finitely generated relatively congruence-distributive quasivariety is finitely based.}
\end{mdframed}

A variety version of Pigozzi theorem was proved earlier by K. Baker.

There are finite algebras which generate congruence-distributive varieties and non relatively congruence-distributive quasivarieties.
Pigozzi theorem

A quasivariety \mathcal{R} is **relatively congruence-distributive** if for all A in \mathcal{R} the lattice of its \mathcal{R}-congruences is distributive.

Theorem (D. Pigozzi)

A finitely generated relatively congruence-distributive quasivariety is finitely based.

A variety version of Pigozzi theorem was proved earlier by K. Baker.

There are finite algebras which generate congruence-distributive varieties and non relatively congruence-distributive quasivarieties.

There are finite algebras which generate relatively congruence-distributive quasivarieties and non congruence-distributive varieties.
Definable \mathcal{R}-congruences

For a pair of elements a, b of algebra A let $\theta_{\mathcal{R}}(a, b)$ be the smallest \mathcal{R}-congruence of A gluing a and b.
Definable \mathcal{R}-congruences

For a pair of elements a, b of algebra A let $\theta_\mathcal{R}(a, b)$ be the smallest \mathcal{R}-congruence of A gluing a and b.

Definition

1. An \mathcal{R}-congruence formula is a positive formula Γ such that

 $\mathcal{R} \models (\forall x, u, v)[\Gamma(u, v, x, x) \rightarrow u \approx v]$.
Definable \mathcal{R}-congruences

For a pair of elements a, b of algebra A let $\theta_\mathcal{R}(a, b)$ be the smallest \mathcal{R}-congruence of A gluing a and b.

Definition

1. An \mathcal{R}-congruence formula is a positive formula Γ such that

 \[
 \mathcal{R} \models (\forall x, u, v)[\Gamma(u, v, x, x) \rightarrow u \approx v].
 \]

2. A quasivariety \mathcal{R} has **definable relative principal congruences** if there exists an \mathcal{R}-congruence formula Γ such that

 \[
 \theta_\mathcal{R}(a, b) = \{(c, d) \in A^2 \mid A \models \Gamma(c, d, a, b)\}
 \]

 for all $a, b \in A \in \mathcal{R}$.
Definable \mathcal{R}-congruences, continued

Theorem (J. Czelakowski, W. Dziobiak)

The quasivariety \mathcal{R} with definable relative principal congruences is finitely based iff the class \mathcal{R}_{SI} of \mathcal{R}-subdirectly irreducible algebras is strictly elementary.
Definable \mathcal{R}-congruences, continued

Theorem (J. Czelakowski, W. Dziobiak)

The quasivariety \mathcal{R} with definable relative principal congruences is finitely based iff the class \mathcal{R}_{SI} of \mathcal{R}-subdirectly irreducible algebras is strictly elementary.

Proof of if direction.

Let $\Gamma(x, y, u, v)$ define principal congruences in \mathcal{R}.

There exists a finite set of quasi-identities Σ such that $\mathcal{R} = \text{Mod}(\Sigma) \cap H(\mathcal{R})$ and $\mathcal{R}_{SI} = \text{Mod}(\Sigma)_{SI} \cap \mathcal{R}$.

There is a formula $\Delta(u, v)$ such that $A |_A = \Delta(c, d)$ iff $\{(e, f) \in A^2 |_A = \Gamma(e, f, c, d)\}$ is a $\text{Mod}(\Sigma)$-congruence of A containing (c, d).

Anvar Nurakunov, Michał Stronkowski
Theorem (J. Czelakowski, W. Dziobiak)

The quasivariety \mathcal{R} with definable relative principal congruences is finitely based iff the class \mathcal{R}_{SI} of \mathcal{R}-subdirectly irreducible algebras is strictly elementary.

Proof of if direction.

Let $\Gamma(x, y, u, v)$ define principal congruences in \mathcal{R}.

1. There exists a finite set of quasi-identities Σ such that $\mathcal{R} = \text{Mod}(\Sigma) \cap \text{H}(\mathcal{R})$ and $\mathcal{R}_{SI} = \text{Mod}(\Sigma)_{SI} \cap \mathcal{R}$.
Definable \mathcal{R}-congruences, continued

Theorem (J. Czelakowski, W. Dziobiak)

The quasivariety \mathcal{R} with definable relative principal congruences is finitely based iff the class \mathcal{R}_{SI} of \mathcal{R}-subdirectly irreducible algebras is strictly elementary.

Proof of if direction.

Let $\Gamma(x, y, u, v)$ define principal congruences in \mathcal{R}.

1. There exists a finite set of quasi-identities Σ such that $\mathcal{R} = \text{Mod}(\Sigma) \cap \mathcal{H}(\mathcal{R})$ and $\mathcal{R}_{SI} = \text{Mod}(\Sigma)_{SI} \cap \mathcal{R}$.

2. There is a formula $\Delta(u, v)$ such that $A \models \Delta(c, d)$ iff

$$\{(e, f) \in A^2 \mid A \models \Gamma(e, f, c, d)\}$$

is a Mod(Σ)-congruence of A containing (c, d).
3 Because $\mathcal{R} \models (\forall u, v)\Delta(u, v)$, there is I a finite set of identities such that

$$\mathcal{R} \models I \quad \text{and} \quad I \cup \Sigma \models (\forall u, v)\Delta(u, v).$$
Proof continued.

3. Because $\mathcal{R} \models (\forall u, v) \Delta(u, v)$, there is I a finite set of identities such that

$$\mathcal{R} \models I \text{ and } I \cup \Sigma \models (\forall u, v) \Delta(u, v).$$

4. Let

$$\psi = (\exists u, v) \left[u \not\approx v \land (\forall x, y) \left[x \not\approx y \rightarrow \Gamma(u, v, x, y) \right] \right]$$

and $\mathcal{R}_{SI} = \text{Mod}(\chi)$.
Definable \mathcal{R}-congruences, continued

Proof continued.

3. Because $\mathcal{R} \models (\forall u, v)\Delta(u, v)$, there is I a finite set of identities such that

\[\mathcal{R} \models I \text{ and } I \cup \Sigma \models (\forall u, v)\Delta(u, v). \]

4. Let

\[\psi = (\exists u, v)\left[u \not\cong v \wedge (\forall x, y)\left[x \not\cong y \rightarrow \Gamma(u, v, x, y) \right] \right] \]

and $\mathcal{R}_I = \text{Mod}(\chi)$. Then there is a finite set J of identities such that $\mathcal{R} \models J$ and $\Sigma \cup J \cup \{\psi\} \models \chi$.

Proof continued.

3. Because $\mathcal{R} \models (\forall u, v)\Delta(u, v)$, there is I a finite set of identities such that

$$\mathcal{R} \models I \text{ and } I \cup \Sigma \models (\forall u, v)\Delta(u, v).$$

4. Let

$$\psi = (\exists u, v)\left[u \not\approx v \land (\forall x, y)[x \not\approx y \rightarrow \Gamma(u, v, x, y)]\right]$$

and $\mathcal{R}_{SI} = \text{Mod}(\chi)$. Then there is a finite set J of identities such that $\mathcal{R} \models J$ and $\Sigma \cup J \cup \{\psi\} \models \chi$.

5. We have $R_{SI} = \text{Mod}(\Sigma \cup I \cup J)_{SI}$ and thus $R = \text{Mod}(\Sigma \cup I \cup J)$.

Anvar Nurakunov, Michał Stronkowski

A new proof of Pigozzi theorem
Definable relative principal subcongruences

Obstruction

Relative congruence-distributive quasivariety does not need to have definable relative principal congruences.
Definable relative principal subcongruences

Obstruction

Relative congruence-distributive quasivariety does not need to have definable relative principal congruences.

Definition

A quasivariety \mathcal{R} has **definable relative principal subcongruences** if there are \mathcal{R}-congruence formulas Γ_1, Γ_2 such that for all $A \in \mathcal{R}$ and each pair of distinct elements $a, b \in A$, there is a pair of distinct elements $c, d \in A$ such that

$$A \models \Gamma_1(c, d, a, b) \quad \text{and} \quad \theta_{\mathcal{R}}(c, d) = \{(e, f) \mid A \models \Gamma_2(e, f, c, d)\}.$$
Fact (Mostly due to K. Baker and J. Wang)

A finitely generated relatively congruence-distributive quasivariety has definable relative principal subcongruences.
Proof of Pigozzi theorem

Fact (Mostly due to K. Baker and J. Wang)

A finitely generated relatively congruence-distributive quasivariety has definable relative principal subcongruences.

Fact

The quasivariety \mathcal{R} with definable relative principal subcongruences is finitely based iff the class \mathcal{R}_{SI} of \mathcal{R}-subdirectly irreducible algebras is strictly elementary.
Proof of Pigozzi theorem

Fact (Mostly due to K. Baker and J. Wang)

A finitely generated relatively congruence-distributive quasivariety has definable relative principal subcongruences.

Fact

The quasivariety \mathcal{R} with definable relative principal subcongruences is finitely based iff the class \mathcal{R}_{SI} of \mathcal{R}-subdirectly irreducible algebras is strictly elementary.

Proof.

By refining the proof of Czelakowski-Dziobiak theorem. \qed
Proof of Pigozzi theorem, continued

Proof of Pigozzi theorem.

Let \mathcal{F} be a finite family of finite algebras and $\mathcal{R} = \text{SP}(\mathcal{F})$. Then $\mathcal{R}_{SI} \subseteq S(\mathcal{F})$ is a finite family of finite algebras and hence it is strictly elementary. Now use previous facts.
Proof of Pigozzi theorem.

Let \mathcal{F} be a finite family of finite algebras and $\mathcal{R} = \text{SP}(\mathcal{F})$. Then $\mathcal{R}_{SI} \subseteq \mathcal{S}(\mathcal{F})$ is a finite family of finite algebras and hence it is strictly elementary. Now use previous facts.

Problem

Let \mathcal{R} be a relatively congruence-distributive quasivariety and assume that the class \mathcal{R}_{SI} of \mathcal{R}-subdirectly irreducible algebras is strictly elementary. Must \mathcal{R} be finitely based?
Thank you for your attention :-}